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Abstract

We axiomatize Hart and Kurz’s (1983) two coalition aggregation functions known as the γ-

function and the δ-function. A coalition aggregation function is a mapping that assigns a partition

to each coalition profile, where a coalition profile is a vector of coalitions selected by all players.

Through our axiomatization results, we observe that neither the γ-function nor the δ-function

satisfies monotonicity. We propose a monotonic function and axiomatically characterize it. An

impossibility result on monotonicity is also provided.
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1 Introduction

In this paper, we attempt to answer the following question: What coalition structure should be assigned

to a profile of coalitions selected by players? To clarify our question, we begin with a simple example.

Suppose that there are three players, N = {1, 2, 3}. Every player chooses a coalition that she/he wants

to form: For example, each student submits a list of students with whom she wants to share a room.

We suppose that players 1 and 2 want to form the three-person coalition {1, 2, 3}, while player 3 dislikes

player 1 and wants to form the two-person coalition with player 2, namely, {2, 3}. Their choices are

summarized as
σ = (123, 123, 23),

where we omit the parentheses and write, for example, 123 to denote coalition {1, 2, 3}. We call such

a vector a coalition profile. What coalition structure is “optimal” for this coalition profile?*1 The first

attempts to address this question were made by Hart and Kurz (1983, 1984). They defined two aggrega-

tion rules known as the γ-function Bγ and the δ-function Bδ. These functions assign a coalition structure

to each coalition profile. In general, we call such a function a coalition aggregation function. Since the

δ-function is slightly simpler than γ, we first introduce the δ-function. Its formal definition is provided

in Section 2.

∗ School of Political Science and Economics, Waseda University. 1-6-1, Nishi-waseda, Shinjuku-ku, Tokyo 169-8050,

Japan. E-mail: takatomo3639@asagi.waseda.jp

The author thanks Yukihiko Funaki for helpful comments.
*1 A coalition structure means a partition of the player set N . Moreover, the formal definition of a coalition profile is

provided in Section 2.
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The δ-function focuses on “who chooses the same coalition.” In the coalition profile above, players

1 and 2 choose the same coalition 123. Therefore, the δ-function assigns the two-person coalition to

players 1 and 2. Player 3 is the only player who chooses coalition 23. Hence, the δ-function assigns his

one-person coalition to player 3. As a result, the δ-function groups these three players into coalition

structure {12, 3}.
The γ-function features unanimous agreements. Let S ⊆ N be a coalition of players. If all players in

S choose the coalition S, then it might be natural for the players to form and belong to the coalition

S. However, if someone in S chooses a different coalition, the γ-function partitions the players in S into

singletons. In this sense, the γ-function strictly requires unanimous agreement. In the example, player

3 chooses coalition 23, which is different from the choice of the other two players. Hence, the proposed

coalition 123 lacks unanimous agreement, and the proposers 1 and 2 are partitioned into two one-person

coalitions. As a result, the γ-function assigns partition {1, 2, 3}, namely, three one-person coalitions, to

the coalition profile (123, 123, 23).

Each of these two rules can be seen as a function that assigns a partition of the player set to a coalition

profile. Our purpose is to axiomatically analyze such functions. We first axiomatize the γ-function

and the δ-function. Through the axiomatizations, we observe that these two functions do not satisfy

monotonicity. Monotonicity is a basic property: If a player changes his/her choice to a larger coalition

in the sense of superset, then he/she should belong to a larger coalition or at least the same coalition.

For example, consider a coalition profile σ = (12, 23, 23). Both Bγ and Bδ assign {1, 23} to this profile.

Therefore, player 3 belongs to the two-person coalition 23. Now, player 3 changes his mind and accepts

player 1. Let σ′ = (12, 23, 123). For this new coalition profile σ′, it holds that Bγ(σ′) = Bδ(σ′) = {1, 2, 3},
namely, three one-person coalitions. Therefore, player 3 belongs to his one-person coalition. In other

words, accepting player 1 caused player 3 to belong to a smaller coalition. This violates monotonicity.

In this paper, we provide and axiomatically characterize a monotonic rule. In addition, we provide an

impossibility result on monotonicity. Our results are summarized in Table 1 in Section 5.

Our motivation for studying coalition aggregation functions is to establish a connection between players’

coalition choices and coalition structures. Coalition formation has been mainly studied in the field of

cooperative game theory. In general, cooperative game theory addresses two topics: (i) What coalition

is to be formed? and (ii) What allocation is to be chosen? However, the first topic is often avoided

by implicitly or explicitly assuming that players form the grand coalition.*2 Moreover, in many models

including cooperative games, hedonic games, and matching problems, players can form a coalition by

simply “agreeing” to join a coalition. This simplification allows us to introduce the concept of a coalition

into these models in a straightforward way, while it omits the formulation of the step of consensus building

among players to form a coalition. Therefore, in this paper, through analyzing coalition aggregation

functions, we revisit a theoretical foundation of coalition formation among players.

