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Abstract

This paper experimentally investigates overbidding in the fixed-rate funds-supplying
operations conducted by central banks. One motivation for this is that while the European
Central Bank had experienced severe overbidding in the conduct of its fixed-rate operations,
no comparable behavior has been observed for the Bank of Japan. Existing theoretical
analyses argue that this is because the currently accommodative financial environment in
Japan has made bidders’ objective functions locally satiated, and this contributes to the
avoidance of overbidding. To investigate this further, we conduct an experiment with fixed-
rate operations, the results of which are as follows. When participants’ initial demands are
sufficiently small, they simply play the unique Nash equilibrium strategy to bid their true
demand. Further, as demand increases and there is no satiation in their objective functions,
participants tend to overbid. However, even as demand becomes larger, an explosion of bids
does not arise if the objective functions are sufficiently satiated. We also estimate the subject
bid functions from the experimental data affected by the degree of satiation and reveal that
a simple calibration points to the vulnerability of fixed-rate operations to overbidding, even
when satiation is preserved.

Keywords: Fixed-rate funds-supplying operations; Overbidding; Experiments

1 Introduction

1.1 The Bank of Japan’s fixed-rate funds-supplying operations

In December 2009, the Bank of Japan (BOJ) introduced a new framework of market operation
known as a fixed-rate funds-supplying operation against pooled collateral (hereafter fixed-rate

operation) to address the turmoil in international financial markets current at the time!.

“The authors would like to thank Charles Noussair, Yoshio Kamijo, and conference participants at the 2018
BEAM-ABEE workshop on “Experimental and Behavioral Analyses in Macroeconomics and Finance”, held at the
University of Amsterdam, Netherlands and the 2019 East Asia Game Theory International Conference held in
Fuzhou, China for their helpful comments and suggestions.

*School of Political Science and Economics, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo, Japan
169-8050; funaki@waseda.jp

tSchool of International Liberal Studies, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo, Japan
169-8050; junnosuke.shino@waseda.jp

SFaculty of Economics and Management, Hokuriku University, 1-1 Taiyogaoka, Kanazawa-shi, Ishikawa, Japan
920-1180; nobuyuki.uto@gmail.com

IThe following description of this framework draws on BOJ [4] and Shino [16]. Funds-supplying operations
are operations in which the BOJ extends loans to its counterparties, with pooled collateral submitted by these
counterparties to the bank backing these loans. These operations are very convenient for the counterparties because
a wide range of assets, including government bonds, other public liabilities, and corporate debt such as corporate
bonds and commercial paper, are eligible to be used as collateral. The counterparties can also easily substitute
different kinds of collateral. For its part, pooled collateral refers to collateral that the counterparties submit to the
BOJ based on agreements pertaining to transactions with it, such as funds-supplying operations against pooled
collateral, complementary lending facilities, and intraday overdrafts and other contracts.



The fixed-rate operations take the form of loans, with the loan rates presumably fixed at the
BOJ'’s target for the uncollateralized overnight call rate stipulated in the guidelines for money
market operations. Because the BOJ announces the total amount of funds supplied for each
auction in advance, the rate and amount applied to each auction are common knowledge among
bidders. Given this, every participant simply bids the amount of money they wish to obtain at
that rate. If the sum of all bids is equal to or smaller than the total allotment preannounced by
the BOJ (the case of “undersubscription”), then each bidder receives the amount of money for
which it bids. Otherwise, the allotment is proportionally allocated depending on the supplied
bids.

Starting from December 10, 2009, the BOJ offered 800 billion yen per operation with a term
of three months and conducted the auction about once a week until the middle of March 2010
(Fig.1). The cumulative amount outstanding from these operations reached around 10 trillion
yen by the end of February 2010. Subsequently, at the MPM (Monetary Policy Meeting) held on
March 16 and 17, 2010, the BOJ decided to increase the frequency of the fixed-rate operations to
twice weekly, and as a result, the amount outstanding from these operations rose to about 20
trillion yen by June 2010. Furthermore, at an unscheduled MPM on August 30, 2010, the BOJ
introduced a six-month term in its fixed-rate operations to encourage a fall in market interest
rates. The BOJ began this process by providing additional funding of approximately 10 trillion
yen with a six-month term, while maintaining the outstanding amount of funds provided by
the existing three-month term operations at 20 trillion yen. At the MPM on August 4, 2011,
as a way of further enhancing monetary easing to ensure the successful transition to recovery
following the Great East Japan Earthquake and a sustainable growth path, the BOJ increased
the outstanding amount of funds for the six-month term from 10 to 15 trillion yen, while leaving
that for the three-month term unchanged at 20 trillion yen.

On April 27, 2012, the BOJ made the decision to increase the total size of the “Asset Purchase
Program” introduced in October 2010 in which the outstanding amount of fixed-rate operations
was included by about 5 trillion yen (65 — 70 trillion yen). However, while asset purchasing for
Japanese government bonds and exchange-traded funds increased, the maximum outstanding
amount for the 6-month fixed-rate operations fell by about 5 trillion yen (15 — 10 trillion
yen), after taking into account episodes of substantial undersubscription. Furthermore, at the
MPM on July 12, 2012, to address the observed undersubscriptions, the policy board decided
to (i) reduce the maximum outstanding amount for the fixed-rate operation by about 5 trillion
yen, and (ii) integrate loan durations (“3 months” and “6 months”) into “within 6 months” to
respond flexibly to liquidity demand by financial institutions. As a result, the total maximum
amount for the operation was set to about 25 trillion yen.

When the Quantitative and Qualitative Monetary Easing Policy (QQE) was introduced in
April 2013, the target outstanding amount of the fixed-rate operation was abolished with the
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ending of the Asset Purchase Program~”. Reflecting the BOJ’s ample provision of funds to

financial markets through large-scale purchases of a wide range of assets conducted under

The following description is largely from the BOJ [5].
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QQE, perceptions of abundant liquidity became extremely strong in the money markets.

Figure 1: Implementation of the BOJ's fixed-rate operations
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Notes: 1. Each dot corresponds to the implementation of a fixed-rate funds-supplying operation. The vertical axis
indicates the duration of operation.

