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Abstract

The differentiability of a random function b 7→ E(Y |Gb(X)) is presented in this study.
The function is shown to be differentiable if Gb(X) is continuously distributed. The result
is applied to the semiparametric single-index model E(Y |X) = F (Gβ(X)), and a quick way
to compute the efficiency bound for estimating β has been proposed.
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1 Introduction

This paper aims to find a sufficient condition for the differentiability of a random function,

b 7→ E(Y |Gb(X)), (1.1)

where (Y,X) is a random vector, E(·|·) is a conditional expectation, and Gb(·) is a function
indexed by b ∈ Rk. The smoothness of (1.1) is a key assumption to derive the asymptotic
variance and the efficiency bound of the semiparametric single index model (e.g. Cosslett (1987),
Klein and Spady (1993), Sherman (1993), Chen and Lee (1998), Chen (2000), Song (2012) and
Song (2014)). In most studies, the differentiability of (1.1) is often simply assumed, or proven
under technical assumptions on the smoothness of the underlying probability densities.

The differentiability of (1.1) is not trivial. Crimaldi (2004) gives a quick example of a
discontinuous conditional expectation: let X be an R-valued random variable, b ∈ R, and
f : R 7→ R be a measurable function such that Var(f(X)) > 0. Then,

γ : b 7→ E (f(X) | bX) (1.2)

is not differentiable at b = 0 because γb = E (f(X)|X) = f(X) for b ̸= 0, while γ0 = Ef(X) at
b = 0. Therefore, limb→0E(γb − γ0)

2 ≥ Var(f(X)) > 0. The example is generalized to a higher
dimensional case, which is presented as follows.

Proposition 1 Let X = (X1, X2, · · · , Xd) be a random vector, and let f be a measurable
function of X such that EVar(f(X)|X2, · · · , Xd) > 0. Assume that suppX1 is bounded,
supp (X2, · · · , Xd) is at most countable, and ∂(supp (X2, · · · , Xd)) = ∅. Then, b 7→ E

(
f(X) |X⊤b

)
is not continuous at b = (0, b2, · · · , bd) ∈ Rd.
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Proof See Appendix A.

According to the proposition, b 7→ E(Y |Gb(X)) is not differentiable at β if suppGb(X)
changes in a discontinuous manner as b→ β. It is reasonable to guess that E(Y |Gb(X)) might
become smooth at β if Gβ(X) is continuously distributed. The guess is proven correct by the
paper.

The paper is organized as follows. Assumptions, definitions, and the main results of the
paper are presented in section 2. An application of the results to semiparametric estimation is
presented in section 3, where a quick way to compute the semiparametric efficiency bound of
the single-index model is proposed. Section 4 concludes the paper.

2 Main Results

Let (Ω,F ,P) be a probability space; L2(P) is the linear space of square integrable random
variables on (Ω,F ,P) with the inner product ⟨W1,W2⟩ = ⟨W1,W2⟩P = P(W1W2) and the norm

∥W∥ = ∥W∥P = ⟨W,W ⟩1/2; L0
2(P) is a set of W ∈ L2(P) such that PW = 0; L2(Z) denotes a

set of Z-measurable random variables; L0
2(Z) = {W ∈ L2(Gb(X)) : PW = 0}.

Suppose that U is a nonempty open subset of Rk and X ⊂ Rd; Gb : X 7→ R is a function on
X indexed with b ∈ U ; (Y,X) ∈ R×X is a random vector such that

E(Y |X) = F (Gβ(X)) (2.1)

with β ∈ U , where F : R 7→ R. Let Eb be the conditional-expectation operator defined by

EbZ = E(Z|Gb(X)) (2.2)

for every Z ∈ L2(P); E = (Eb)b∈U generates a random function EZ : b 7→ EbZ. In the paper, the
smoothness of the random function is defined as follows:

Definition 1 W : U 7→ L2(P), b 7→ Wb, is continuous if

lim
h→0

∥Wb+h −Wb∥ = 0 (2.3)

at every b ∈ U , and differentiable at β if there is ∂βWβ ∈ (L2(P))k such that∥∥∥Wβ+h −Wβ − h⊤∂βWβ

∥∥∥ = o(|h|) (2.4)

for every h→ 0.