In addition to the theoretical perspective, this paper may facilitate experimental analyses of coalition

*2 One of the leading works that address stable coalition structures without such an assumption is the class of hedonic

games introduced by Banerjee et al. (2001) and Bogomolnaia and Jackson (2002). Moreover, Greenberg (1994) and

Kóczy and Lauwers (2004) introduce the notion of a coalition structure core, which can be seen as a set of pairs of a

payoff allocation and a coalition structure.
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formation. As mentioned above, coalition formation has been mainly studied in the context of cooperative

game theory. Therefore, coalition formation theory does not contain a framework in which players,

namely, participants of an experiment, make a decision in some way. In other words, players do not

choose anything in cooperative game theory. This fact has prevented researchers from performing a

coalition formation experiment. Since in this paper we offer the axiomatic rationale for the connection

between players’ coalition choices and coalition structures, our attempt can be a preliminary step toward

experiments on coalition formation theory. In Section 5, we propose an approach to derive a non-

cooperative game for experiments from our model.

The rest of this paper is organized as follows. In Section 2, we introduce basic definitions and the

notion of a coalition aggregation function. In Section 3, we introduce and axiomatize the δ-function

and the γ-function. In Section 4, we observe that these two functions do not satisfy monotonicity. We

offer an impossibility result on monotonicity and define a new coalition aggregation function that obeys

monotonicity. Its axiomatization is also provided in this section. In Section 5, we summarize our results.

Table 1 in Section 5 shows the axiomatic systems of the coalition aggregation functions we study in this

paper. All the proofs and the independence of the axioms are provided in the appendix.

2 Preliminaries

Let N = {1, ..., n} be a set of players. A coalition is a subset S ⊆ N . We denote the cardinality of

coalition S by |S|. We use n to denote |N |. We assume n ≥ 3. For every i ∈ N , Ai is the set of coalitions

that contain i, formally, Ai = {S ⊆ N |i ∈ S}. For example, let N = {1, 2, 3}. We have

A1 = {1, 12, 13, 123},
A2 = {2, 12, 23, 123},
A3 = {3, 13, 23, 123},

where we omit the parentheses and write, for example, 123 to denote coalition {1, 2, 3}. Henceforth,

we use this notation for coalitions in examples and tables. For every nonempty coalition S ⊆ N , let

AS = ×i∈SAi. We use σ to denote an element of AN . We call σ a coalition profile. We typically use

P to denote a partition (or a coalition structure). For every coalition S ⊆ N , let Π(S) be the set of all

partitions of S. For any S ⊆ N , any P ∈ Π(S), and any i ∈ S, let Pi denote the coalition in partition

P that contains player i. A coalition aggregation function (CA-function) is a mapping that assigns a

partition to each coalition profile, B : AN → Π(N). Since B(σ) is a partition, let Bi(σ) denote the

coalition in partition B(σ) that contains player i.

3 The δ-function and the γ-function

Now, we introduce the two CA-functions proposed by Hart and Kurz (1983). The δ-function is given

as
Bδ(σ) = {T ⊆ N |i, j ∈ T ⇐⇒ σi = σj}.

3



As mentioned in Section 1, the δ-function focuses on players who choose the same coalition. To see this,

let N = {1, 2, 3, 4} and σ = (12, 12, 234, 234). Since players 1 and 2 choose the same coalition 12, they

belong to coalition 12 in Bδ(σ), namely, Bδ
1(σ) = Bδ

2(σ) = 12. Similarly, since players 3 and 4 choose the

same coalition 234, they belong to coalition 34 in Bδ(σ), namely, Bδ
3(σ) = Bδ

4(σ) = 34. Note that the

proposed coalition (i.e., 234) does not have to coincide with the set of players who choose it (i.e., players

3 and 4). The resulting coalition structure is Bδ(σ) = {12, 34}.
In contrast, the γ-function requires players to make a unanimous agreement. Formally, Bγ(σ) =

{T i
σ|i ∈ N}, where

T i
σ =

{
σi if σj = σi for every j ∈ σi,
{i} otherwise.

Consider the coalition profile σ = (12, 12, 234, 234) again. The list of coalitions proposed in σ is {12, 234}.
Since all members in coalition 12 agree to form the coalition 12, the γ-function assigns coalition 12 to

them. However, for coalition 234, there is a player who does not agree to join it, namely, player 2. Hence,

in the sense of the γ-function, coalition 234 lacks unanimous agreement and is not formed. As a result,

players 3 and 4 are not contained in any unanimously agreed coalition. The γ-function assigns a one-

person coalition to such a player. Therefore, the resulting coalition structure is Bγ(σ) = {12, 3, 4}. Note

that, in general, a player who chooses his/her one-person coalition σi = {i}, if any, achieves unanimous

agreement by himself/herself.

The two CA-functions for n = 3 are fully described in Tables Bδ and Bγ . To fit each table on a page,

we use symbols N, X, Y, Z, I to denote partitions as follows:

N = {123}, X = {12, 3}, Y = {13, 2}, Z = {23, 1}, I = {1, 2, 3}.

For example, Bδ(123, 123, 123) = {123}(= N), Bδ(12, 123, 123) = {23, 1}(= Z), Bδ(123, 12, 123) =

{13, 2}(= Y), and Bδ(123, 123, 13) = {12, 3}(= X).

Table Bδ

A3 123 13 23 3

A1 \ A2 123 12 23 2 123 12 23 2 123 12 23 2 123 12 23 2

123 N Y Y Y X I I I X I Z I X I I I

12 Z X I I I X I I I X Z I I X I I

13 Z I I I Y Y Y Y I I Z I I I I I

1 Z I I I I I I I I I Z I I I I I

Table Bγ

A3 123 13 23 3

A1 \ A2 123 12 23 2 123 12 23 2 123 12 23 2 123 12 23 2

123 N I I I I I I I I I Z I I I I I

12 I X I I I X I I I X Z I I X I I

13 I I I I Y Y Y Y I I Z I I I I I

1 I I I I I I I I I I Z I I I I I
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We now introduce the axioms to characterize these two CA-functions.

