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Abstract

We introduce two novel matching mechanisms, Reverse Top Trading Cy-
cles (RTTC) and Reverse Deferred Acceptance (RDA), with the purpose of
challenging the idea that the theoretical property of strategy-proofness in-
duces high rates of truth-telling in economic experiments. RTTC and RDA
are identical to the celebrated Top Trading Cycles (TTC) and Deferred Ac-
ceptance (DA) mechanisms, respectively, in all their theoretical properties
except that their dominant-strategy equilibrium is to report one’s preferences
in the order opposite to the way they were induced. With the focal truth-
telling strategy being out of equilibrium, we are able to perform a clear mea-
surement of how much of the truth-telling reported for strategy-proof mech-
anisms is compatible with rational behavior and how much of it is caused by
confused decision-makers following a default (very focal) strategy without
understanding the structure of the game. In a school-allocation setting, we
find that roughly half of the observed truth-telling under TTC and DA is the
result of naı̈ve (non-strategic) behavior. Only 13-29% of participants’ ac-
tions in RTTC and RDA are compatible with rational behavior. Further than
that, by looking at the responses of those seemingly rational participants in
control tasks, it becomes clear that even them lack a basic understanding of
the game incentives. We argue that the use of a default option, confusion and
other behavioral biases account for the vast majority of truthful play in both
TTC and DA in laboratory experiments.
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1 Introduction

Laboratory experiments have been instrumental for the success of market design.1

This is true, in particular, for centralized markets based on matching mechanisms.

Those experiments show how strategy-proof (i.e., dominant-strategy incentive-

compatible) mechanisms such as Deferred Acceptance (DA) and Top Trading Cy-

cles (TTC) outperform non-strategy-proof mechanisms like the so-called Boston

Mechanism (BOS). That is, both DA and TTC induce higher truth-telling rates and

efficiency than BOS. This experimental evidence has been used as the “smoking

gun” to convince stakeholders to adopt DA or TTC. The canonical reference for our

claim is the famous Abdulkadiroğlu et al. (2006) paper which reports the efforts

of a group of researchers to convince the Boston Public Schools planning team to

adopt a strategy-proof matching mechanism. The researchers gathered theoretical

and empirical, both historical and experimental, evidence about the vulnerability

of the old (BOS) mechanism to preference misrepresentation (Abdulkadiroğlu and

Sönmez, 2003; Chen and Sönmez, 2006; Roth 1991). Among those, Chen and

Sönmez (2006) offers the seminal comparison of the strategy-proof DA and TTC

with the non-strategy-proof BOS. In that experiment, both DA and TTC generate

more truthtelling than BOS and also outperform it in terms of efficiency. Given

the modest truth-telling rates observed in DA and TTC, between 43%-50% and

56%-72% respectively, Chen and Sönmez (2006) is cautious in terms of promoting

the virtues of theoretically strategy-proof mechanisms and recommends partici-

pants to be instructed so that they would not hurt themselves by misrepresenting

their preferences. The authors seem, however, to assume that truth-telling partic-

ipants understand the incentives. Since Chen and Sönmez (2006), other articles

have reported different and, generally higher, truth-telling rates (Calsamiglia et al.,

2010: DA 57%-58%, TTC 62%-74%; Pais and Pintér, 2008: DA 67%-82%, TTC

87%-96%; Pais et al., 2011: DA 58%-76%, TTC 62%-84%). This evidence did,

perhaps, prompted overenthusiastic comments such as the following one in Pathak

and Sönmez (2013): “Another factor [in favour of using strategy-proof mecha-

nisms] was the potential to use unmanipulated preference data generated by the

student assignment mechanism in various policy-related issues including the eval-

uation of schools”.2

More recently, a handful or articles have been trying to evaluate the perfor-
1Roth (2015) offers a concise summary of experimental research related to market design.
2For a much less selective and concise review of experimental findings on matching markets,

refer to Hakimov and Kübler (2019).
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mance of strategy-proof mechanisms in the field and in the laboratory. Rees-Jones

and Skowronek (2018) reports the results of an online survey run with recent par-

ticipants in the National Residency Matching Program (NRMP) in which 23% of

participants fail to play the dominant strategy. Note that, as compared to the typ-

ical undergraduate college students sampled for a laboratory experiment, student

participants in NRMP have high cognitive ability, they have access to excellent re-

sources in terms of high quality advice from the NRMP itself, and they face a game

with extremely high stakes. Similar results are reported by Rees-Jones (2018),

Hassidim et al. (2017, 2018) and Shorrer and Sóvágó (2018). Notwithstanding the

significant proportion of participants deviating from truthful preference revelation

in those studies, they do not provide much indication on whether the remaining

majority (which did send truthful messages) does indeed understand the incentives

of the game. A more careful approach taken by Guillen and Hakimov (2017) uses

a within-subject experimental design based on TTC in a tightly controlled environ-

ment in which decision-makers report their preferences both with and without be-

ing informed about others’ choice. Their data reveal that most participants (69%)

fail to adapt to changing circumstances and to play the dominant strategy. Only

31% of them exhibit behavior that is compatible with theory.

We run an experiment to investigate the robustness of the commonly reported

high truth-telling rates of 60-80% in matching laboratory experiments. That is,

our research goal is to determine whether the majority of participants tell the truth

because they understand their incentives to do so or because they simply follow a

default and choose a salient strategy.

Indeed, the essential problem with matching experiments lies in the complex-

ity of games under study and that the induced preference order constitutes a strong

focal point. These two are not independent, because the induced preference or-

der can be understood as a default from which experimental subjects may or may

not decide to depart. Simply put, an unsophisticated experimental subject who

does not understand the strategic environment induced by the experimenter and

the incentives of the experiment may just submit the induced preference order and

unwittingly play the dominant strategy of the game. That could be interpreted

as supporting evidence to the underlying theoretical model. In the same vein, a

pseudo-sophisticated subject may be more inclined to manipulate the somewhat

more transparent DA than the arguably obscure TTC, thus explaining the higher

truth-telling rates observed for TTC when compared to DA.3 Experimental stud-
3For the relative obscurity of TTC, refer to the comments in Pathak (2017) about the aversion of
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ies by Guillen and Hing (2014) and Guillen and Hakimov (2018) show that the

standard experimental instructions explaining matching algorithms are too diffi-

cult to understand and that the majority of experimental participants can be easily

influenced by (correct or incorrect) advice.

To some extent, the literature shows awareness of the bias introduced by un-

sophisticated players to the desired empirical test of theoretical models and to the

interpretation of the experimental results. Experimental studies targeting complex

theories and mechanisms like centralized matching markets often rely on protocols

that include both a solved numerical example and perhaps an incentive-based quiz

(i.e, an example to be solved by participants) prior to the main part of the exper-

iment. The authors of these articles typically claim that participants who manage

to solve the example do understand the incentives and are able to figure out that

the induced game has an equilibrium in dominant strategies. This, however, is not

a convincing argument as such incentive-based quizzes only test a cursory under-

standing of the instructions rather than the understanding of the game incentives

and thus strategy-proofness in DA or TTC.4

Additionally, many matching experiments set a top priority for the second-

best object (school) thus trying to temp subjects to manipulate the mechanism by

inducing a so-called district-school bias (DSB). They do so, because playing the

dominant strategy under these circumstances may well be understood as a good

understanding of the incentives. Once again, we are skeptical about this claim.