2. The five vertical lines in the figure indicate: (1) the introduction of 6-month operations (August 2010), (2) the
integration of the 3- and 6-month operations into the “within 6-month” operations (July 2012), (3) the introduction
of the Quantitative and Qualitative Monetary Easing Policy (QQE, April 2013), (4) the introduction of QQE with
negative interest rate policy (QQE with NIR, January 2016), and (5) the introduction of QQE with Yield Curve
Control (QQE with YCC, September 2016), respectively from the left.

After the QQE with Negative Interest Rate Policy (NIR) was introduced in January 2016,
the BOJ offered operations with the interest rate reduced to 0 percent per annum from the
previous 0.1 percent. In addition, given the growing needs among financial institutions to fine
tune their current account balances, starting from the middle of March 2016, the BOJ changed
the operation from an offer of 800 billion yen with a 3-month term to that with a 2-week term.
Under the current policy framework of QQE with Yield Curve Control (YCC), introduced in
September 2016, the BOJ has continued to offer fixed-rate operations with a two-week term at
the rate of 800 billion yen per operation once a week and those with about a 100-day term at
the rate of 500 billion yen per operation once every seven weeks. All of these operations are
offered with a fixed interest rate of 0 percent.

1.2 Bidding patterns in fixed-rate operations: ECB and BOJ

Since their introduction, the fixed-rate operations have become one of the BOJ’s main funds-
supplying measures. However, it is not the first time that this type of operation has served
as a funds-supplying tool for a central bank®. Indeed, until June 21, 2000, the European

Central Bank’s (ECB) main refinancing operations were conducted as fixed-rate tenders. In

SEwerhart et al. [10] provide a detailed survey of the uses of fixed-rate tenders in the Euro area and the United
Kingdom.



these operations, it is well known that severe overbidding (total bids drastically exceed the
total allotment offered by the ECB) was observed, with the bid-to-cover ratio (the total amount
of bids/the amount of funds provided) typically having a value exceeding 100%.

One possible explanation for this overbidding was that expectations of an interest rate hike
in the near future were heightened, and this enhanced the relative attractiveness of fixed-rate
operations as ECB [9] indicates. However, it was also pointed out that at the time the bid-to-
cover ratio had continuously and steadily increased independent of changes in expectations
regarding future interest rate hikes.

To clarify a mechanism for the overbidding, Nautz and Oechssler [14] provide a simple
game-theoretic model called the repo game. The environment that the game describes is as
follows®. A financial institution participating in a fixed-rate operation is considered to have
some initial demand for the auction based on the demand for reserve requirements or for daily
cash management. If the actual allotment exceeds the initial demand, an opportunity cost is then
incurred through the holding of excess reserves. Meanwhile, under the condition where the
interest rate applied to a fixed-rate operation is lower than market interest rates, the difference
in these rates will also become a cost if the actual allotment is less than the initial demand.
Therefore, the objective function of a bidder can be expressed as a convex loss function that
attains a minimum value of zero when the actual allotment equals the initial demand. Based
on this environment, now take a bidder A and suppose that all bidders other than A bid their
initial demand and the sum of their bids exceeds the total allotment offered by the central bank.
Then A’s actual quota is equal to A’s bids multiplied by the allotment ratio, which is strictly less
than one. Therefore, for A’s actual quota to equal A’s initial demand, A must bid more than its
initial demand. If so, then letting x be an allotment ratio when all bidders choose their initial
demand, the allotment ratio is lower than x (when [a] A bids greater than its initial demand
and [b] all other bidders other than A are assumed to truthfully announce their own initial
demand). Furthermore, as bidders assume a lower allotment ratio in the next period, they will
choose larger bids. Ultimately, through the continuation of this process, the bid-to-cover ratio
explodes. This yields the basic mechanism underpinning the overbidding according to the repo
game.

However, a striking fact regarding the implementation of the BOJ’s fixed-rate operations is
that the bid-to-cover ratio has instead remained stable and has not demonstrated any of the
surges found in the ECB’s operations (Fig.2). As factors that could potentially contribute to such
developments, Shino [16] points out the level of interest rates applied to the complementary
deposit facility and the recent accommodative financial environment in Japan. First, by paying
interest on excess reserve balances, the facility has the effect of reducing the opportunity cost
of holding excess reserves when the actual allotment is larger than the initial demand. Next,
under a situation in which market interest rates remain at an extremely low level, the external
funding cost is sufficiently small when the actual allotment is smaller than the initial demand.

Consequently, we can consider the cost as zero as long as the difference between the initial

4See, for example, Fig. 1 of Nautz and Oechssler [14].
The following description draws on the BOJ [4].



demand and the actual allotment remains in a certain range. With such a satiated objective
function, we can then show that bidding the same amount as that in the previous period is
the best response. Therefore, bid-to-cover ratios that remain within a certain range can be
supported by an equilibrium. Shino [16] also demonstrates that there is an empirically identifi-
able relationship between the bid-to-cover ratio and an accommodative financial environment.
However, this equilibrium analysis supports not only the stable bid-to-cover ratios currently
observed in Japan but also the overbiddings. That is, the analysis contains the challenge of
multiple equilibria. Therefore, the above empirical result may only suggest the possibility that

a satiated objective function could be one of the factors influencing bidding patterns.

Figure 2: Bid-to-cover ratio under the BOJ’s operations
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Notes: Each dot indicates the bid-to-cover ratio (the total amount of bids/the amount of funds provided) in a
fixed-rate operation. The events indicated by the five vertical lines are identical to those in Fig.1.

Accordingly, in this paper, we conduct an experiment with fixed-rate funds-supplying
operations to examine whether a satiated objective function has the effect of preventing the
bid-to-cover ratio from exploding. We also wish to identify subject bidding behavior in these
sorts of operations. The experiment environment is essentially the same as the above repo
game, and a satiated objective function will be where the degree of satiation changes over the
periods assigned to each subject. The total amount of funds provided and the lending rates are
preannounced, and each subject simply bids the amount of money. The experiment illustrates
several intriguing results, including those not readily clarified by existing analyses as follows:
(1) when participants’ initial demands are sufficiently small, they simply play the unique Nash
equilibrium strategy of bidding their true demand; (2) as the demands become large and no
satiation exists in their objective functions, participants are likely to overbid. However, (3) even
with a larger demand, the explosion of the bids does not occur when the objective functions are
sufficiently satiated. Moreover, we (4) estimate bid functions in which the degree of satiation
influences the bids through their utility functions and (5) argue that there is a vulnerability of
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fixed-rate operations to overbidding even when satiation is preserved through implementing a
simple calibration based on the estimated bid functions.