Axiom 1 (Unanimity, UN). For any σ ∈ AN and any ∅ ̸= S ⊆ N , if σj = S for every j ∈ S, then

S ∈ B(σ).

This axiom states that if all members of a coalition agree on the formation of the coalition, then

the coalition should be formed. For convenience, we call player i a unanimous member if σj = σi for

every j ∈ σi (or equivalently, if there exists S ⊆ N such that i ∈ S and σj = S for every j ∈ S). All

CA-functions that we discuss in this paper satisfy this axiom.

Axiom 2 (Disagreement, DA). For any σ ∈ AN and any i, j ∈ N , if σi ̸= σj , then Bi(σ) ̸= Bj(σ).

Axiom DA describes a specific form of disagreement. If the list of the players with whom player i

wants to form a coalition, σi, is different from that of player j, then these two players cannot reach an

agreement in this sense. For example, player i wants to invite player k, while player j does not. However,

player i wants to invite player j and vice versa. In this case, their proposals clearly conflict over player

k. A CA-function that obeys DA assigns different coalitions to such players.

Table UN and Table DA describe these axioms for n = 3. Table UN+DA similarly shows the

restriction derived from the combination of both axioms. In the tables, for example, YI means that both

{13, 2}(=Y) and {1, 2, 3}(=I) are possible, and the other coalition structures (N, X, and Z) are ruled

out. In the same manner, “any” means all partitions are possible.

Table UN

A3 123 13 23 3

A1 \ A2 123 12 23 2 123 12 23 2 123 12 23 2 123 12 23 2

123 N any any YI any any any YI any any Z YI XI XI XI I

12 any X any YI any X any YI any X Z YI XI X XI I

13 any any any YI Y Y Y Y any any Z YI XI XI XI I

1 ZI ZI ZI I ZI ZI ZI I ZI ZI Z I I I I I

Table DA

A3 123 13 23 3

A1 \ A2 123 12 23 2 123 12 23 2 123 12 23 2 123 12 23 2

123 any YI YI YI XI I I I XI I ZI I XI I I I

12 ZI XI I I I XI I I I XI ZI I I XI I I

13 ZI I I I YI YI YI YI I I ZI I I I I I

1 ZI I I I I I I I I I ZI I I I I I

Table UN+DA

A3 123 13 23 3

A1 \ A2 123 12 23 2 123 12 23 2 123 12 23 2 123 12 23 2

123 N YI YI YI XI I I I XI I Z I XI I I I

12 ZI X I I I X I I I X Z I I X I I

13 ZI I I I Y Y Y Y I I Z I I I I I

1 ZI I I I I I I I I I Z I I I I I
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As Table UN+DA shows, the two axioms UN and DA are not enough to specify a unique CA-

function. We now consider the remaining players’ reaction to one player’s deviation from an agreement.

Axiom 3 (Integrative Reaction, IR). For any σ ∈ AN , any i ∈ N , and any σ′
i ∈ Ai with σ′

i ̸= σi, if

|Bi(σ)| ≥ 3, then Bj(σ
′
i, σ−i) = Bk(σ

′
i, σ−i) for any j, k ∈ Bi(σ) \ {i} with j ̸= k.

Let σ be a current coalition profile and B(σ) be the corresponding coalition structure. In the coalition

structure B(σ), if |Bi(σ)| ≥ 3, then player i shares a coalition with at least two players, say j and k

(hence, Bi(σ) is {i, j, k} or its superset). Now, player i tries to deviate from the coalition Bi(σ) by

changing his choice from σi to σ′
i. The axiom guarantees that players j and k can keep their coalition

even after player i’s deviation.

The following axiom is a variation of IR.

Disintegrative Reaction, DR. For any σ ∈ AN , any i ∈ N , and any σ′
i ∈ Ai with σ′

i ̸= σi, if |Bi(σ)| ≥ 3,

then Bj(σ
′
i, σ−i) ̸= Bk(σ

′
i, σ−i) for any j, k ∈ Bi(σ) \ {i} with j ̸= k.

This axiom is the counterpart of IR: It no longer allows players j and k to stay in the same coalition after

i’s deviation because the coalition lacks player i’s agreement. Moreover, we can consider the following

axiom to be a coalitional version of DR. In this extended axiom, in addition to individual deviations,

coalitional deviations are incorporated.*3 For n = 3, DR is equivalent to DR+.

Axiom 4 (Coalitional Disintegrative Reaction, DR+). For any σ ∈ AN , any ∅ ̸= S ⊆ N , and any

σ′
S ∈ AS with σ′

j ̸= σj for all j ∈ S, if there exists T ∈ B(σ) such that T ⊇ S and |T \ S| ≥ 2, then

Bj(σ
′
S , σ−S) ̸= Bk(σ

′
S , σ−S) for any j, k ∈ T \ S with j ̸= k.

Because of the constraints |Bi(σ)| ≥ 3 (in IR) and |T \ S| ≥ 2 (in DR+), the restriction of these

axioms is modest: For n = 3, only if B(σ) = 123 for some σ can these axioms restrict CA-functions.