In this paper, we report results from a carefully designed experiment (with the

above-mentioned preference structure) to distinguish between subjects who play

the dominant strategy because it is a default (and a strong focal point) from subjects

who play it for other, perhaps rational strategic, reasons.

Our design includes two baseline treatments, one for DA and another for TTC,

that follow the standards set by Chen and Sönmez (2006). Our experiments there-

fore study one-shot interaction, are based on an induced priority order, use standard

instructions explaining the workings on the corresponding algorithm, and incorpo-

rate a solved example and an incentive-based example, or quiz, to be solved by

participants. Also, every participant in our experiments faces DSB. Not surpris-

ingly, truth-telling rates in our two baseline treatments are high and in line with

well-known results from the existing literature.

Our treatments introduce two novel matching mechanisms, Reverse DA (RDA)

school boards to adopting it.
4See the online appendix for the standard quiz used in this and other studies.

4



and Reverse TTC (RTTC), as benchmarks. Both are small variations of DA and

TTC, respectively. The idea is that the central clearinghouse runs an algorithm

that sends out proposals in the reverse order, starting from the lowest ranked object

moving gradually towards the highest ranked. It took merely a few word changes

in the instructions of DA and TTC to describe and induce the reversed mecha-

nisms. Namely, “highest” got replaced by “lowest”.5 This change results in RDA

and RTTC to have a dominant-strategy equilibrium in which participants are to

submit their preferences in exactly the opposite order they are induced. Our bench-

mark mechanisms are not strategy-proof, as participants have incentives to lie, but

they are dominant-strategy incentive-compatible and otherwise identical in other

desirable and celebrated theoretical properties to DA and TTC.

Note that when comparing DA to RDA and TTC to RTTC our design is more

parsimonious than previous experimental tests of matching mechanisms which

simply compare the performance of very different mechanisms. In particular, it

is easier to claim for us that DA and RDA, on one hand, and TTC and RTTC on the

other, are more comparable in terms of complexity than, for instance, DA and TTC

or in the most extreme case BOS and TTC. The rate at which participants manage

to solve the quiz across our four treatments corroborates this claim.6

In a nutshell, we find that the majority of participants fall in one or another

behavioral trap. Only 16% and 26% of them play the dominant strategy in RDA

and RTTC, down from 68% and 46% in DA and TTC. The induced preference

order is played by 31% and 22% in RDA and RTTC, while DSB and what we call

a naı̈ve district school bias (nDSB) accounts for the majority of other observed

strategies. We observe that truth-telling is not only the modal strategy for DA and

TTC, but it remains so even under RDA and ranks as the second most-frequently

played strategy under RTTC. Many decision-makers stick to the truth not because

it constitutes an optimal strategy, but because it is the default strategy in a very

complex situation. Our results indicate that, by far, default play is the main driver of

the usual experimental results. The complexity of matching mechanism obscures

strategy-proofness to the extent that it becomes an irrelevant theoretical property

in laboratory experiments.
5For instance, “an application to the highest ranked school” was replaced by “an application to

the lowest ranked school”. Refer to the experimental instructions in section B of the appendix for
details.

6Our design also reduces the bias that uncontrolled other-regarding preferences could create by
observing human behavior in interaction with automated opponents. Refer to section 2 and to the
experimental instructions in section B of the appendix for details.
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On a positive note, our results also indicate that truth-telling, being such a

salient strategy, may well be also salient in the field. That is, real-world participants

who do not know how to behave strategically may just choose to tell the truth.

However, this optimistic idea should be taken with some caution as it questions

fundamental assumptions behind theoretical models and it undermines the very

purpose of the theory behind market design.

The design of our experiment and the procedures used are thoroughly explained

in section 2. Section 3 goes over the theoretical prediction and the experimental

results, and section 4 discusses the implication of the results and concludes. The

appendix, available online, describes the deferred-acceptance and the top-trading-

cycles algorithms and includes the experimental instructions, examples and quizzes

used.

2 Experimental design

Our data were collected through 10 computerized sessions (using zTree; Fischbacher,

2007) at Waseda University (Tokyo, Japan) between December 2017 and January

2018.7 A total of 209 students participated in our sessions (DA: 50, RDA: 49, TTC:

56, RTTC: 54). Sessions lasted approximately for an hour. Participants were paid

a fixed show-up fee of U700 and an additional U913 on average based on their

performance.8 No one participated in more than one session (between-subject de-

sign).9

Upon arrival to the experimental laboratory, participants were randomly as-

signed to a computer terminal and received all relevant instructions in written form

(in Japanese). We kept our instructions as close as possible to the ones used by

Chen and Sönmez (2006) and numerous follow-up studies.10 The written text in-
7Waseda University is one of the top private universities in Japan. Admission is highly selec-

tive and depends both on high-school marks and results from an entry exam administered by the
university. Also, note that Japanese high schools are of an extremely high quality. They ranked #5
in the world in the last PISA international mathematics comparisons, where South Korea ranked #6
and the USA ranked #40. In conclusion, the participants in our sample are much better trained in
mathematics than the ones in most previous studies.

8Around the time of our experiments U1000 were equivalent to around $9, and would be enough
to buy two lunch boxes on campus.

9All our participants are volunteers who signed up for the experiment by responding to an online
advertisement. They are Waseda-University students of various majors. Our average participant is
21 years old, and 60% of our participants are male.

10In July 2019, Scopus listed 99 citations for our main references (Chen and Sönmez, 2006)
whose experimental design follows the above-described pattern. 40% of the citing documents report
new experimental results and almost 10% of them rely on a very similar and often nearly identical
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formed participants about procedural matters, contained the detailed description of

the matching algorithm used by the clearing house and also an illustrative example

for how the algorithm works.

Each treatment (i.e., matching mechanism) was implemented in a different ex-

perimental session. During the experiment, after reading the instructions, each

participant first completed a quiz which consisted of an allocation instance.11 Sub-

sequently, participants considered a single school-allocation task and submitted a

preference ordering to the clearing house based on which the final matching and

payoffs were determined.12

The (main) school-allocation task was a matching problem involving four schools

with one vacant seat each and four students. Each participant played the role of a

student (H), was assigned to a different matching problem, and interacted with

three computers in the role of the other three students (R1, R2, R3). Participants

were told, in the instructions, that computers would act to maximize their expected

gain. These design features were chosen to increase experimental control.13

We implemented the same school-allocation problem in all markets in all ses-

sions. The columns in table 1 show students’ preferences by listing schools from

best to worst. Participants in the experiment could earn U1000 when matched to

their favorite school, U500 when matched to the second-best, U200 when matched

to the third-best, and U50 when matched to the least favorite school. Priorities

for schools are represented by frames in the table: students enjoy priority over all

others at schools whose letter appears in a frame. All remaining priorities were

determined with a fair lottery by the matching mechanism.