1.3 Related literature

To our knowledge, our analysis is the first experimental approach to examine bidding patterns
in central bank funds-supplying operations. The following literature directly relates to our
analysis.

To start, our analysis obviously relates to theoretical and empirical analyses concerning the
fixed-rate operations of central banks. In terms of theoretical analysis, in addition to Nautz and
Oechssler [14], Ayuso and Repullo [2] model fixed-rate tenders conducted by the ECB in its
open market operations and describe overbidding as a unique equilibrium under an asymmetric
objective function of the central bank. Later, Ewerhart et al. [10] theoretically identify that the
extent of overbidding is heavily influenced by exposure risk i.e., the risk of receiving an overly
large allotment. Elsewhere, Catalao-Lopes [8] compares fixed- and variable-rate tenders using a
game-theoretic framework and concludes that overbidding is inherent to fixed-rate tenders, but
very mitigatable under a variable-rate procedure, and that unlike fixed-rate tenders, variable-
rate tenders allow the keeping of some of the informational content of quantity bids. As for
empirical approaches to fixed-rate operations, Ayuso and Repullo [1], using both individual
and aggregate bidding data, provide empirical evidence that overbidding in fixed-rate tenders
is attributable to the liquidity allotment decisions of the ECB, not to the expectations of a future
tightening of monetary policy. Conversely, Breitung and Nautz [7], identify a positive relation
between the bid-to-cover ratio and market interest rates in the ECB’s repo auctions. Lastly,
Nautz and Oechssler [15] empirically investigate various theories explaining overbidding in
tixed-rate tenders by the ECB and conclude none fully explain actual overbidding on their own,
such that existing measures to improve the efficiency of the operational framework would not
eliminate overbidding.

Next, it should be noted that the allocation mechanism for fixed-rate operations is essentially
the same as rationing in a fixed-price market. In this regard, Grimm et al. [11] examine a fixed-
price allocation mechanism where bidders are proportionally rationed if aggregate demand
exceeds aggregate supply, and show that while overbidding can be theoretically supported,
participants tend to change the degree of overbidding depending on the price level. In related
work, Bierbaum and Grimm [6] characterize an equilibrium of a fixed-price mechanism for
the problem of selling shares of a divisible good to a large number of buyers when demand
is uncertain and find that bidders have an incentive to overstate their demand in a fixed-price
mechanism.

Finally, at first impression, we include this paper as an experimental analysis of auction the-
ory. However, in fixed-rate funds-supplying auctions, the price (= preannounced interest rate)
is fixed and the allotment is proportionally allocated depending on the bids. Therefore, unlike
conventional funds-supplying operations with variable-rate tenders, it may not be appropriate



to analyze these fixed-rate operations using standard auction theory °.

The remaining part of the paper is organized as follows. Section 2 reviews the theoretical
analyses of fixed-rate operations and Section 3 describes the design of the experiment. Section
4 shows the main results, including graphical sketches of the bids, some hypothesis testing,
the estimation of the bidding functions under the subjects’ locally satiated objective functions,
and a simple calibration to examine the effects of changes in the degree of satiation. Section 5

concludes.

2 Theoretical Background of Overbidding and Stable Bids in Fixed-
rate Operations

We first review the structure of the repo game proposed by Nautz and Oechssler [14]. Let
{1,2,...,n} = N be the set of financial institutions, each of which is a participant in a fixed-rate
auction, where i € N has its initial demand d;. The game commences with the central bank’s
announcement of the total allotment of funds a2 and a fixed lending rate . Given a and r, each
bidder i chooses the amount of bids denoted by b;. Once b = (by, ..., b,) € B is iietezmined, the

jeN Yj

a

allotment ratio, defined by q = Min {m, 1} is computed. We also let § = be a bid-
j€

a
to-cover ratio. Overbidding indicates a process where § significantly exceeds 1 and continues

to increase. Finally, the actual allotment to bidder i, denoted 4;, is determined by a; = gb;. That
is, if the sum of all bids exceeds the total allotment 4, the actual allotment to i is proportionally
allocated depending on the ratio of i’s bid to all bids.

Because bidders choose their actions simultaneously, there is strategic uncertainty and
bidders are assumed risk averse. Specifically, we start with the following quadratic single-
peaked loss function that bidder i minimizes L; = (a; — d;)* (See Fig.3).

Figure 3: A bidder’s loss function in a normal financial environment
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With this setup, Nautz and Oechssler [14] show the following.

Remark 2.1 (Nautz and Oechssler [14])
1. Ifa> Z]-GN dj, then [b; = d; Vi € N] is the Nash equilibrium.

For a comprehensive survey of the experimental approaches to auctions, see Kagel and Roth [12] and Lusk and
Shogren [13].




2. Ifa < Y jen dj, no Nash equilibrium exists.

While the first case corresponds to undersubscription, the second statement cannot explain any
actual bidding behavior. To describe the overbidding observed under ECB operations, Nautz
and Oechssler [14] introduce a Myopic Best-Reply Process (MBR), an assumption regarding
participants” bidding behavior such that each bidder has adaptive expectations.

More specifically, consider a series of periods t = 1,2,... and a strategy profile at t denoted
by by = (b1, ..., but). Hereafter, subscript t is explicitly stated depending on its necessity. Now
suppose that ), jeN dit > a; and b;; = d;; for all i € N, that is, at t each i simply bids its initial
demand d;;. The MBR process assumes that at t + 1 bidder i chooses the best response to
b_it = (b1t ..., bic1t, bis1y, ..., buyg), based on the adaptive expectation that at t + 1 all bidders other
than i would continue to bid the same amounts as those at t. As the actual allotment to 7 at
t is strictly smaller than its initial demand (a;; < d;), i’s bid at t + 1 satisfies, based on MBR,
bit+1 > biy. That is, once the sum of the bids exceeds 4; (true given }| jeN b =Y. jeN dj+ > a), the
process continues to explode for certain. This is the overbidding mechanism argued by Nautz
and Oechssler [14].