We obtain the following two characterizations.

Proposition 3.1. CA-function B satisfies UN, DA, IR if and only if it is Bδ.

Proposition 3.2. CA-function B satisfies UN, DA, DR+ if and only if it is Bγ .

The proofs and the independence of the axioms are provided in the appendix. Here, we briefly demon-

strate the outline of the proofs for n = 3. In view of Table UN+DA, the coalition profiles whose

coalition structure is not determined are

{(σ1, 123, 123)|σ1 = 12, 13, 1}
∪{(123, σ2, 123)|σ2 = 12, 23, 2} (3.1)

∪{(123, 123, σ3)|σ3 = 13, 23, 3}.

Since B(123, 123, 123) = 123 holds by UN, a CA-function that obeys IR assigns partition {1, 23}(=Z)

*3 In this sense, the relationship between DR and DR+ is similar to that between a Nash equilibrium and a strong

Nash equilibrium.
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to every σ ∈ {(σ1, 123, 123)|σ1 = 12, 13, 1}. This similarly holds for players 2 and 3. As a result, we

obtain Table Bδ. If it satisfies DR+ instead, then partition {1, 2, 3}(=I) is assigned to every coalition

profile in (3.1), which results in Table Bγ .

4 Monotonicity

We first show that neither Bδ nor Bγ satisfies monotonicity. Monotonicity is given as follows.

Axiom 5 (Monotonicity, MO). For any σ ∈ AN , any i ∈ N , and any σ′
i ∈ Ai, if σi ⊆ σ′

i, then

Bi(σi, σ−i) ⊆ Bi(σ
′
i, σ−i).

As mentioned in Section 1, this axiom states that if a player changes his/her choice to a larger coalition

in the sense of superset, then he/she should belong to a larger coalition or at least the same coalition.

It is clear that the two functions violate this axiom: Table Bδ shows that we have Bδ(12, 23, 23) =

{1, 23}(=Z). However, if player 3 changes his choice to 123, then Bδ(12, 23, 123) = {1, 2, 3}(=I). There-

fore, Bδ
3(12, 23, 23) = 23 ̸⊆ 3 = Bδ

3(12, 23, 123). The same holds for Bγ . This example shows that

accepting player 1 caused player 3 to lose player 2 and belong to his one-person coalition. In general,

violating MO means that by accepting more players, a player can be assigned to a smaller coalition.

A natural question that arises from this observation is what function satisfies MO together with the

basic axiomsUN andDA. To answer this question, we introduce the following notion and axiom. Players

i and j are said to be a (direct) pair in σ if i ∈ σj and j ∈ σi. We denote a pair by i
σ∼ j. In words, a

pair describes two players who accept each other.

Axiom 6 (Pairwise Disagreement, PD). For any σ ∈ AN and any i, j ∈ N , if not i
σ∼ j (namely, i is

not a pair with j), then Bi(σ) ̸= Bj(σ).

This is equivalent to the following statement: if j ̸∈ σi then j ̸∈ Bi(σ). Therefore, a CA-function that

obeys PD interprets σi as player i’s message that he/she does not want to share a coalition with the

players in N \ σi. Table PD describes this axiom for n = 3. Note that DA implies PD. The following

result shows the difficulty of the question above.

Proposition 4.1. No CA-function simultaneously satisfies UN, PD, and MO.

The proof is provided in the appendix. Here, we demonstrate its outline through Table UN+PD. The

underlined partitions in Table UN+PD violate MO. To see this, we focus on B(123, 12, 13) in Table

UN+PD. Since B(12, 12, 13) = {12, 3}(=X), MO implies B1(123, 12, 13) ⊇ 12. In the same manner,

since B(13, 12, 13) = {13, 2}(=Y), MO implies B1(123, 12, 13) ⊇ 13. Hence, it holds that B(123, 12, 13) =
{123}(=N). However, as described in the table, UN and PD jointly require that B(123, 12, 13) is either
X or Y or I. This contradicts MO.

Since PD is a weaker version of DA, Proposition 4.1 implies that even if we replace IR (DR+) in

Proposition 3.1 (Proposition 3.2) by MO, we can obtain no CA-function. As long as we require a

CA-function to satisfy UN, the only approach left is to weaken PD. To achieve this, we introduce the

following notion and axiom. Players i and j are said to be an indirect pair in σ if there is a sequence of
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Table PD

A3 123 13 23 3

A1 \ A2 123 12 23 2 123 12 23 2 123 12 23 2 123 12 23 2

123 any XYI YZI YI XYI XYI YI YI XZI XI ZI I XI XI I I

12 XZI XI ZI I XI XI I I XZI XI ZI I XI XI I I

13 YZI YI YZI YI YI YI YI YI ZI I ZI I I I I I

1 ZI I ZI I I I I I ZI I ZI I I I I I

Table UN+PD

A3 123 13 23 3

A1 \ A2 123 12 23 2 123 12 23 2 123 12 23 2 123 12 23 2

123 N XYI YZI YI XYI XYI YI YI XZI XI Z I XI XI I I

12 XZI X ZI I XI X I I XZI X Z I XI X I I

13 YZI YI YZI YI Y Y Y Y ZI I Z I I I I I

1 ZI I ZI I I I I I ZI I Z I I I I I

players k1, ..., kM such that k1 = i, kM = j, and km
σ∼ km+1 for m = 1, ...,M − 1. We denote an indirect

pair by i
σ
≈ j.