The sections in our experimental instructions that described the matching algo-

rithm and illustrated its rules through a numerical example are essentially identical

to those used by Chen et al. (2016), thus comparable to many related experimental

studies of the school-choice problem.14 Descriptions of the reverse algorithms dif-

design. As for the instructions, we adapted the text as published by Chen et al. (2016) to our algo-
rithms. All instructions, both in Japanese and English, are available from the authors upon request.
A sample is to be found in section B of the appendix.

11Participants had 10 minutes to solve the quiz and were paid U100 for a correct solution. Given
that the quiz aims at measuring participants’ understanding of the analyzed strategic interaction,
participants could only submit one solution and were not informed whether that was correct or not.

12Participants had up to 20 minutes to complete the school-allocation task. Just like in Chen and
Sönmez (2006) and the relevant related literature, the allocation task was not repeated.

13The chosen design features not only make belief elicitation about the other decision-makers’
rationality and behavior unnecessary, but they also strengthen the induced-value method in imple-
menting the desired situation. Note that other-regarding considerations are unlikely to influence
behavior when the others are simply computer codes.

14The only notable change in the instructions, apart from the language, is that names for schools
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STUDENTS MONETARY

R1 R2 R3 H PAYOFF

C B D A U1000
A A C B U500
B C A C U200
D D B D U50

Table 1: Preference profile for students (R1, R2, R3, H) and priorities for schools
(A, B, C, D). Students enjoy priority over all the others at schools marked by
frame.

fer only in a few words from those of the celebrated DA and TTC algorithms. In

particular, the word highest was replaced by lowest in the sentence “an application

to the highest ranked school on the submitted ranking is sent for each participant”,

etc. Similarly, the overlap between the illustrating examples and quiz questions

for the direct and the reverse algorithms was almost 100%. Recall that each par-

ticipant in our experiment faced only one school-choice problem and therefore

only one matching algorithm. Thus, the similarity among instructions used across

treatments aimed at increased experimental control without causing unnecessary

confusion to participants.

Participants were required to make a single decision and submit a preference

list to the clearing house which determined the final matching based on the received

lists and the announced algorithm. Participants had to make a decision in a partial-

information setting, meaning that they only held precise information about their

own preferences (column H in table 1). As for the rest, the written instructions

stated that “[d]ifferent participants and different computers may or may not have

different payoff tables. That is, payoff by school may or may not be different for

different participants and different computers.”

Finally, before they were paid individually and privately, participants were

asked to fill out a questionnaire that included the typical questions on demograph-

ics and some others specific to the school-allocation task considered.

in the explanatory example were replaced by neutral symbols that are often used in generic lists in
Japanese.

8



3 Results

The decision-problem implemented by our experimental design constitutes an in-

stance of the so-called school-choice problem (Abdulkadiroğlu and Sönmez, 2003).

Decision-makers belong to one of two disjoint sets (students or schools). Each stu-

dent has strict preference over all schools. Each school has a maximum capacity

and a strict priority ordering over all students. A solution to the school-choice

problem is a matching, that is an assignment of schools to students.

3.1 Theoretical predictions

A matching is (Pareto) efficient if there is no other matching which assigns each

student a weakly better school and at least one student a strictly better school. A

matching is said to eliminate justified envy if there are no blocking pairs; in other

words, there does not exist any student-school pair who are not matched to each

other but would prefer to be so matched.15 A stable matching eliminates justi-

fied envy, and it is individually rational; that is, each agent is matched to someone

whom she finds better than being unmatched. Achieving a stable matching consti-

tutes the goal of the theoretical literature (and the matchmaker’s).16

The matching literature is primarily concerned with centralized solutions to

the school-choice problem. In such a centralized matching market each decision-

maker submits a list of preferences to the matchmaker (or a central clearinghouse)

who produces a matching by processing all lists by means of a matching algorithm.

Matching algorithms are simply the rules followed by the matchmaker to produce

the final matching. Those rules are assumed to be known by all decision-makers

involved. Note that in the school-choice problem only one side of the market,

students, are assumed to be strategic. Schools’ priorities are known by the match-

maker, or are reported truthfully to her.17

The above centralized solution is called matching mechanism. It is a situation

of strategic interdependence in which the final outcome is jointly determined based
15The above definitions are widely accepted and used in the literature. Note that efficiency is a

one-sided concept given that it only takes students’ preferences into consideration. Justified envy,
however, is two-sided: both students’ and schools’ preferences are considered.

16Besides the desirability of a stable matching from a normative point of view, stability as a
prediction or solution to the school-allocation problem sounds reasonable when decision-makers are
allowed to trade and switch partners in a frictionless decentralized way after the matchmaker has
announced the outcome. Then, by definition, we should not expect unstable matchings to survive,
only stable ones could prevail.

17The literature refers to the problem that involves strategizing school as the college-admission
problem.
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on the strategies chosen by the decision-makers (preference lists submitted by stu-

dents), the matching algorithm and some other fixed parameters (school priorities).

In our experiment, students were first tentatively assigned to their local schools

where they enjoyed priority over all the other students and then were required to

submit their rankings over the four schools. Note that our example is such that each

student enjoys priority at a different school. Students R1 and R3 ranked their local

schools above all the others, while the remaining two students R2 and H were in

conflict with each other for the other two schools. This preference profile creates

one of the simplest non-obvious school-allocation problems. The student-stable

and also efficient matching in this problem is {(R1, C), (R2, B), (R3, D), (H,A)}.18

The experimental treatments differ from each other in terms of the algorithm

used by the matchmaker. The DA and TTC treatments operate with two well-

known algorithms: the deferred-acceptance algorithm (Gale and Shapley, 1962)

and the top-trading-cycles algorithm (Shapley and Scarf, 1974), respectively.19

The other two algorithms, RDA and RTTC, are the reverse versions of the above

two: their rules are identical to “original” algorithm except that proposals are first

sent to the lowest (instead oh highest) ranked partner on the submitted ranking,

then to the one above (instead of below), etc.

A matching mechanism is said to be efficient if it always selects a Pareto effi-

cient matching, stable if it always selects a stable matching, incentive compatible

if no student can possibly benefit by unilaterally misrepresenting her preferences

(in the direct version of the mechanism), and strategy-proof if it is dominant-

strategy incentive compatible. A direct revelation mechanism is one where each

decision-maker is expected to report her preferences, while in an indirect mecha-

nism decision-makers are asked to send messages other than directly their prefer-

ences.

The literature has explored the theoretical properties of the DA and TTC mech-

anisms in detail. In the school-allocation problem, in general, both are strategy-

proof, that is submitting one’s true preference order to the matchmaker is a dom-

inant strategy for all students. The DA mechanism preserves stability at the cost

of efficiency, while the TTC mechanism preserves efficiency at the cost of stability

(Abdulkadiroğlu and Sönmez, 2003). For the preference profile in our experimen-
18By student-stable we refer to the stable matching preferred by students to all other stable

matchings (Roth and Sotomayor, 1990). Our school-allocation problem has another stable matching,
{(R1, C), (R2, A), (R3, D), (H,B)}, which is preferred by schools to all other stable matchings.
Given the one-sided definition for efficiency, the latter stable matching is not efficient.