Throughout the paper, the following assumptions have been maintained:

(A1) At every t ∈ R and b ∈ U ,

lim
h→0

P{Gb+h(X) = t} = P{Gb(X) = t}. (2.5)

(A2) G(X) : b 7→ Gb(X) is almost surely continuous, that is,

P

{
lim
h→0

|Gb+h(X)−Gb(X)| = 0

}
= 1 (2.6)

for any b ∈ U , and differentiable at β with derivative ∂βGβ(X) ∈ (L2(P))k.

(A3) F is continuously differentiable on R with derivative f = F ′.

Lemma 1 EZ : b 7→ EbZ is continuous for any Z ∈ L2(P).
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Proof Choose an arbitrary sequence {bn} ⊂ U such that bn → b as n → ∞. Let µn and
µ be the laws of Wn := Gbn(X) and W := Gb(X). The assumptions imply that Wn → W
almost surely and that µn{t} → µ{t} for any t ∈ R. By Theorem 1.6 of Crimaldi (2004), there
exist {W ′

n} and {W ′} such that P{Wn = W ′
n} = P{W = W ′} = 1 for any n ∈ N and that

∥E(Z|W ′
n)−E(Z|W ′)∥ → 0 as n→ ∞. This implies existence of X ′ such that P{X = X ′} = 1

and that ∥E(Z|Gbn(X))− E(Z|Gb(X))∥ = ∥E(Z|Gbn(X
′))− E(Z|Gb(X

′))∥ → 0 as n→ ∞.

Theorem 1 EY : b 7→ EbY is differentiable at β with derivative (∂βEβ)Y , where

(∂βEβ)Y = f(Gβ(X))
[
∂βGβ(X)− Eβ(∂βGβ(X))

]
. (2.7)

Remark 1 Let E⊥
b = id − Eb be the orthogonal operator of Eb, then the formula is shortly

expressed as
(∂βEβ)Y = E⊥

β ∂β(EβY ). (2.8)

Proof of Theorem 1 By the law of iterated expectations,

EbY − EβY = E(Gβ(X)|Gb(X))−Gβ(X).

Let ∆b := F (Gb(X))−F (Gβ(X))−(b−β)⊤∂βF (Gβ(X)), where ∂βF (Gβ(X)) = f(Gβ(X))∂βGβ(X).
Then,

EbY − EβY = E⊥
b

[
(b− β)⊤∂βF (Gβ(X)) + ∆b

]
and

∥EbY − EβY − (b− β)⊤E⊥
β ∂βF (Gβ(X))∥ ≤ ∥(Eb − Eβ)∂βF (Gβ(X))∥ · |b− β|+ ∥E⊥

b ∆b∥.

Lemma 1 implies ∥(Eb − Eβ)∂βF (Gβ(X))∥ → 0 as b → β. By the assumptions, ∥E⊥
b ∆b∥ ≤

∥∆b∥ = o(|b− β|). Thus, (∂βEβ)Y = E⊥
β ∂βF (Gβ(X)) is confirmed.

Corollary 1 Let Gb(X) = X⊤b such that Ef(X⊤β)2 < ∞ and Var(X) < ∞. If X⊤b is
continuously distributed on R for any b in the neighborhood of β,

∂

∂b
E(Y |X⊤b)

∣∣∣∣
b=β

= f(X⊤β)
(
X − E(X|X⊤β)

)
. (2.9)

Proof The assumptions imply that limb→β P{X⊤b = t} = P{X⊤β = t} = 0 for every t
and that ∥Gb(X) − Gβ(X) − (b − β)⊤X∥ = 0. Hence, ∂βGβ(X) = X and E⊥

β ∂β(F (X
⊤β)) =

E⊥
β f(X

⊤β)X = f(X⊤β)(X − EβX).

The continuous distribution of X⊤b is often assumed for the identification of the linear-
index model (e.g. Manski (1985), Manski (1988), Horowitz (1992)). Therefore, in most cases, the
conditional expectation is presented as differentiable without assuming the technical assumptions
on the density of (Y,X).
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3 An Application to the Efficiency Bounds of the Single-Index
Model

The right-hand side of the differentiation formula (2.7) displays its implications on the semi-
parametric efficiency bound of the single-index model. For example, consider a semiparametric
regression model,

Y = F (Gβ(X)) + u, E(u|X) = 0. (3.1)

Assume u ⊥⊥ X for the simplicity. Let u ∼ p and X ∼ q. Assume that p satisfies supp (p) =
(−∞,∞), which is continuously differentiable on R, and limu→±∞ |p′(u)| = 0.