Axiom 7 (Weak Pairwise Disagreement, PD−). For any σ ∈ AN and any i, j ∈ N , if not i
σ
≈ j (namely,

i is not an indirect pair with j), then Bi(σ) ̸= Bj(σ).

An indirect pair is adopted instead of a direct pair that is used in PD. This is the only difference

between PD− and PD. Note that if i and j are a direct pair, then they are an indirect pair. Therefore,

PD implies PD−. Hence, we have
DA ⇒ PD ⇒ PD−.

Table PD− describes the restriction that PD− requires.

Table PD−

A3 123 13 23 3

A1 \ A2 123 12 23 2 123 12 23 2 123 12 23 2 123 12 23 2

123 any any any YI any any YI YI any XI ZI I XI XI I I

12 any XI ZI I XI XI I I any XI ZI I XI XI I I

13 any YI any YI YI YI YI YI ZI I ZI I I I I I

1 ZI I ZI I I I I I ZI I ZI I I I I I

The following proposition states that PD−, together with UN and MO, specifies a unique CA-

function. We define
B≈(σ) = {T ⊆ N |i, j ∈ T ⇐⇒ i

σ
≈ j}.

Proposition 4.2. CA-function B satisfies UN, PD−, MO if and only if it is B≈.

The proof and the independence of the axioms are provided in the appendix.*4 We call B≈ the pairwise

*4 To be more specific, we can use a technical axiom that is a slight variant of PD− and is weaker than PD− as follows:
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function. The pairwise function for n = 3 is described in Table B≈. Interpreting B≈ is straightforward:

If two players form an indirect pair, then we group them. We can consider ≈ as a binary relation.

Binary relation ≈ is an equivalence relation and, hence, partitions the player set into equivalence classes

(namely, coalitions). This is the partition B≈(σ).

Table B≈

A3 123 13 23 3

A1 \ A2 123 12 23 2 123 12 23 2 123 12 23 2 123 12 23 2

123 N N N Y N N Y Y N X Z I X X I I

12 N X Z I X X I I N X Z I X X I I

13 N Y N Y Y Y Y Y Z I Z I I I I I

1 Z I Z I I I I I Z I Z I I I I I

5 Concluding remarks

Table 1 summarizes our axiomatization results. In the table, symbol ⊕ means that the axiom is used

for the axiomatization of the CA-function; + means that the CA-function satisfies the axiom; − means

that the CA-function does not satisfy the axiom. Propositions 3.1, 3.2, and 4.2 are axiomatization

results. Proposition 4.1 shows that no function simultaneously satisfies UN, PD, and MO. Note that

DA ⇒ PD ⇒ PD− holds. For Bδ and Bγ , we cannot use PD instead of DA, which is not sufficient to

specify a unique CA-function.

Table 1 Axioms and CA-functions

UN DA PD PD− IR DR+ MO

Prop.3.1 Bδ ⊕ ⊕ + + ⊕ − −
Prop.3.2 Bγ ⊕ ⊕ + + − ⊕ −
Prop.4.2 B≈ ⊕ − − ⊕ − − ⊕
Prop.4.1 ̸ ∃B + + +

In this paper, we considered UN to be an axiom that all CA-functions should satisfy. If we are not

restricted to the CA-functions satisfying UN and consider a weak form of unanimity, then, in view of

Proposition 4.1, an axiomatic system consisting of PD, MO, and such weak unanimity might specify

a CA-function. Although violating UN can be a clear drawback, such a system may deserve further

investigation in the future.

As mentioned in the introduction, a CA-function can play a key role to introduce decision making and

non-cooperative games for experiments into coalition formation theory. Below, we propose an approach

to achieve this. Let (N,B) be given.*5 A non-cooperative game consists of three factors: A player set,

if i is not an indirect pair with j and neither i nor j is a unanimous member, then Bi(σ) ̸= Bj(σ). Proposition 4.2

holds even with this axiom instead of PD−. Even if we adopt this technical axiom, the proof is almost unchanged.
*5 One can choose a CA-function B in view of the axiomatic rationale we offered in this paper.
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strategy sets, and a payoff function that assigns a payoff vector to each strategy profile. We use the same

player set N . We consider Ai to be player i’s strategy set: Player i chooses a coalition to join. Since CA-

function B connects a strategy profile and a partition, we need a function, say ϕ, that connects a partition

and a payoff profile to build a payoff function ϕ◦B. Formally, B : ×i∈NAi → Π(N) and ϕ : Π(N) → RN .

Such a function ϕ is also studied by, for example, Hart and Kurz (1984), Casajus (2009), and Abe (2018).

As a result, we obtain a non-cooperative game (N, (Ai)i∈N , ϕ ◦ B). Our axiomatic rationale serves to

choose B. One can choose ϕ that represents a game-theoretic or economic situation she/he is interested

in. For example, Hart and Kurz (1984) and Abe (2018) provide ϕ that represents a symmetric majority

game, and Casajus (2009) formulates a gloves game. By deriving such a non-cooperative game from a

cooperative game, one can apply the notions of non-cooperative game theory such as Nash equilibrium

and dominant strategy to situations formulated as cooperative games.