Conversely, and as mentioned earlier, the bid-to-cover ratio under the BOJ’s fixed-rate opera-
tions has remained stable and has not yet displayed the surges observed in the ECB’s operations
(Fig.2). Shino [16] presents some possible reasons, including (1) the recent accommodative fi-
nancial environment in Japan and (2) the level of interest rates applied to the complementary
deposit facility” contribute to the stable evolution of the bid-to-cover ratio because they to-
gether make the cost remain zero as long as the gap between the actual allotment and the initial
demand (= a;; — d;;) remains within a certain range. To subsume these factors, Shino [16]
introduces the following locally satiated loss function into the repo game ( equation (1) and
Fig.4 ), and provides the following remark.

@

;=

i = 0 if di-k<a <d;+k
(ai—di)z if ai<di—kanddi+k<ai

Figure 4: A bidder’s locally satiated loss function
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"The BOJ introduced the complementary deposit facility in Oct. 2008 as a means to pay interest on the excess
reserves held by financial institutions. For details, see BOJ [3].



Remark 2.2 (Shino [16])

Supposea <}, jeN dj and each bidderi has a loss function L; as expressed in (1). Then there exists
k such that ifk > k, then any bid-to-cover ratio that is neither overbidding nor undersubscription
can be supported by a Nash equilibrium.

Remark 2.2 means that in the situation where a bidder’s loss function is satiated, then the
stable bid-to-cover ratio currently observed under the BOJ’s fixed-rate auction can be described
as a Nash equilibrium. However, while this result may suffice as a descriptive analysis of
bidding behavior in fixed-rate operations, the satiated objective function supports not only an
equilibrium consistent with a stable bid-to-cover ratio but also one with overbidding. Therefore,
itis worth implementing an experiment with fixed-rate operations to examine whether a satiated
objective function has the power to prevent the ratio from exploding as well as identifying the

subjects’ bid functions and deriving useful policy implications.

3 The Experimental Design

In what follows, we describe the experimental design where we assign subjects a specific
objective function (described below) and play a symmetric repo game.

The experiment involves two “sessions” (or “scenarios”) and each scenario has 34 periods.
In each period, bidder i, being assumed to attend a fixed-rate operation, plays a five-person
simultaneous game, essentially a repo game with or without satiation in their objective func-
tions. There are six teams playing the game in a period, and thus there are 30 subjects playing
a repo game in each scenario.

We fix the amount of liquidity provided in a game at a; = 2000 for every period t and for
both scenarios. At t, bidder i chooses an amount of bid denoted b;;. Letting B;; be i’s set of
strategies at ¢, we assume B;; = {b;«|b;; € [0,2000]}). We impose a maximum bidding limit
of 2000, which can be considered as sufficiently large in that the limit is identical to the total
liquidity provision 4;. Let a;; be the actual allotment to i at ¢.

In our setting, (i) bidders’ initial demands and (ii) the degree of satiation in their objective
functions are time dependent. First, as initial demands, we assume symmetry in that the
demand is identical among all bidders in each period, with the demand denoted d;. The
evolutions of d; are also assumed identical for Scenarios 1 and 2, as described in Fig. 5. d;
starts with small numbers (100) at t = 1 so that the sum of the demands of all bidders (500) is
substantially smaller than the total amount of provided funds (2000) in a fixed-rate operation.
This continues to hold until t = 6, and at ¢ = 7 the sum becomes equal to 2000. After t = 8, d;
is fixed at 500, meaning the sum of demands exceeds a; = 2000, suggesting the vulnerability to
overbidding as long as there is no satiation in the subjects” objective functions.

One of the intriguing features of our setup is that the degree of satiation represented by k
in equation (1) changes over the periods (therefore we hereafter include the subscript t). In
terms of a comparison with the actual conduct of monetary policy, an increase (decrease) in k;

corresponds to monetary easing (tightening or normalization). Fig.6 illustrates the evolution of



the sequences of k; for each scenario. Initially, k; is set to zero and remains at this level by period
10, that is, no satiation exists. Then from t = 11 onwards, k; increases by 100 in each period
and attains 400 at t = 14. After this, both scenarios enter a “normalization” phase in which the
degree of satiation becomes gradually weaker and k; returns to 0. The difference between the
two scenarios is the “speed” of normalization. As shown in Fig.6, the speed of normalization
for Scenario 1 is faster than that in Scenario 2 such that normalization is “completed”(k; = 0) at
t = 20 in Scenario 1, but at t = 23 in Scenario 2. After the first cycle of the increase and decrease
in the degree of satiation, both scenarios then enter the second cycle. In the second cycle, the

speed of normalization becomes inverse between the two scenarios.

Figure 5: Evolution of d;
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Figure 6: Evolution of k;
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The experiment shuffles all of the subjects and rearranges the members of the teams twice
over the periods. The aim of this is to exclude possible “history effects,” i.e., once a subject
tends to choose a large bid, overbidding would prevail in all subsequent periods. The timings
of the shuffles are: (i) the 8th and 21st periods for Scenario 1, and (ii) the 8th and 24th periods
for Scenario 2.

Finally, we specify the subjects” objective function. Instead of the loss functions in the
theoretical analysis in Nautz and Oechssler [14] and Shino [16], we adopt utility functions in
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which each subject aims to maximize the level of utility. This is because we expect the subjects
to find it easier to understand their own objective function and to compute any payoffs. We
define the utility function as follows (equation (2) and Fig.7 ):

(@ +ke) — ai; +500 (< 500) if di+ki <ais
wi(bir, b_ip;a,ds, ki) = 500 if di—ki<aj<d+k )
ais — (df — k) +500 (< 500) if a;; < ds — ki

Figure 7: The utility function assigned to subjects in the experiments

A
Uiy

500| ===,

=

As shown in Fig.7, we further assume the utility function is linear-kinked rather than
quadratic as in the theoretical analyses. Once again, this is because the computation of the
payoffs will become much easier for the subjects. It is also obvious that all of the theoretical
results shown in previous sections hold with a linear-kinked utility function.