Set φ =
√
p and ψ =

√
q according to the convention of the literature. Since u = E⊥

β Y , the
log likelihood of parameter θ := (EβY, φ, ψ) is given by

ℓθ = 2 logφ(E⊥
β Y ) + 2 logψ(X). (3.2)

By Theorem 1, the derivative of ℓθ with respect to β is

∂βℓθ = −2φ′(u)

φ(u)
f(Gβ(X))E⊥

β (∂βGβ),

and

E[(∂βℓθ)(∂βℓθ)
⊤]−1 =

1

4∥φ′∥2λ
E
[
f(Gβ(X))2Var

(
∂βGβ(X)

∣∣∣Gβ(X)
)]−1

, (3.3)

where λ is the Lebesgue measure on R and ∥φ′∥2λ =
∫
(φ′)2dλ. The right-hand side of (3.3)

is identical to the efficiency bound for estimating β obtained by the standard method (e.g.
Ichimura (1993), Severini and Tripathi (2013)).

The same holds for the standard binary response model,

Y = {Gβ(X) ≥ u}, u ⊥⊥ X, u ∼ F, x ∼ q. (3.4)

The log-likelihood of θ = (EβY, ψ) is proven by

ℓθ = [Y log EβY + (1− Y ) log Eβ(1− Y )] + 2 logψ(X), (3.5)

and its derivative with respect to β is

∂βℓθ =
Y − F (Gβ(X))

F (Gβ(X))(1− F (Gβ(X)))
f(Gβ(X))E⊥

β (∂βGβ).

Again,

E[(∂βℓθ)(∂βℓθ)
⊤]−1 = E

[
f(Gβ(X))2Var (∂βGβ(X) |Gβ(X))

F (Gβ(X))(1− F (Gβ(X)))

]−1

is identical to the known efficiency bound for estimating β in (3.4) obtained by the standard
method (see e.g. Cosslett (1987)).

Under the standard parametrization, where the link function F is a nuisance parame-
ter, treating F as known results in the incorrect evaluation of the efficiency bound due to
the correlations between the score of β and the score of F . On the other hand, under the
parametrization proposed in this paper, the efficiency bound for estimating β is directly ob-
tained by E[(∂βℓθ)(∂βℓθ)

⊤]−1. This is because the score of β is already orthogonal to the score
of EY . In Appendix B, the derivation of the efficiency bound for β of (3.1) is illustrated, and
the reason why the parametrization by EβY works is explained.
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4 Conclusions

This paper offers a set of sufficient conditions for the differentiability of the conditional expec-
tation. Not only the smoothness of functional factors, but also the continuous distribution of
the conditional variable is important for the differentiability. In semiparametric estimation, it is
standard to assume the continuous distribution of at least one explanatory variable. Therefore,
we can conclude that the conditional expectation is differentiable in most applications.

The differentiation formula of the conditional expectation has been applied to the efficiency
bound for estimating the semiparametric single-index model. The efficiency bound of the model
parametrized by the conditional expectation has been established to be equivalent to the bound
of a finite dimensional model, where the nuisance parameter is assumed to be known. This equiv-
alence might suggest that the parametrization by the conditional expectation is more natural
for the single-index model than that by the link function.
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Appendix A Proof of Proposition 1

In the following, a proof for the case of d = 2 is specified for the simplicity of description. Let
γb := E(f(X)|X⊤b). Consider the case of θ > 0. Assume that suppX1 = (0, 1) without any
loss of generality. Let suppX2 = {ξ1 < ξ2 < ξ3 < · · ·} and δ = infj(ξj+1 − ξj). Note that
∂(suppX2) = ∅ implies δ > 0. For any t > 0,

suppX⊤(t, θ) ⊆
∞∪
j=1

(θξj , θξj + t). (A.1)

If 0 < t < θδ, (θξi, θξi + t) ∩ (θξj , θξj + t) = ∅ for i ̸= j. Since X⊤(t, θ) ∈ (θξj , θξj + t) if and
only if X2 = ξj , σ(X

⊤(t, θ)) = σ(X1, X2) for any t ∈ (0, θδ), which implies

γb = E(f(X)|X) = f(X) (A.2)

for any t ∈ (0, θδ). On the other hand, γ(0,θ) = E(f(X)|X2) as θ > 0. Therefore, limt↓0 ∥γ(t,θ) −
γ(0,θ)∥ = (EVar(f(X)|X2))

1/2 > 0. The same argument holds for the case of θ < 0.