Appendix

In the appendix, let

Di(σ) := {j ∈ N |j σ∼ i}

for any i ∈ N and any σ ∈ AN . Note that i ∈ Di(σ) for any i ∈ N and any σ ∈ AN .

Proof of Proposition 3.1 (Axiomatization of Bδ)

Proof. The if-part follows from Lemma A.2. We show the only-if-part.

Step 1. Let σ ∈ AN . For any nonempty S ⊆ N , define Hσ
S = {i ∈ N |σi = S}. We first prove that

Hσ := {Hσ
S |S ⊆ N,Hσ

S ̸= ∅} is a partition of N . For any two different coalitions S, T ⊆ N , we have

Hσ
S ∩Hσ

T = ∅ because if there is a player i such that i ∈ Hσ
S ∩Hσ

T then S = σi = T . This contradicts

S ̸= T . Moreover, it holds that
⋃

S⊆N Hσ
S = N because if there is a player i ∈ N \

⋃
S⊆N Hσ(S) then

σi ̸= S for any S ⊆ N . This contradicts σi ∈ Ai ⊆ 2N . Hence, Hσ is a partition of N . We now define

Kσ := {S ∈ Hσ|σj = S for all j ∈ S} and Lσ := Hσ \Kσ.

Step 2. By UN, for each coalition S ∈ Kσ, S ∈ B(σ).
Step 3. For each coalition T ∈ Lσ with |T | = 1, say {i} = T , we have σi ̸= σj for any j ∈ N \ {i}.

Hence, by DA, Bi(σ) = {i}. Now, we fix a coalition T ∈ Lσ with |T | ≥ 2 and consider a player i ∈ T .

Let R := σi. Note that it follows from T ∈ Lσ that

σj = R for every j ∈ T,
σj ̸= R for every j ∈ N \ T. (A.1)

If R = T , then T ∈ Kσ, which contradicts T ∈ Lσ = Hσ \Kσ; if R ⊊ T , then for some player k in T \R,

k ̸∈ R = σk, which contradicts σk ∈ Ak. Hence, we have R ⊋ T . It follows that |R| ≥ 3.

For the strategy profile σ and the coalition R, define the following strategy profile σ0 ∈ AN : for every

j ∈ N ,

σ0
j =

{
R if j ∈ R,
σj otherwise.

By UN, R ∈ B(σ0). Let R \ T = {i1, ..., im} for some natural number m. Note that for every i ∈ R \ T ,
σ0
i = R.
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Now, define σ1 ∈ AN as

σ1
j =

{
σj if j = i1,
σ0
j otherwise.

In view of i1 ̸∈ T and (A.1), we have σi1 ̸= R. By IR, for any j, k ∈ R \ {i1}, we have Bj(σ
1) = Bk(σ

1),

which implies Bj(σ
1) ⊇ R \ {i1} for every j ∈ R \ {i1}. Since σ1

j ̸= R for any j ∈ (N \ R) ∪ {i1} and

σ1
j = R for any j ∈ R \ {i1}, DA implies that Bj(σ

1) ⊆ R \ {i1} for every j ∈ R \ {i1}. Hence, we obtain

Bj(σ
1) = R \ {i1} for every j ∈ R \ {i1}. In the same manner, given σ and σ1, we define σ2 ∈ AN as

σ2
j =

{
σj if j = i2,
σ1
j otherwise.

Similarly, by IR and DA, we obtain Bj(σ
2) = R \ {i1, i2} for every j ∈ R \ {i1, i2}. Repeating this

procedure until im, we have σm = σ and, hence, Bj(σ) = Bj(σ
m) = R \ {i1, ..., im} for every j ∈

R \ {i1, ..., im}. As T = R \ {i1, ..., im}, we obtain Bj(σ) = T for every j ∈ T . Hence, in view of Step 2,

B(σ) = Kσ ∪ Lσ = Hσ.

Step 4. We show Hσ = {S ⊆ N |i, j ∈ S ⇐⇒ σi = σj}. Let S ∈ Hσ. There exists T ⊆ N such that

for any j ∈ S, σj = T . Hence, it holds that i, j ∈ S ⇒ σi = σj . Now consider j ∈ N \ S. There exists

T ′ ⊆ N such that T ′ ̸= T and σj = T ′. Hence, it follows that i ∈ S and j ̸∈ S ⇒ σi ̸= σj . Thus S ∈ Bδ.

Now let S ∈ Bδ. Let T := σj = σk for any j, k ∈ S. Then we have Hσ(T ) = S and Hσ(T ) ∈ Hσ, which

means S ∈ Hσ.

In view of Steps 3 and 4, B(σ) = Hσ = Bδ(σ). This completes the proof.

Proof of Proposition 3.2 (Axiomatization of Bγ)

Proof. The if-part follows from Lemma A.3. We show the only-if-part. Step 1 and Step 2 are the same

as Proposition 3.1.

Step 3. For any coalition T ∈ Lσ with |T | = 1, say {i} = T , we have σi ̸= σj for any j ∈ N \ {i}.
Hence, by DA, Bi(σ) = {i}. Now, we fix a coalition T ∈ Lσ with |T | ≥ 2 and consider a player i ∈ T .

Let R := σi. In the same manner as Proposition 3.1, we have R ⊋ T and |R| ≥ 3. For the given strategy

profile σ, similarly define strategy profile σ0 ∈ AN as

σ0
j =

{
R if j ∈ R,
σj otherwise.