Bidder i obtains the maximum utility (set to 500), as long as the actual allotment 4;; lies in
the range of [d; — ki, d; + ki]. Therefore, recalling the satiated loss function L; defined in (1),
u;(-) = 500 — L;(-) in this case. Once a;; is outside this range, the level of utility linearly decreases,
and the amount of decrease becomes large when g;; is outside the range. See the example below.

We conducted all of the experiments at Waseda University in July 2015. The participants
comprised 60 students drawn from the various majors at the university and recruited through
a website restricted to Waseda University students. At the beginning of the computer-based
experiment, participants were randomly assigned to booths in a lab, the instructions were then
read aloud, and then the participants performed each task. Each participants received around
2,000 Japanese Yen (= about 20 U.S. dollars) on average.

An example of the utility function

Assume a = 2000,d; = 500, k; = 300 and the bidding profile is represented by the column for
“bi;” in the table in Fig.8. The actual allotment and the level of utility obtained for each i are
shown in columns a;; and u;;, respectively. Because a relatively strong degree of satiation exists
in this numerical example, bidder i obtains the maximum utility 500 as long as a;; satisfies
200 < a;; < 800. Bidders 1, 2, 3, and 5 also satisfy this condition, while bidder 4 only receives
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362.5 because a;; = 62.5. The graphical image of the utility function in this numerical example

is also shown in Fig.8.

Figure 8: An example of the utility function

bidder  b;; a; Uit
1 900 562.5 500
2 600 375 500
3 800 500 500
4 100 625  362.5 (= 62.5— (500 — 300) + 500)
5 800 500 500

Total 3200 2000 —

1300 .
\ /
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2 =
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o 0 d=500 \

4 Results

4.1 Graphical sketches of the bids and some observations

Fig.9 and Fig.10 depict the subject bids for Scenarios 1 and 2, respectively. Each line of “team 1”
to “team 6” represents the average bids of five players for the corresponding team. The figures
also include the time series of the initial demand d; and the degree of satiation k.

The (pink) shaded area in each figure represents the range that includes the symmetric Nash
equilibrium strategies. First, for t < 7, the sum of all bidders” demands is smaller than or equal
to the total allotment 2 = 2000. Therefore, the bid profile where every subject bids its initial
demand of d; is the Nash equilibrium strategy. In Fig.9 and Fig.10, this is represented by the
pink upward-sloping line ?. Next, for 8 < t < 10, the sum of initial demands (2500) exceeds the
total allotment (2000) and no satiation exists in subjects’ utility function. This is the situation in
which Nautz and Oechssler [14] adopts the Myopic Best-Reply Process (MBR) to describe the
overbidding, such that if there is an upper limit in the strategy space, the unique Nash strategy

8In the Appendix, the median version of Fig.9 and 10 (Fig.12 and 13) and aggregate data among all teams (Fig.14
and 15) are also shown.

“More precisely, at t = 7 when initial demand d; = 400, any symmetric strategy profiles in which all subjects
choose the same amount of bids b with b > 400 are also Nash equilibria. Because our main focus during ¢t <7 is to
check whether a subject would choose bidding d;, all other symmetric Nash strategies are not highlighted.
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is to bid the upper limit (Shino [16]), represented by the horizontal pink line at 2000 in Fig.9 and
Fig.10. This condition also holds at t = 20,21 and t = 33,34 for Scenario 1 and 22 < t < 24 and
t = 34 for Scenario 2. Finally, all other periods satisfy the condition that (i) d; = 500 and (ii) some
degrees of satiation exist. In this case, a wide range of bids are supported by the symmetric
Nash equilibrium strategy. For example, in both Scenarios 1 and 2, when ¢t = 11, d; = 500,
a; = 2000 and k; = 100. This implies that bidder i can attain its maximum utility 500 as long as
400 < a;; < 600. Therefore, any symmetric profiles by = (b1 4, ..., by;) satisfying Y ;cn biy = 2000
yield the maximum utility of 500 given a;; = 400, such that b; is a Nash equilibrium.

Figure 9: Average bids of each team in Scenario 1
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Figure 10: Average bids of each team in Scenario 2
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Using Fig.9 and Fig.10, we make the following observations. First, for 1 < t < 7, most
bidders seem to follow the Nash equilibrium strategy because the lines for teams 1 to 6 are
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very close to and even overlap the pink line. Next, during periods 8 < t < 10, the bids in some
teams appear to “explode.” If so, this seems consistent with the MBR as the existing literature
suggests. Finally, for t > 11 where high initial demand and satiation coexist, a few teams exhibit
explosive bids, while others exhibit relatively stable evolutions. In light of these observations,
in the following subsections we implement several statistical tests.

4.2 Hypothesis testing
421 Tests for1 <t <7: Nash strategy

When 1 <t <7, i’s unique Nash equilibrium strategy at ¢, denoted by b}, is b}, = d;. We check
whether each player follows this strategy. Letting b; be the average of all bids at t, we confirm
the null hypothesis that b; = di(= b;f,t) for every t with1 <t <7. The results are shown in Table
1.

For most periods (2 <t < 7 for Scenario 1 and 3 < t < 7 for Senario 2), the null cannot
be rejected with statistical significance at the 5% level. For ¢t = 1, the null is rejected for both
scenarios (and for t = 2 for Scenario 2). This might be because subjects” behaviors in the very
initial periods of an experiment tend to be subject to “initial effects,” i.e., some periods may be
needed for subjects to learn the structure of the game and choose an “optimal” strategy using
their own reasoning'®. In sum, the results of the test in Table 1 largely support the hypothesis

that each participant follows the unique Nash strategy during 1 <t <7.