Finally, in the case of θ = 0, let bn =
(

1
n2 ,

1
n

)
for n ∈ N. Then, for any n > 1

δ ,

suppX⊤bn ⊆
∞∪
j=1

(
ξj
n
,
ξj
n

+
1

n2

)
(A.3)

with (
ξi
n
,
ξi
n

+
1

n2

)
∩
(
ξj
n
,
ξj
n

+
1

n2

)
= ∅ (A.4)

for i ̸= j. Therefore, limn→∞ ∥γbn − γ(0,0)∥ = (Varf(X))1/2 > 0.

Appendix B The Efficiency Bound of the Single-Index Model
Parametrized by the Conditional Expectation

In this appendix, the efficiency bound for estimating β of the semiparametric regression model
(3.1) is derived, where the model is parametrized by θ = (EβY, φ, ψ). The terms and concepts
are according to Severini and Tripathi (2001). See also Severini and Tripathi (2013).

A key idea is to consider EβY as the value of the random function EY : b 7→ EbY at β. Let
M be a class of continuous random functions W : b 7→ Wb such that Wb ∈ L2(Gb(X)) and
PWb = Y for every b. Let MU :=

∪
b∈U{Wb |W ∈ M}, then the parameter set is given by

Θ = MU × Φ × Ψ, where λ is the Lebesgue measure on R, µ is a reference measure on X ,
Φ = L2(R, λ), and Ψ = L2(X , µ). The inner product ⟨·, ·⟩Θ is introduced on Θ by

⟨θ1, θ2⟩Θ = ∥φ′∥2λ ⟨M1,M2⟩P + ⟨φ1, φ2⟩λ + ⟨ψ1, ψ2⟩µ
for every θ1 = (M1, φ1, ψ1) and θ2 = (M2, φ2, ψ2), where ⟨φ1, φ2⟩λ =

∫
φ1φ2 dλ, and ⟨ψ1, ψ2⟩µ =∫

ψ1ψ2 dµ. Let ∥ · ∥Θ = ⟨·, ·⟩1/2Θ be the norm on Θ.
To find the tangent space of Θ at θ = (EβY, φ, ψ), let t 7→ (bt,Wt) be a curve into U ×M

such that ∣∣∣∣bt − β

t
− h

∣∣∣∣ = o(1) and sup
b∈U

∥∥∥∥Wt,b − EbY
t

− eb

∥∥∥∥ = o(1), (B.1)

where e : b 7→ eb ∈ L2(Gb(X)) is a continuous function and h ∈ Rk. Let t 7→ Wt,bt be a curve
into MU , and assume there exists a random variable Ėβ̇Y ∈ L2(P) such that∥∥∥∥Wt,bt − EβY

t
− Ėβ̇Y

∥∥∥∥ = o(1). (B.2)
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The tangent set T (EβY,MU ) of MU at EβY is the set of Ėβ̇Y as in (B.2) for all curves t 7→ Mt,bt ,

and the tangent space of MU at EβY is given by linT (EβY,MU ). Then, the following lemma is
expressed.

Lemma 2

T (EβY,MU ) = linT (EβY,MU ) = L0
2(Gβ(X)) + span{(∂βEβ)Y }. (B.3)

Proof Choose an arbitrary Ėβ̇Y ∈ T (EβY,MUY ), then there exists a curve t 7→ (bt,Wt) such
that (B.2) and that

∥Ėβ̇Y − eβ − h⊤(∂βEβ)Y ∥ ≤
∥∥∥∥Wt,bt − EβY

t
− Ėβ̇Y

∥∥∥∥+ sup
b∈U

∥∥∥∥Wt,b − EbY
t

− eb

∥∥∥∥
+∥ebt − eβ∥+

∥∥∥∥(Ebt − Eβ
t

− h⊤(∂βEβ)
)
Y

∥∥∥∥
= o(1).