By UN, R ∈ B(σ0). Let R \ T = {i1, ..., im} for some natural number m. In view of T ∈ Hσ, we have

σj ̸= R for every j ∈ N \ T . Hence, σ0
j = R ̸= σj for every j ∈ R \ T . It follows from DR+that

Bi(σ) ̸= Bj(σ) for any different i, j ∈ T. (A.2)

Since σj ̸= R for every j ∈ N \ T and σj = R for every j ∈ T , in view of DA, we have

Bi(σ) ̸= Bj(σ) for any i ∈ T and any j ∈ N \ T. (A.3)

From (A.2) and (A.3), it follows that Bi(σ) ̸= Bj(σ) for any i ∈ T and any j ∈ N \ {i}. Hence, Bi(σ) =

{i} for each i ∈ T . This holds for every coalition T ∈ Lσ with |T | ≥ 2. Hence, we have B(σ) =

Kσ ∪ {{i}|i ∈ L̂σ}, where L̂σ =
⋃

T∈Lσ T . Thus, B(σ) = Bγ(σ), which completes the proof.
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Proof of Proposition 4.1 (No CA-function simultaneously satisfies UN, PD, MO)

Proof. Let B satisfy UN, PD, and MO. Fix a player i ∈ N . Let σ1 ∈ AN be

σ1
j =

{
{1, i} if j = i,
{j, i} otherwise,

namely, σ1 = ({1, i}, {2, i}, ..., {i−1, i}, {1, i}, {i+1, i}, ..., {n, i}). In view of UN, {1, i} ∈ B(σ1). In the

same manner, for k = 1, ..., i− 1, i+ 1, ..., n, we define

σk
j =

{
{k, i} if j = i,
{j, i} otherwise

and obtain {k, i} ∈ B(σk) by UN. Now, let σ∗ be

σ∗
j =

{
N if j = i,
{j, i} otherwise.

From MO, it follows that

{1, i} ⊆ Bi(σ
∗), {2, i} ⊆ Bi(σ

∗), ..., {n, i} ⊆ Bi(σ
∗).

Hence, Bi(σ
∗) = N . This holds for every i ∈ N , namely, Bi(σ

∗) = N for every i ∈ N . However,

since it does not hold that 2 ∈ σ∗
1 and 1 ∈ σ∗

2 , players 1 and 2 are not a pair. Hence, in view of PD,

B1(σ
∗) ̸= B2(σ

∗). This is a contradiction.

Lemma for Proposition 4.2

Lemma A.1. Let B be an CA-function and σ ∈ AN . If B satisfies UN and MO, then Bi(σ) ⊇ Di(σ)

for every i ∈ N .

Proof. Assume that there exists k ∈ Di(σ) such that k ̸∈ Bi(σ). Since k ∈ Di(σ), we have k ∈ σi and

i ∈ σk. We define σ′ as follows: for every j ∈ N ,

σ′
j =

{
σj if j ∈ N \ {i, k},
{i, k} otherwise (namely, j = i or k).

By UN, Bi(σ
′) = Bk(σ

′) = {i, k}. Note that σi ⊇ {i, k} = σ′
i because i ∈ σi and k ∈ σi. Now define σ∗

as follows: for every j ∈ N ,

σ∗
j =

{
σj if j ∈ N \ {k},
{i, k} otherwise (namely, j = k).

By MO, Bi(σ
∗) ⊇ Bi(σ

′) = {i, k}. Since k ∈ Bk(σ
∗), Bi(σ

∗) = Bk(σ
∗). Hence, Bk(σ

∗) ⊇ {i, k}.
In a similar manner, by MO, Bk(σ) ⊇ Bk(σ

∗) ⊇ {i, k}. Since i ∈ Bi(σ), Bi(σ) = Bk(σ). Hence,

Bi(σ) ⊇ {i, k}. This contradicts k ̸∈ Bi(σ).
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Proof of Proposition 4.2 (Axiomatization of B≈)

Proof. The if-part follows from Lemma A.4. We show the only-if-part. Let σ ∈ AN . Let Kσ := {∅ ̸=
S ⊆ N |σj = S for all j ∈ S}. In view of UN, Kσ ⊆ B(σ). Let K̂σ :=

⋃
S∈Kσ S. Every player i in

N \ K̂σ is not a unanimous member: there is a player j ∈ σi such that σj ̸= σi. We partition N \ K̂σ

into {S1, ..., SM} for some natural number M by indirect pairs: for each m = 1, ...,M ,

i ≈ j for any i, j ∈ Sm,

i ̸≈ j for any i ∈ Sm and any j ̸∈ Sm.

We fix an arbitrary coalition S ∈ {S1, ..., SM}. From PD−, it follows that

Bi(σ) ⊆ S for every i ∈ S. (A.4)

Claim. We now prove that Bi(σ) ⊇ S for every i ∈ S. We first fix i ∈ S and j ∈ Di(σ). We have

{i, j} ⊆ Di(σ) and {i, j} ⊆ Dj(σ). Lemma A.1 implies that

Bi(σ) ⊇ Di(σ) ⊇ {i, j}, and

Bj(σ) ⊇ Dj(σ) ⊇ {i, j}.