Table 1: Hypothesis testing (1) for1 <t <7

—Scenerio 1 -
period (¢t =) 1 2 3 4 5 6 7
demand (d; =) 100 150 200 250 300 350 400
Mean bid 263.4 265.7 3177 3169  266.2 344.4 368.8
(t value) (4.24>) (1.71") (1.60) (1.05) (-1.40) (-0.29) (-1.81%)

— Scenerio 2 -
period (¢t =) 1 2 3 4 5 6 7
demand (d; =) 100 150 200 250 300 350 400

Mean bid 46833 29033 22230 26813 35730 329.33  392.67
(t value) (4.18™) (2.34") (0.85) (0.74) (146) (-0.83) (-0.27)

(Note) # * %, »+ and * represent statistical significance at the 1%, 5%, and 10% levels, respectively.

Now, weimplement an alternative test to check whether i bids d; for every team and the team
aggregate by pooling the data across multiple periods. Specifically, because the level of b}, = d;
differs for ¢, we take the rate of deviation of b;; from b; ;- Then, defining 7;; = (b — b;, )/ b’;’ p we
test whether the average of r;; is zero using a t test. Table 2 provides the results. For the overall

OWhile we implemented a practice session before the actual experiment, this result suggests a larger number of
periods might be needed.
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period 1 < t <7, the null is rejected for all teams and some teams. However, by excluding the
initial periods t = 1 — 2, the null cannot be rejected, not only for all-team data but also for most
of the team-level data. These also suggest the existence of initial effects and we conclude that

similar to the previous test, the result supports the view that i follows the unique Nash strategy.

Table 2: Hypothesis testing (2) for1 <t <7

—Scenerio 1 —
all teams teaml team2 team3 team4 teamb team6

1<t<7 | Mean dev. rate 43.63 47.67 66.44  38.44 56.42 33.32 19.47

(t value) (3.877)  (2.71™) (1.88) (1.43) (143) (1.51) (1.28)
3<t<7 | Mean dev. rate 12.98 30.74 66.08 5.81 -13.34 -1.35 -10.07
(t value) (1.40) (1.72)  (1.50) (0.65) (-0.85) (-0.08) (—2.43")
— Scenerio 2 -

all teams teaml team2 team3 team4  teamb teamb6

1<t<7 | Mean dev. rate 70.24 33.38 56.83  106.36  38.79 58.97 127.09

(t value) 427+ (131) (1.82) (2.127) (1.31) (2.13") (2.07%)
3<t<7 | Meandev. rate | 595 260 443 894 359 3629  —6.07
(t value) (1.29)  (-043) (-1.07) (0.46) (041) (2.84™) (-0.86)

(Note) # * », »+ and = represent statistical significance at the 1%, 5%, and 10% levels, respectively.

4.2.2 Tests for 8 <t <10: MBR

Our next focus is the subjects” bidding behaviors during the periods 8 < t < 10. These periods
are characterized by (i) the sum of initial demand (500x5 = 2500) exceeds the liquidity provision
a = 2000 and (ii) no satiation exists in the subjects’ utility function. Theoretical analyses such
as Nautz and Oechssler [14] emphasize that in this situation bidders follow the MBR. Let b?’t{BR
be the i” s best response to the strategy profile of all subjects excluding i at the previous period
b_it-1 = (bi4-1, .-, bic14-1,biv14-1, .., bus—1). Note that we can obtain b_;;_; from the experiment
thus compute b%BR. Then, we check whether each player follows b%BR. Similar to the previous
case of 1 <t < 7, we implement two different types of statistical tests. First, we check the
validity of the null at every period. In particular, noting that b%BR differs for i depending on
b_i:-1, we take the rate of deviation of the actual b;; from the computed b?fBR, denoted by
Bir = (biy— b%BR) / b%BR, and check if B;;, the average of B;; over all subjects for a given ¢, is zero.
Table 3 details the results.

Next, we apply an alternative test by pooling the data for multiple periods. For each team
or aggregate of all teams, we check if B;;, an average of B; ; over subjects in an associated team(s)
and over an associated period(s), is zero. Table 4 provides the results.

The result for both tests seems somewhat mixed. For example, while some team-level data
demonstrate consistency with the null that subjects play b%BR, other team-level data, as well as

the all-team data, reject the null. Similar to the previous case, however, if we exclude the first
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two periods (t = 8,9), the null cannot be rejected for most cases in both tests. In this regard, the
evidence in Table 3 and 4 shows consistency with our view that i follows bfvthR. However, we
note that we can draw only weak conclusions from these results and a larger number of periods
would be needed to obtain clearer evidence. We identify this as an issue for further research.

Table 3: Hypothesis testing (3) for 8 <t <10

—Scenerio 1 -
period (f =) B 9 10

0.00 -0.15 -0.13
(-0.01) (-239") (-1.76")

Mean deviation from MR (= B; )

(t value)

— Scenerio 2 -
period (t =) ‘ 8 9 10

0.15 -0.23 -0.10
(1.09) (-2.97) (~1.20)

Mean deviation from MR (= ;)

(t value)

(Note) * * #, #+ and * represent statistical significance at the 1%, 5%, and 10% levels, respectively.

Table 4: Hypothesis testing (4) for 8 <t <10

—Scenerio 1 -
all teams team1 team?2 team3  team4 teamb teamé6
8 <t | Mean dev. -9.36 —22.48 -16.66 -16.00 2.57 4.54 -8.11
<10 | rate(tval) | (-2.38") (-3.02*) (-3.51™) (-1.35) (0.16) (0.35) (-0.77)
t=10 | Mean dev. -12.83 -18.52 -25.13 -24.02 2754 -19.92 -16.95
rate (tval) | (-1.79%) (-2.00)  (-5.64") (-196") (0.87) (-1.57) (-2.76™)

—Scenerio 2 -
all teams teaml team2 team3 team4 teamb team6
8§ <t Mean dev. -6.02 0.07 0.38 7.68 -19.01 -17.50 -7.76
<10 | rate(tval) | (<1.01)  (0.00) (0.02) (0.45) (-2.84™) (-0.78) (~1.07)
t=10 | Mean dev. -9.69 -21.97 21.35 -7.97 -11.46 -22.93 -15.17
rate (tval) | (-1.22)  (<1.36) (0.66) (-0.45) (-1.44) (-1.42) (=1.92%)

(Note) * * #, »+ and * represent statistical significance at the 1%, 5%, and 10% levels, respectively.