19Section A in the online appendix describes the two algorithms in detail.
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tal design, the DA and the TTC algorithms implement the same matching that is

both stable and efficient.

The mechanisms based on the reverse algorithms (RDA and RTTC) induce

students to submit the reverse of their preference order to the matchmaker. These

equilibria are in dominant strategies, just like in the case of the DA and TTC mech-

anisms, and the equilibrium outcomes are identical to those implemented by the

DA and TTC mechanisms. In other words, the DA and RDA mechanisms are iden-

tical in terms of efficiency and stability. So are the TTC and RTTC mechanisms.

Moreover, all four mechanisms have equilibria in dominant strategies. Equilibrium

behavior is the same in DA as in TTC, and in RDA as in RTTC.

Note that although matching theory typically assumes complete information,

the fact that all the matching mechanisms considered here have equilibria in dom-

inant strategies, means that for optimal behavior the decision-makers do not need

any information about others’ preferences, their objectives or rationality.

We summarize the theoretical predictions for our experimental treatments in

two predictions.

Prediction 1. Students submit their true preference ordering over schools in treat-

ments based on the deferred-acceptance (DA) and top-trading-cycles (TTC) al-

gorithms. They submit the reverse preference ordering in treatments based on

the reverse deferred-acceptance (RDA) and reverse top-trading-cycles (TTC) al-

gorithms.

Prediction 2. For the preference profile in our experimental design, all four an-

alyzed matching mechanisms produce stable and efficient matchings as the final

outcome.

Note that the advantage of the experimental method is that we are not only

able to test the above theoretical predictions, but we can also look behind the ob-

served final decisions. Ultimately, our goal is to study strategy-proofness and the

revelation principle in the experimental laboratory.

The theoretical literature leans towards mechanisms with equilibria in domi-

nant strategies (Pathak, 2017), claiming that they constitute simple and practically

non-strategic environments in which human decision-makers are very likely to be-

have in the predicted optimal way. The experimental literature seems to lend empir-

ical support to these claims by reporting how often experimental subjects reported

the assigned preference rankings truthfully.20

20For example, Chen and Sönmez (2006) test three well-known school-choice mechanisms (BOS,
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Hypothesis 1. In the school-allocation problem under the DA and the TTC mech-

anisms, students fully understand the strategic interaction and are able to find (and

play) the equilibrium strategy.

From a strictly theoretical point of view, the DA mechanism is not superior to

the RDA mechanism, nor TTC is superior to RTTC. A cornerstone of mechanism

design, the revelation principle, states that the equilibrium outcome of any indirect

mechanism can be replicated by a direct mechanism in which truthful preference

revelation is an equilibrium.21 From a behavioral perspective, one might argue

that certain mechanisms have easier or more intuitive equilibria than others, or that

their equilibria coincide with natural focal points. However, we lack a clear defi-

nition of focal points and also criteria for ranking mechanisms according to their

complexity.22 We state the revelation principle for the here-analyzed mechanisms

as a hypothesis to be tested in the experimental laboratory.

Hypothesis 2. Revelation principle. The direct and reverse mechanisms (DA and

RDA, and TTC and RTTC) implement the same matching in the school-allocation

problem.

3.2 Experimental findings

The experimental findings described in this section are based on formal two-sided

statistical hypothesis tests: parametric t-tests for means, z-tests for proportions,

and the non-parametric Kruskal-Wallis test. Note that our experimental design did

not involve repetition or even interaction among participants, for that reason we do

not control for time, learning and possible interdependence across observations.

If the related theoretical model is to be validated, experimental participants

should report the assigned preference order (ABCD) to the DA and the TTC mech-

anisms, and its reverse (DCBA) to the RDA and RTTC mechanisms (prediction 1).

Our data do not support these claims (table 2). Equilibrium play was observed in

about two thirds of the cases under the DA mechanism which outperformed the

other three mechanisms. TTC ranks second (46%), while RDA and RTTC share

DA and TTC) and, with the help of two treatments, show that in therms of inducing truth-telling in
the laboratory, DA (72%, 56%) outperforms TTC (50%, 43%), which in turn performs better than
BOS (14%, 28%).

21The revelation principle was introduced by Gibbard (1973) for mechanisms with equilibria in
dominant strategies and later extended to Nash equilibria in Bayesian games (e.g., Myerson, 1981).

22Some might argue that mechanisms with equilibria in dominant strategies are “easier” to play
than mechanisms that only have Nash equilibria, for instance. Recall, however, that our mechanisms
are indistinguishable from each other in this respect.
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the third position (with 16% and 26%, respectively). These findings are in line with

the ones reported by Chen and Sönmez (2006) who found that DA induces more

truthful (i.e., equilibrium) behavior than TTC. In summary, we clearly reject hy-

pothesis 1 that the analyzed dominant-strategy incentive-compatible mechanisms

induce equilibrium play. The following result offers a comparison among the four

without theoretical reference purely based on experimental outcomes.

Result 1. In terms of inducing equilibrium play, the DA mechanism is not worse

than the TTC, which in turn is better than the RDA and the RTTC mechanisms

which are undistinguishable from each other.

DA TTC RDA RTTC
68.00% 46.43% 16.33% 25.93%

DA - 0.03 0.00 0.00

TTC - - 0.00 0.03

RDA - - - 0.24

Table 2: Proportion of equilibrium play.
NOTE: p-values for pairwise two-sided comparisons of proportions reported under the percentages.

Comparing the “original” mechanisms to their reverse versions in terms of in-

duced behavior reveals how much of the observed truthful “equilibrium behavior”

under the DA and the TTC mechanisms is really due to rational strategizing as-

sumed by theoretical models. We find a significant proportion of decisions-makers

who report the assigned preference order to the matchmaker truthfully even under

the reverse mechanisms where that is not optimal. Truth-telling is not only the

modal strategy for both direct mechanisms, but it remains so even under RDA and

ranks as the second most-frequently played strategy under RTTC (with a frequency

of 22% closely behind the 26% of the equilibrium strategy). In other words, truth-

telling is a strong focal point in the school-allocation problem.

One could argue that the reverse mechanisms pose a much larger challenge

than the “original” ones. However, the proportion of participants who managed to

solve the quiz correctly does not differ significantly between DA and RDA (p-value

= 0.43) or between TTC and RTTC (p-value = 0.13). If anything, the observed

proportion of correct answers is a slightly larger under the reverse mechanisms

(table 3). As for participants’ individual judgement in terms of the difficulty of the

mechanisms, DA and RDA are not statistically different (p-value = 0.15), while

TTC and RTTC are (p-value = 0.05). Interestingly, the latter comparison suggests

that RTCC is more difficult.