Hence, Bi(σ) = Bj(σ), which implies that Bi(σ) = Bj(σ) ⊇ (Di(σ) ∪Dj(σ)). We now consider the same

j and fix k ∈ Dj(σ). In the same manner, we have Bj(σ) = Bk(σ) ⊇ (Dj(σ) ∪Dk(σ)). For the player

j, we have Bi(σ) = Bj(σ) = Bk(σ) ⊇ (Di(σ) ∪Dj(σ) ∪Dk(σ)). Applying this procedure to every i′ ∈ S

and every j′ ∈ Di′(σ), we have Bi(σ) ⊇
⋃

j∈S Dj(σ) = S for every i ∈ S. This completes the claim.//

In view of (A.4) and the claim, we have Bi(σ) = S for every i ∈ S. Hence, we have Bi(σ) = {j ∈ N |i
σ
≈

j} for every i ∈ N \ K̂σ. For every i ∈ K̂σ, since i is a unanimous member, Bi(σ) = σi = {j ∈ N |i
σ
≈ j}.

Thus, B(σ) = {T ⊆ N |i, j ∈ T ⇐⇒ i
σ
≈ j}.

Lemmas for the if-parts of Propositions 3.1, 3.2, and 4.2

Lemma A.2. CA-function Bδ satisfies UN, DA, IR.

Proof. UN: Assume that there is S ⊆ N such that σj = S for every j ∈ S and S ̸∈ Bδ(σ). Since

S ̸∈ Bδ(σ), there are i ∈ S and k ∈ S such that Bδ
i (σ) ̸= Bδ

k(σ): players i and k belong to different

coalitions, while σi = σk. This contradicts the definition of Bδ. DA: This immediately follows from the

definition. IR: Let i ∈ N and j, k ∈ Bδ
i (σ). They are three different players. Since i, j, k ∈ Bδ

i (σ), we

have σi = σj = σk. It follows from σj = σk that Bδ
j (σ

′
i, σ−i) = Bδ

k(σ
′
i, σ−i).

Lemma A.3. CA-function Bγ satisfies UN, DA, DR+.

Proof. UN: This follows in the same manner as Bδ. DA: If σi ̸= σj , then Bγ
i (σ) = {i} ̸= {j} = Bγ

j (σ).

DR+: Let T ∈ Bδ(σ). Let S ⊆ T , j ∈ T \ S, and k ∈ T \ S. Since σ′
i ̸= σi = T for every i ∈ S, we have

Bγ
j (σ

′
S , σ−S) = {j} and Bγ

k (σ
′
S , σ−S) = {k}.

Lemma A.4. CA-function B≈ satisfies UN, PD−, MO.

13



Proof. UN: If σj = S for every j ∈ S, then i
σ∼ j for any i, j ∈ S, which implies i

σ
≈ j for any i, j ∈ S.

Hence, S ∈ B≈(σ). PD−: This immediately follows from the definition. MO: Fix i ∈ N . In view of the

definition, B≈
i (σ) = {j ∈ N |i

σ
≈ j}. Since σ′

i ⊇ σi, we have B≈
i (σ) = {j ∈ N |i

σ
≈ j} ⊇ {j ∈ N |i

(σ′
i,σ−i)
≈

j} = B≈
i (σ

′
i, σ−i).

Independence

Define Bs as follows: Bs(σ) = {{i}|i ∈ N} for every σ ∈ AN . Functions B1 to B4 are provided in the

following table, in which underlined partitions violate the corresponding axiom.

Independence for Bδ

• Bγ satisfies UN and DA, but violates IR.

• B1 satisfies UN and IR, but violates DA.

• Bs satisfies DA and IR, but violates UN.

Independence for Bγ

• Bδ satisfies UN and DA, but violates DR+.

• B2 satisfies UN and DR+, but violates DA.

• Bs satisfies DA and DR+, but violates UN.

Independence for B≈

• B3 satisfies UN and PD−, but violates MO.

• B4 satisfies UN and MO, but violates PD−.

• Bs satisfies PD− and MO, but violates UN.

B1

A3 123 13 23 3

A1 \ A2 123 12 23 2 123 12 23 2 123 12 23 2 123 12 23 2

123 N Y Y Y X I I Y X I Z Y X I I I

12 Z X I Y I X I Y I X Z Y I X I I

13 Z I X Y Y Y Y Y I I Z Y I I I I

1 Z Z Z I Z Z Z I Z Z Z I I I I I

B2

A3 123 13 23 3

A1 \ A2 123 12 23 2 123 12 23 2 123 12 23 2 123 12 23 2

123 N I I I I I I Y I I Z Y I I I I

12 I X I Y I X I Y I X Z Y I X I I

13 I I X Y Y Y Y Y I I Z Y I I I I

1 I Z Z I Z Z Z I Z Z Z I I I I I
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B3

A3 123 13 23 3

A1 \ A2 123 12 23 2 123 12 23 2 123 12 23 2 123 12 23 2

123 N Y Y Y I I I I I I Z I I I I I

12 Z X I I I X I I I X Z I I X I I

13 Z I X I Y Y Y Y I I Z I I I I I

1 Z I I I I I I I I I Z I I I I I

B4

A3 123 13 23 3

A1 \ A2 123 12 23 2 123 12 23 2 123 12 23 2 123 12 23 2

123 N N N Y N N Y Y N X Z I X X I I

12 N X N I X X I I N X Z I X X I I

13 N N N Y Y Y Y Y Z I Z I I I I I

1 Z I Z I I I I I Z I Z I I I I I
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