4.2.3 Tests fort > 11: Role of satiation

Finally, we focus on those periods where t > 11. During these periods, the subjects” utility
functions are locally satiated, such that a wide range of bids are included in the set of sym-
metric Nash strategies. Recall that such a situation corresponds to an accommodative financial
environment and where the level of interest rates applied to the complementary deposit facility
is strictly positive. In this situation, the theoretical analysis in Shino [16] argues that the locally
satiated utility function should prevent the bid-to-cover ratio from exploding. Indeed, as we
observed in Fig.9 and Fig.10, although a few teams exhibit explosive bids, most teams exhibit
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relatively stable bids. In this regard, it should be mentioned that in an informal interview with
some of the subjects following the experiment on their views on biddings, some responded that
“I aimed to obtain a;; = 500 even when k; is large.” This suggests that some subjects behaved
in such a way as to trigger overbidding.

In sum, we would like to confirm whether satiated objective functions have some power
to avoid overbidding. If this is true, letting E%BR be an i’s MBR strategy at t when k; = 0
(no satiation), the following must be rejected: i plays E%BR. Because E%BR can be computed
by b_i;—1, this statement is obviously statistically testable as in the previous case. Letting
Ei,t = (biy - E%BR) /E%BR, we check ﬁzilt (average of ,gi,t) is zero. Table 5 and Table 6 detail the
results!!. Because we are particularly interested in whether the actual bid b;; is significantly
Z;%BR

less than , we use one-sided tests for computing the significance levels.

Table 5: Hypothesis testing (5) for t > 11

—Scenerio 1 -
t= ‘ 11 12 13 14 15 16 17
ﬁ:i,t -0.22 -0.16 -0.18 -0.27 -0.17 -0.13 -0.24
(tval.) | (-3.48™) (-2.54™) (-2.29") (-3.24™) (-1.84") (-1.36) (-3.65")
t= 18 19 22 23 24 25 26
Ei,t -0.19 -0.18 -0.15 -0.19 -0.18 -0.17 -0.18
(tval.) | (-2.83*) (=3.22") (-1.79") (-3.66™) (=3.25"") (-2.73™) (-=2.57")
t= 27 28 29 30 31 32 33
E,v,, -0.29 -0.24 -0.25 -0.23 -0.23 -0.21 -0.17
(tval) | (-4.83™) (-4.70™) (-4.62) (-4.73™") (-5.04™) (-4.63™) (-4.12")

— Scenerio 2 —
t= \ 11 12 13 14 15 16 17
Bis -0.26 -0.12 -0.19 014  -0.11 -0.30 -0.13
(tval) | (—441") (-1.98%) (-2.87") (-1.70") (-129) (-5.10™) (-1.80")
t= \ 18 19 20 21 22 25 26
Bis -0.26 -0.28 -0.15 -0.20 -0.25 -0.15 -0.15
(tval) | (=5.09) (=6.83") (=2.90") (=5.33") (=5.71") (=3.17") (=3.62")
t= \ 27 28 29 30 31 32 33
Bis -0.09 -0.16 -0.24 -0.23 -0.26 -0.25 -0.21
(tval) | (-1.76%) (=3.29") (—6.82") (—6.48") (-6.96) (-5.93") (-5.63")

(Note) * * *, »+ and » represent statistical (one-sided test) significance at the 1%, 5%, and 10% levels, respectively.

The results in Table 5 indicate that the null that bidders still follow MBR is rejected for 19

of the 21 periods in Scenario 1 and 20 of the 21 periods in Scenario 2. Similarly, the results in

"More precisely, we exclude t = 20,21,34 for Scenario 1 and t = 23,24,34 for Scenario 2 from the test periods
because in these no satiation exists (k; = 0).
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Table 6 show that all-team-level data reject the null during the associated periods and almost
all of the team-level data reject the null at a significance level of 1%. These results are clearly
different from those for the previous case of 8 < t < 10. Therefore, we conclude that locally
satiated objective functions —as proxies for an accommodative financial environment and
strictly positive interest rates applied to the complementary deposit facility— contribute to

preventing the participants’ bids from exploding.

Table 6: Hypothesis testing (6) for t > 11

—Scenerio 1 -
all teams team1 team?2 team3 team4 teamb team6
11 <t | Mean dev. -19.44 -22.84 -18.89 -21.03 -17.07 -15.75 -21.08
<19 | rate (tval) | (=7.84™) (=8.60"") (=243"") (=451") (=1.97") (=2.53") (=5.00")
22 <t | Mean dev. -20.74 -22.21 -23.90 -15.53 -18.26 -21.25 -23.31
<33 | rate (tval) | (-12.77%) (=5.80") (=9.15") (-2.56") (-6.52"") (-4.36") (~11.23"")

—Scenerio 2 -
all teams team1 team?2 team3 team4 teamb5 team6
11 <t | Mean dev. -19.93 -17.53 -19.77 -17.00 -20.35 -20.43 —24.48
<22 | rate(tval) | (-11.31") (—4.81") (-4.44™) (-3.53") (-3.92") (—4.42™) (-9.53™)
25 <t | Mean dev. -19.54 -16.54 -19.44 -19.35 -18.46 -19.75 -23.70
<33 | rate(tval) | (-13.63") (-5.71"*) (-5.94™) (-4.05*) (-7.01") (-5.60"") (—6.80")

(Note) * # #, ++ and = represent statistical (one-sided test) significance at the 1%, 5%, and 10% levels, respectively.

4.3 Bid functions

To this point, we implemented statistical tests to check whether the actual bidding patterns in
the experiments are consistent with those suggested by theoretical analyses such as Nautz and
Oechssler [14] and Shino [16]. Our other interest lies in examining the effects of changes in the
degree of satiation in subjects” utility function on their bidding behavior. To consider this, in
this subsection we identify subjects’ bid functions. Based on the estimated bid functions, the
following subsection implements a simple calibration.