Since PWt,β = P(EβY ) = PY ,

|Peβ| =
∣∣∣∣P(

Wt,β − EβY
t

− eβ

)∣∣∣∣ = o(1),

which implies Peβ = 0. Therefore, Ėβ̇Y = eβ + h⊤(∂βEβ)Y ∈ L0
2(Gβ(X)) + span{(∂βEβ)Y } is

shown.
Choose an arbitrary eβ ∈ L0

2(Gβ(X)) and h ∈ Rk. Define a curve t 7→ Wt in M by

Wt,b := Eb
[
Y + t

(
eβ + h⊤(∂βEβ)Y

)]
for every b ∈ U . By setting bt ≡ β,∥∥∥∥Wt,bt − EβY

t
−
(
eβ + h⊤(∂βEβ)Y

)∥∥∥∥ = 0,

hence eβ + h⊤(∂βEβ)Y ∈ T (EβY,MU ) is shown.

From the lemma, we have

linT (θ,Θ) = (L0
2(Gβ(X)) + span{(∂βEβ)Y })× φ⊥ × ψ⊥, (B.4)

where φ⊥ = {φ̇ ∈ L2(λ) |⟨φ̇, φ⟩λ = 0} and ψ⊥ = {ψ̇ ∈ L2(µ) | ⟨ψ̇, ψ⟩µ = 0}. Consider a curve

t 7→ θt = (Wt,bt , φt, ψt) into Θ passing through θ = (EβY, φ, ψ) at t = 0. Let θ̇ = (eβ +

h⊤(∂βEβ)Y, φ̇, ψ̇) ∈ linT (θ,Θ) be a tangent vector such that

lim
t→0

∥∥∥∥θt − θ

t
− θ̇

∥∥∥∥
Θ

= 0,

and let ℓt(X,Y ) := log
[
φt(Y −Wt,bt)

2ψt(X)2
]
be the log-likelihood of the one-parameter sub-

model. The score for estimating t = 0 is

ℓ̇0 = −2φ′(u)

φ(u)

(
eβ + h⊤(∂βEβ)Y

)
+

2φ̇(u)

φ(u)
+

2ψ̇(X)

ψ(X)
.

The Fisher information for estimating t = 0 is given by

P(ℓ̇0)
2 = 4∥φ′∥2λ ∥eβ + h⊤(∂βEβ)Y ∥2P + 4∥φ̇∥2λ + 4∥ψ̇∥2µ = 4∥θ̇∥2Θ.
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The Fisher information metric ⟨·, ·⟩F is thus ⟨θ̇1, θ̇2⟩F = 4⟨θ̇1, θ̇2⟩Θ. Since L0
2(Gβ(X)) ⊥ span{(∂βEβ)Y }

under ⟨·, ·⟩P,

⟨θ̇1, θ̇2⟩F = 4∥φ′∥2λ
(
⟨e1,β , e2,β⟩P + h⊤1 Vβh2

)
+ 4 ⟨φ̇1, φ̇2⟩λ + 4

⟨
ψ̇1, ψ̇2

⟩
µ
,

where

Vβ = E
[
((∂βEβ)Y ) ((∂βEβ)Y )⊤

]
= E

[
f(Gβ(X))2Var

(
∂

∂β
Gβ(X)

∣∣∣∣Gβ(X)

)]
.

Define a functional ρc : Θ 7→ R by ρc(θ) = c⊤β, where c ∈ Rk is arbitrary. The directional
derivative of ρc is then

∇ρc(θ̇) :=
(
d

dt
ρc(θt)

)
t=0

= c⊤h.

Let ρ̃c be the gradient of∇ρc on (linT (θ,Θ), ⟨·, ·⟩F ) such that ρ̃c ∈ linT (θ,Θ) and ⟨ρ̃c, θ̇⟩F ≡ c⊤h.
The score equation is uniquely solved by ρ̃c = (α⊤(∂βEβ)Y, 0, 0) with α = (4∥φ′∥2λ)−1V −1

β c.

Hence, the efficiency bound for estimating c⊤β is equal to

∥ρ̃c∥2F =
(
4∥φ′∥2λ

)
α⊤Vβα = c⊤

[(
4∥φ′∥2λ

)−1
V −1
β

]
c.

Since c is arbitrary, the efficiency bound for estimating β is
(
4∥φ′∥2λ

)−1
V −1
β , which is equal to

(3.3).
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