13



ORIGINAL DA TTC REVERSE RDA RTTC
ABCD TRUTH; EQ 68.00% 46.43% TRUTH 30.61% 22.22%
BACD DSB 22.00% 35.71% NDSB 22.45% 14.81%
DCAB - - - DSB 16.33% 14.81%
DCBA - - - EQ 16.33% 25.93%
OTHER - 10.00% 17.86% - 14.28% 22.23%
QUIZ - 64.00% 3.57% - 71.43% 11.11%

DIFFICULT - 4.36 5.14 - 5.22 6.33

Table 3: Declared preference orders (truth: ABCD).
NOTE: EQ: equilibrium; DSB: district-school bias; NDSB: naı̈ve district-school bias; QUIZ: success rate in

control quiz; DIFFICULT: answers (0-10) to “How difficult was the student allocation task?”.

Result 2. Approximately half of truth-telling observed in the deferred-acceptance

and the top-trading-cycles mechanisms is the result of naı̈ve (non-strategic) behav-

ior.

Once we separate the equilibrium strategy from the strong focal strategy of

telling the truth, we can tell that optimal behavior (as predicted by theory) is rare.

Overall, 21% of participants played the equilibrium strategy in the reverse mecha-

nisms (16% in RDA, 26% in RTTC). The following result builds on this observa-

tion and on a 95% confidence interval around it.

Result 3. Approximately 13-29% of participants act in sophisticated (strategic)

manner.

Answers to items in our post-experimental questionnaire sheds some more light

on the reasoning behind the observed individual decisions. Recall that all four an-

alyzed mechanisms have an equilibrium in dominant strategies. Those equilibria

are “strong” in the sense that decision-makers can totally ignore the strategic inter-

dependence of the situation: they do not need to know how others rank the possible

outcomes, they do not even need to know whether the others are rational decisions-

makers or not. One could argue that the situation that these mechanisms create are

not (game-theoretic) games, but “simple” decision problems with a unique solution

to them for each participant.

We wanted to know whether our experimental subjects understood that there

exists a individual solution (or best strategy) to the school-allocation problem and

that the solution does not depend on how the other decision-makers think about

the problem and its outcomes. We asked participants to indicate on a scale from

0 to 10 how strongly they agree or disagree with the statement that “There was a

best strategy for reporting preferences in the student allocation task.” The extreme
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scores of 0 and 10 mean strong disagreement and strong agreement, respectively.

The overall average of the collected scores shows the highest possible level of

cluelessness as it lies at 4.83 and the 95% confidence interval around it includes

score 5 (first row in table 4). Participants who ended up choosing the equilibrium

strategy seem to be significantly more confident than those who did not, but even

their score averages below 6.

Overall 61% of participants gave an affirmative answer to the question “Would

you reconsider the way you acted if you knew each computer’s most valued school?”

(second row in table 4). According to the 95% confidence interval, more than half

and as many as two thirds of decisions-makers would want to have more infor-

mation about the others’ preferences in a situation in which such information in

totally unnecessary for making an optimal decision. Again, participants who sub-

mitted the equilibrium strategy seem to be significantly less likely to agree to the

above question than those who submitted some other strategy. Nevertheless, al-

most half of them did say they would reconsider their decisions if they had more

information.

As for reconsidering the chosen strategy, more than a fifth of our participants

claimed they would do so if they had another chance (third row in table 4). Partic-

ipants who played the equilibrium strategy were significantly more confident than

the rest, but even in that group each tenth person said she would play differently

next time.

ALL THEORY EQUILIBRIUM PLAY

MEAN (95% CONF.INT.) REF. YES NO

STRATEGY 4.83 (4.36 ; 5.30) 10 5.83 6=0.00 4.18
INFORMATION 61.24% (54.28% ; 67.89%) 0% 48.78% 6=0.00 69.29%
RECONSIDER 21.53% (16.16% ; 27.73%) 0% 10.98% 6=0.00 28.35%
OBS. 209 - - 82 127

Table 4: Answers to items in the questionnaire.
NOTE: STRATEGY: average agreement rate (0-10) to “There was a best strategy for reporting preferences in the
student allocation task.”; INFORMATION: % of YES answers to “Would you reconsider the way you acted if you
knew each computer’s most valued school?”; RECONSIDER: % of YES answers to “If you had another chance at
the student allocation task would you act differently?”. THEORY REF.: answers/values in line with game theory.
6=p-value: statistically significant difference between groups; p-value for t-test for means (STRATEGY), z-test for

proportions (INFORMATION, RECONSIDER).

Altogether merely 14 out of 209 participants (7%) played the equilibrium strat-

egy and answered the three questions discussed above (and in table 4) in line with

the assumption behind theoretical results. In conclusion, the following claim sharp-

ens result 3 based on the 95% confidence interval around the point estimate.
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Result 4. Approximately 4-11% of participants act in sophisticated (strategic)

manner and have full understanding of the “game”.

This means that the empirical success of direct mechanisms are in part due to

naı̈ve behavior, that is decision-makers who simply tell the truth instead of strate-

gizing (that would also lead to the same conclusion).

DA TTC RDA RTTC
72.00% 53.57% 55.10% 48.15%

DA - 0.05 0.08 0.01

TTC - - 0.88 0.57

RDA - - - 0.48

Table 5: Proportion of student-stable/efficient matchings.
NOTE: p-values for pairwise two-sided comparisons of proportions reported under the percentages.

We argue that the revelation principle does not hold as a general equivalence

result between direct and non-direct mechanisms. Note that although the revela-

tion principle (i.e., our hypothesis 2) is typically written in terms of outcome, it

implicitly relies on fully rational decision-makers to be able to find the equilibrium

strategy. In other words, the above experimental results raise serious doubts about

its empirical relevance. As for a direct test, recall that, based on the usual assump-

tion of decision-makers’ rationality and sophistication, theory predicts that all four

analyzed matching mechanisms produce stable and efficient matchings as the fi-

nal outcome (prediction 2). Our experimental results clearly reject this prediction

(table 5). The best-performing mechanism, DA, implemented stable and efficient

matchings in about three quarters of the time, while the other three did so in about

half of the time. Although comparisons based on statistical tests are not transitive

in general, our data lead us conclude that, in terms of stability and efficiency, DA

outperforms the other three mechanisms which are statistically identical. For the

sake of precision, and because some might not consider a difference with a p-value

of 0.08 statistically significant, we state these findings as follow.

Result 5. In terms of stability and efficiency, the DA mechanism is not worse than

the RDA, the TTC or the RTTC mechanisms which are undistinguishable from each

other.

It is worth noting that Chen and Sönmez (2006) find that the DA and TTC

mechanisms perform equally well in terms of efficiency, and Calsamiglia et al.

(2010) observe that DA produces stable matchings more often than TTC (in a
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school-allocation setting similar to ours in both studies). Although the conclu-

sions based on comparisons among the numbers in table 5 are similar to those

in the existing literature, our experimental design is not able to deliver sharp es-

timates for the stability (and efficiency) of the market outcome. Note that our

experimental design targets individual behavior (i.e., strategy-proofness which is

the main focus of our paper) instead of the aggregate outcome. It is built on

a specific preference profile and only allows for untruthful behavior for the hu-

man decision-maker. With these features, in our school-choice problem there ex-

ist only two possible market outcomes: {(R1, C), (R2, B), (R3, D), (H,A)} and

{(R1, C), (R2, A), (R3, D), (H,B)}.23 Thus, by design, not only just one mar-

ket participant is allowed to strategize, but also the possible harm in terms of sta-

bility and efficiency caused by that strategizing behavior is bounded from above.

Notwithstanding, the observed difference between the DA mechanism and its re-

verse version questions the empirical relevance of the revelation principle even if

based on the observed outcomes we can not tell TTC and RTTC apart.

One could say that by definition (and design) strategy-proof direct mechanisms

are robust to naı̈ve behavior. Just as the popular direct mechanisms benefit from

naı̈ve truth-telling, (matching) mechanisms in general can benefit from various be-

havioral biases. Our reverse mechanisms, for instance, deliver the theoretical equi-

librium outcome when the decision-maker suffers from naı̈ve district-school bias,

that is when she reports the induced preference order truthfully except that she

moves her district school (at which she enjoys priority) to the top of the ranking.

Note that in our school-allocation problem, with robots playing the equilibrium

strategy, for the final outcome it only mattered how the human decision-maker

ranked schools A and B with respect to each other. This is why hypothesis 2,

the revelation principle written in terms of payoffs, is harder to refute by observ-

ing experimental outcomes. We argue, however, that the revelation principle is a

theoretical result that builds on rationality, that is our hypothesis 1. By rejecting

hypothesis 1, we also reject the revelation principle.
23Had our experimental design informed the human decision-maker about the entire preference

profile, instead of keeping the robots’ preferences hidden, our experimental subjects would have
faced a situation in which multiple weakly dominant strategies exist. Essentially, all strategies (for
the human decision-maker) that rank A above B in the direct mechanisms (and those that rank B
above A in the reverse mechanisms) would be weakly dominant in such a game.
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4 Discussion and concluding remarks

The theory of market design relies on the rationality of decision-makers who are

expected to be able to fully understand the decision problem at hand and find the

dominant strategy before playing it. We have argued that the usual experimental

tests of predictions derived from this theory test joint hypotheses and, for that rea-

son, confuse observed choices for well-reasoned optimal behavior. While strategy-

proof mechanisms are preferred by theorists for having a strong and supposedly

easy equilibrium (e.g., Vickrey, 1961) and more generally for not giving more and

better chances to sophisticated people than to naı̈ve decision-makers (e.g., Pathak

and Sönmez, 2008; Pathak, 2017), these claims are based on assumptions that are

only valid for a very small fraction of decision-makers.

Our findings from the experimental laboratory contribute to the debate on the

extent of preference manipulation in school-choice mechanism.24 That sophis-

ticated and unsophisticated decision-makers coexist does not come as a surprise

(e.g., Abdulkadiroğlu et al., 2006). Without some reliable estimates for the propor-

tions in which they are present in observational data, however, it is impossible to

perform reliable normative welfare analysis on school-allocation systems.

With the help of controlled laboratory experiments, we have shown that roughly

half of truth-telling (in the typical school-choice problem based on DA or TTC)

seems to be the result of naı̈ve (non-strategic) behavior and that only a small frac-

tion (around 4-11%) of decision-makers act in sophisticated manner and have full

understanding of the strategic properties of the situation. These results question

the applicability and relevance of matching theory as a whole. In other words, al-

though some may argue that strategy-proof mechanisms offer a reasonable solution

by inviting both sophisticated and naı̈ve decision-makers to act in line with its equi-

librium, it is not clear whether they would perform better than other (much simpler)

mechanisms in real life. After all, a large part of the population belongs to other

groups in terms of strategic sophistication (between or beside the above-mentioned

extremes), and mechanisms designed for them could outperform the “standard”

strategy-proof mechanism.25 In summary, our experimental results question the
24For example, the analysis of the consequences of changes in Chicago’s assignment system

in 2009, those of Barcelona’s and Beijing’s adoption of the Boston mechanism, reviewed by Pathak
(2017), raises important questions related to the very foundations of mechanism design without being
able to deliver precise estimates on the proportion of sophisticated decision-makers that exist in the
population.

25Clearly, successful mechanisms should tolerate certain behavioral faults (McFadden, 2009),
however with the help of the very same experimental design, we are unable to establish a new set of
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empirical relevance of strategy-proofness and the revelation principle.
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nisms. In B. Honoré, Pakes, A., Piazzesi, M. & Samuelson, L. (Eds.), Ad-

vances in Economics and Econometrics: Eleventh World Congress (Econo-

metric Society Monographs, 176-214), Cambridge University Press.

[22] Pathak, P.A. & Sönmez, T., 2008. Leveling the playing field: Sincere and

sophisticated players in the Boston mechanism. American Economic Review,

98(4): 1636-1652.

[23] Pathak, P.A. & Sönmez, T., 2013. School admissions reform in Chicago

and England: Comparing mechanisms by their vulnerability to manipulation.

American Economic Review, 103(1): 80-106.

[24] Rees-Jones, A., 2018. Suboptimal behavior in strategy-proof mechanisms:

Evidence from the residency match. Games and Economic Behavior, 108:

317-330.

[25] Rees-Jones, A. & Skowronek, S., 2018. An experimental investigation of

preference misrepresentation in the residency match. Proceedings of the Na-

tional Academy of Sciences, 115(45): 11471-11476.

[26] Roth, A.E. & Sotomayor, M.A.O., 1990. Two-sided matching, A study in

game-theoretic modeling and analysis, Cambridge University Press.

[27] Roth, A.E. 1991. A natural experiment in the organization of entry-level labor

markets: Regional markets for new physicians and surgeons in the United

Kingdom. American Economic Review, 81(3): 415-440.

[28] Roth, A.E., 2015. Experiments in market design. In Kagel, J.H. & Roth,

A.E. (Eds.), The handbook of experimental economics (Volume 2., 290-347),

Princeton University Press.

[29] Shapley, L. & Scarf, H., 1974. On cores and indivisibility. Journal of Mathe-

matical Economics, 1(1): 23-37.
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A Matching algorithms

This section describes the deferred-acceptance and the top-trading-cycles algo-

rithms with the help of the text used in the experimental instructions.26

A.1 Deferred acceptance (DA)

• In this experiment, students in each group belong to a specific school dis-

tricts. Your “local school” and those of the computer players are going to be

indicated on the computer screen.

NOTE: In this simulation, each school has one slot, but it can happen that

more than one student lives in the same district.

• In each group, every student submits a ranking of schools which is used in

the following procedure to allocate school places.

• The priority order for each school is separately determined as follows:

– High Priority Level: Participants who live within the school district.

– Low Priority Level: Participants who do not live within the school dis-

trict. The priority among the Low priority students is based on their

respective order in a fair lottery. This means each participant has an

equal chance of being the first in the line, the second in the line, ...,

as well as the last in the line. The computer is going to determine the

outcome of this fair lottery. You will be informed about the outcome of

the lottery on the screen.

• Once the priorities are determined, the allocation of school slots is obtained

as follows:

– An application to the highest ranked school on the submitted ranking

is sent for each participant.

– Through out the allocation process, a school can hold no more appli-

cations than its number of slots. If a school receives more applications

than its capacity, then it rejects the students with lowest priority orders.

The remaining applications are retained.

– Whenever an applicant is rejected at a school, his application is sent to

the next highest school on his/her submitted ranking.

26Note that we closely follow the set of instructions used by Chen et al. (2016).
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– Whenever a school receives new applications, these applications are

considered together with the retained applications for that school. Among

the retained and new applications, the lowest priority ones in excess of

the number of the slots are rejected, while remaining applications are

retained.

– The allocation is finalized when no more applications can be rejected.

Each participant is assigned a slot at the school that holds his/her ap-

plication at the end of the process.

A.2 Top trading cycles (TTC)

• In this experiment, students in each group belong to a specific school dis-

tricts. Your “local school” and those of the computer players are going to be

indicated on the computer screen.

NOTE: In this simulation, each school has one slot, but it can happen that

more than one student lives in the same district.

• In each group, every student submits a ranking of schools which is used in

the following procedure to allocate school places.

• Each student is first tentatively assigned to the school within his/her respec-

tive district.

Next, the submitted rankings are used to determine the school allocation

through exchanges. The order in which these exchanges are considered is

determined by a fair lottery. This means each student has an equal chance of

being the first in the line, the second in the line, ..., as well as the last in the

line. You are going to receive information about the outcome of the lottery

on the screen.

• The specific allocation process is explained below.

– Initially all slots are available for allocation.

– All students are ordered in a queue based on the order in the lottery.

– Next, an application to the highest ranked school in the submitted rank-

ing is submitted for the student at the top of the queue.

∗ If the application is submitted to his district school, then his tenta-

tive assignment is finalized (thus he is assigned a slot at his district
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school). The student and his assignment are removed from subse-

quent allocations. The process continues with the next student in

line.

∗ If the application is submitted to another school, say school B, and

that school has a vacant slot (it has no other student tentatively

assigned), then the requester is assigned to school B. The student

and his assignment are removed from subsequent allocations. The

process continues with the next student in line.

∗ If the application is submitted to another school, say school C, and

that school has no vacant slot (it has another student tentatively

assigned), then the first student in the queue who tentatively holds

a slot at School C is moved to the top of the queue directly in front

of the requester.

– Whenever the queue is modified, the process continues similarly: An

application is submitted to the highest ranked school with available

slots for the student at the top of the queue.

∗ If the application is submitted to his district school, then his tenta-

tive assignment is finalized. The process continues with the next

student in line.

∗ If the application is submitted to another school, say school B, and

that school has a vacant slot (it has no other student tentatively

assigned), then the requester is assigned to school B. The student

and his assignment are removed from subsequent allocations. The

process continues with the next student in line.

∗ If the application is submitted to another school, say school C, and

that school has no vacant slot (it has another student tentatively

assigned), then the first student in the queue who tentatively holds

a slot at school C is moved to the top of the queue directly in

front of the requester. This way, each student is guaranteed an

assignment based on the preferences indicated in the submitted

ranking.

– An exchange is obtained when a cycle of applications are made in se-

quence, e.g., I apply to John‘s district school, John applies to your

district school, and you apply to my district school. In this case, the

exchange is completed and the students as well as their assignments
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are removed from subsequent allocations.

– The process continues until all students are assigned a school slot.
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B Instructions27

This is an experiment in the economics of decision making. The instructions are

simple, and if you follow them carefully and make good decisions, you might

earn a considerable amount of money (in addition to a U700 participation fee).

In this experiment, we simulate a procedure to allocate students to schools. The

procedure, payment rules, and student allocation method are described below. Do

not communicate with each other during the experiment. If you have questions at

any point during the experiment, raise your hand and the experimenter will help

you.

Procedure

• Please the read these instructions first before proceeding to the computer pro-

gram. You may consult the instructions at any time during the experiment.

• Each participant is randomly assigned to a group of 4 decision-makers. Each

group includes 3 computers and a participant. This means that you are going

to interact with 3 computers in this experiment. The computers will act to

maximize their expected gain.

• In this simulation, each member of your group acts as a student who is look-

ing for a slot at one of the schools. 4 school slots are available across 4

schools (A, B, C, D) in each group. There is one slot available at each school.

• You will receive a cash payment at the end of the experiment. Your payoff

amount depends on the school slot you hold at the end of the experiment.

Payoff amounts are going to be outlined on the computer screen.

NOTE: Different participants and different computers may or may not have

different payoff tables. That is, payoff by school may or may not be different

for different participants and different computers.

• During the experiment, each participant first completes a quiz which consists

of an allocation instance for you to solve. You will have up to 10 minutes to

solve it, and will receive U100 if you submit the correct answer.
27The following text was used to create the Japanese version of the experimental instructions for

our RDA (reverse deferred-acceptance algorithm) treatment. The documents that we prepared for
our treatments are available upon request both in English and Japanese. We closely follow the set of
instructions used by Chen et al. (2016) in all of them.
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• After you have finished the quiz you may start the school allocation task.

You will have up to 20 minutes to complete the school allocation task.

• After all participants have completed the school allocation task, the experi-

menter starts the allocation process.

• Once the allocations are determined, the experimenter informs each partici-

pants of his/her allocation slot and respective payoff. The school allocation

will be performed based on the following school allocation method.

Allocation Method

• In this experiment, students in each group belong to a specific school dis-

tricts. Your “local school” and those of the computer players are going to be

indicated on the computer screen.

NOTE: In this simulation, each school has one slot, but it can happen that

more than one student lives in the same district.

• In each group, every student submits a ranking of schools which is used in

the following procedure to allocate school places.

• Each student is first tentatively assigned to the school within his/her respec-

tive district.

Next, the submitted rankings are used to determine the school allocation

through exchanges. The order in which these exchanges are considered is

determined by a fair lottery. This means each student has an equal chance of

being the first in the line, the second in the line, ..., as well as the last in the

line. You are going to receive information about the outcome of the lottery

on the screen.

• The specific allocation process is explained below.

– Initially all slots are available for allocation.

– All students are ordered in a queue based on the order in the lottery.

– Next, an application to the lowest ranked school in the submitted rank-

ing is submitted for the student at the top of the queue.

∗ If the application is submitted to his district school, then his tenta-

tive assignment is finalized (thus he is assigned a slot at his district
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school). The student and his assignment are removed from subse-

quent allocations. The process continues with the next student in

line.

∗ If the application is submitted to another school, say school B, and

that school has a vacant slot (it has no other student tentatively

assigned), then the requester is assigned to school B. The student

and his assignment are removed from subsequent allocations. The

process continues with the next student in line.

∗ If the application is submitted to another school, say school C, and

that school has no vacant slot (it has another student tentatively

assigned), then the first student in the queue who tentatively holds

a slot at School C is moved to the top of the queue directly in front

of the requester.

– Whenever the queue is modified, the process continues similarly: An

application is submitted to the lowest ranked school with available slots

for the student at the top of the queue.

∗ If the application is submitted to his district school, then his tenta-

tive assignment is finalized. The process continues with the next

student in line.

∗ If the application is submitted to another school, say school B, and

that school has a vacant slot (it has no other student tentatively

assigned), then the requester is assigned to school B. The student

and his assignment are removed from subsequent allocations. The

process continues with the next student in line.

∗ If the application is submitted to another school, say school C, and

that school has no vacant slot (it has another student tentatively

assigned), then the first student in the queue who tentatively holds

a slot at school C is moved to the top of the queue directly in

front of the requester. This way, each student is guaranteed an

assignment based on the preferences indicated in the submitted

ranking.

– An exchange is obtained when a cycle of applications are made in se-

quence, e.g., I apply to John‘s district school, John applies to your

district school, and you apply to my district school. In this case, the

exchange is completed and the students as well as their assignments
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are removed from subsequent allocations.

– The process continues until all students are assigned a school slot.

An Example

We go through a simple example to illustrate how the allocation method works.

Students and Schools: In this example, there are six students, 1-6, and four

schools, Clair, Erie, Huron and Ontario.

Student ID Number: 1, 2, 3, 4, 5, 6 Schools: Clair, Erie, Huron, Ontario

Slots and Residents: There are two slots each at Clair and Erie, and one slot

each at Huron and Ontario. Residents of districts are indicated in the table below.

School Slot 1 Slot 2 District Residents

Clair � � 1 2

Erie � � 3 4

Huron � 5

Ontario � 6

Tentative assignments: Students are tentatively assigned slots at their district

schools.

School Slot 1 Slot 2

Clair 1 2 Students 1 and 2 are tentatively assigned a slot at Clair;

Erie 3 4 Students 3 and 4 are tentatively assigned a slot at Erie;

Huron 5 - Student 5 is tentatively assigned a slot at Huron;

Ontario 6 - Students 6 is tentatively assigned a slot at Ontario.

Lottery: The lottery produces the following order.

1 - 2 - 3 - 4 - 5 - 6

Submitted School Rankings: The students submit the following school rank-

ings:
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Last 3rd 2nd 1st

Choice Choice Choice Choice

Student 1 Huron Clair Ontario Erie

Student 2 Huron Ontario Clair Erie

Student 3 Ontario Clair Erie Huron

Student 4 Huron Clair Ontario Erie

Student 5 Ontario Huron Clair Erie

Student 6 Clair Erie Ontario Huron

This allocation method consists of the following steps:

Step 1: A fair lottery determines the following student order: 1-2-3-4-5-6. Student

1 has ranked Huron as his last choice. However, the only slot at Huron is

tentatively held by student 5. So student 5 is moved to the top of the queue.

Step 2: The modified queue is now 5-1-2-3-4-6. Student 5 has ranked Ontario as his

last choice. However, the only slot at Ontario is tentatively held by student

6. So student 6 is moved to the top of the queue.

Step 3: The modified queue is now 6-5-1-2-3-4. Student 6 has ranked Clair as her

last choice. The two slots at Clair are tentatively held by students 1 and 2.

Between the two, student 1 is ahead in the queue. So student 1 is moved to

the top of the queue.

Step 4: The modified queue is now 1-6-5-2-3-4. Remember that student 1 has ranked

Huron as his last choice. A cycle of applications is now made in sequence in

the last three steps: student 1 applied to the tentative assignment of student

5, student 5 applied to the tentative assignment of student 6, and student 6

applied to the tentative assignment of student 1. These exchanges are carried

out: student 1 is assigned a slot at Huron, student 5 is assigned a slot at

Ontario, and student 6 is assigned a slot at Clair. These students as well as

their assignments are removed from the system.
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Step 5: The modified queue is now 2-3-4. There is one slot left at Clair and two slots

left at Erie. Student 2 applies to Clair, which is her last choice between the

two schools with remaining slots. Since student 2 tentatively holds a slot at

Clair, her tentative assignment is finalized. Student 2 and her assignment are

removed from the system.

Step 6: The modified queue is now 3-4. There are two slots left at Erie. Student 3

applies to Erie, which is the only school with available slots. Since Student 3

tentatively holds a slot at Erie, her tentative assignment is finalized. Student

3 and her assignment are removed from the system.

Step 7: The only remaining student is student 4. There is one slot left at Erie. Stu-

dent 4 applies to Erie for the last available slot. Since Student 4 tentatively

holds a slot at Erie, his tentative assignment is finalized. Student 4 and his

assignment are removed from the system.

Final assignment: Based on this method, the final allocations are:

Student 1 2 3 4 5 6

School Huron Clair Erie Erie Ontario Clair
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Illustration

Queue Available

Slots

The top student in the queue

applies to a school.

At the end of the step

Step 1 1-2-3-4-5-6 Clair Clair

Erie Erie

Huron

Ontario

1 applies to her last choice

Huron, which is tentatively

assigned to 5.

5 comes to the top.

1 2 3 4 5 6

Step 2 5-1-2-3-4-6 Clair Clair

Erie Erie

Huron

Ontario

5 applies to her last choice

Ontario, which is tentatively

assigned to 6.

6 comes to the top.

5 1 2 3 4 6

Step 3 6-5-1-2-3-4 Clair Clair

Erie Erie

Huron

Ontario

6 applies to her last choice

Clair, which is tentatively as-

signed to 1 and 2.

1 comes to the top.

6 5 1 2 3 4

Step 4 1-6-5-2-3-4 Clair Clair

Erie Erie

Huron

Ontario

A cycle happens in the last 3

steps.

1 gets a slot at Huron. 5

gets a slot at Ontario. 6

gets a slot at Clair.

Step 5 2-3-4 Clair

Erie Erie

2 applies to her 2nd choice

Clair, because her last and

3rd choices (Huron and

Ontario) are no longer

available.

2 gets a slot at Clair, be-

cause she is a resident in

Clair.

Step 6 3-4 Erie Erie 3 applies to Erie which is still

available.

3 gets a slot at Erie, be-

cause he is a resident in

Erie.

Step 7 4 Erie 4 applies to Erie. 4 gets a slot at Erie, be-

cause she is a resident in

Erie.

Final assignment: Based on this method, the final allocations are:

Student 1 2 3 4 5 6

School Huron Clair Erie Erie Ontario Clair
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Quiz

Please find the correct allocation for the instance explained below. You will earn

U100 for a correct answer.

There are 6 students (ID numbers from 1 to 6), and 3 schools (school A, school

B and school C) with two places each. Students 2 and 3 live in the district of School

A, students 4 and 5 live in the district of School B and, finally, students 1 and 6 live

in the district of School C.

School District Residents

A 2 3

B 4 5

C 1 6

The lottery determined the following order (student IDs): 5 - 6 - 2 - 1 - 3 - 4 .

Each student submitted a school ranking. These are given on the Quiz page on

your computer screen.

You have up to 10 minutes to determine the final allocation. If you have any

questions raise your hand and we will come to you. However, the experimenter

will not assist you with the task.

After completing this quiz you will have up to 20 minutes to complete the main

school allocation task. Complete the task at your own pace.

After the allocation task there will be a short questionnaire. When you have

completed the questionnaire raise your hand and the experimenter will come over

to conclude the experiment.
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