Before constructing specific functional forms, we first define the following three dummy

variables:

1 if uj;—1 <500and a;;—q > 500
duml;; = ’ .
’ 0 otherwise

1 if uj;—1 <500and a;;—q <500

dum2; s =
vt {0 otherwise

1 Zf Ujt-1 = 500

dum3;; =
vt {O otherwise

First, suppose that bidder i receives the maximum level of utility of 500 at ¢t — 1. Then
dum3;; = 1 and duml;; = dum2;; = 0. Next, suppose that i fails to obtain the maximum level
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of utility at t — 1. This occurs when one of the following two cases arises. The first is that i’s
actual allotment a;;_; is too much, more specifically, a;¢—1 > d;—1 + k;—1. In this case, dum1;; =1
and dum?2;; = dum3;; = 0. The second is that i’s actual allotment is too small, a;;—1 < dy—1 — k-1,
which results in dum?2;; = 1 while duml;; = dum3;; = 0. By using these dummy variables, we

construct and estimate the following bid functions: (3), (4) and (5).

bi,t =Cc+ abi,t—l + ﬁldumli,t . (500 - le‘,t_1) + p’QdumZi,t . (500 - ui,t_1) (3)
bi,t =C+ ozbi,t_l + ydum?)i,t . bi,t—l + ,Bldumli,t . (500 - ”i,t—l) + ﬁzdumZi,t . (500 - ui,t_l) (4)
bi,t = abi/t_l + ydum3i,t . bi,t—l + ,Bldumlilt . (500 - ui,t_l) + ﬁzdumzi,t . (500 - Mi,t—l) (5)

The underlying idea behind all bid functions is essentially identical, so, we first select the bid
function (3) to explain this. First, note that there is the “adaptive term” ab; ;_;. If subject i’s bid at
tis influenced by its own previous period, a takes a positive value and is statistically significant.
Furthermore, function (3) has two other terms including dum1;; and dum?2;;. Regarding these
terms, first suppose that u;;—; < 500 and a;;—; > 500, that is, i’s allotment was too much to
obtain the maximum utility. In this case, duml;; = 1, dum2;; = 0 thus equation (3) turns to
bit = ¢+ abj;—1 + p1(500 — u;;—1). Here, our conjecture is f; < 0 for the following reasoning.
At t — 1, i fails to attain its maximum utility because i took too much. By learning from
this experience, at t i is expected to bid less so that actual allotment a;; lies in the range of
[d; — ki, d; + k¢]. This condition corresponds to $1(500 — u;;-1) < 0. Because (500 — u;;—1) > 0 we
conjecture that f; < 0. Conversely, suppose next that i fails to get the maximum utility because
i’s allotment is too small, that is, ;-1 < 500 and a;;-; < 500. In this case, duml;; = 0, dum2;; =1
thus (3) becomes b;; = ¢ + abj;—1 + 2 - (500 — u;¢-1). Given i is expected to bid more than the
previous period through the learning effects, f > 0 is expected.

The bid functions of (4) and (5) also include duml;; and dum?2;; drawing on the same
premise. (4) is formed by adding [ydum3;; - b;;—1] to (3). This is based on the assumption that
the sensitivity of bid at t to the previous bid b;;_;, in other words, how adaptive i’s bidding
is, depends on whether i obtained the maximum utility at t — 1. If i received the maximum,
then dum3;; = 1 so the sensitivity is expressed as (a + y)b;;—1. Otherwise, it is ab;;—;. Equation
(5) is used to check whether i’s bidding behavior can be expressed as a “completely adaptive”
function in some cases. Specifically, suppose u;;—1 = 500. In such a case, a reasonable conjecture
is that i continues to make the same bid amount. Because the constant term is dropped in (5),
this condition can be simply expressed as a +y = 1. If this condition holds, then (5) becomes
bit = (a+y)bit-1 =Dbjs1.

We provide the following two remarks. First, the construction of the bid functions (3) to
(5) is based on the assumption that a subject makes a decision on the bid depending on the
following three cases at the previous period: (A) succeeds in obtaining the maximum utility, (B)
fails to obtain the maximum utility because of a shortage, and (C) fails to obtain the maximum
utility because of abundance. Which case of (A) to (C) is likely to occur crucially depends on
the degree of satiation k;. For example, (A) is more likely to occur as k; increases. In this sense,
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the subjects” bidding behaviors expressed as functional forms of (3) to (5) are influenced by the
degree of satiation. Second, we estimate (3) and (4) using fixed-effects panel models and (5) by
pooling ordinary least squares (OLS) models. For the fixed-effects regressions, Hausman tests
reject the null hypothesis of no correlation between regressors and effects for all cases and thus
support their use. Alternatively, we employ pooling OLS for (5) because our interest lies in
bidding, which can be expressed in the simple form of b;; = b;;—;. If we add individual effects
F; (either fixed or random) to (5), then (5) cannot take the form of b;; = b;;—;, thus we cannot
check if the bidding behavior becomes “completely adaptive.” Therefore, we estimate (5) by
pooling OLS'2.

Table 7: Identification of bid functions

— Scenerio 1 -
const a B1 B2 y
equation (3) | 20257 | 005 | B | % | -
cquation 9| W35 | 072 | <334 | 0ga | o
equation ) | - | Wiy | Cim | om | WA
— Scenerio 2 —
const a B1 B2 y
— AR
cquaton ) | 485" | 03¢ | 152 | 03 | 01z
equation 5) |~ | 2k | Eh | il | Yam

Notes: 1. Confidence levels are = * * for p < 0.01, =+ for p < 0.05, and * for p < 0.10.
2. t values in parentheses.

For estimation, we use the data for t > 11 because our primary focus is the effects of
satiation on bidding patterns. Table 7 details the estimated coefficients and associated t values
for Scenario 1 and Scenario 2. Consistent with our argument above, the results of the estimations
are reasonable. First, for both scenarios, 1 is negative, 5, is positive and statistically significant
in most cases. Second, as for the a, all models suggest positive estimated parameters and all of
them are statistically significant, which implies that the subjects more or less tend to preserve
their “adaptive” stance. Furthermore, in equation (5), the sum of the estimated coefficients for
a and y is almost 1 for both scenarios. This suggests that subjects have a strong tendency to
continue to bid the same amount as the previous period as long as they realize the maximum
level of utility, that is, the actual allotment is within the range of [d; — k, d; + k¢]. Note that this

12As a topic for further research, finding an appropriate variable to act as an instrument would statistically
improve the estimation results.
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does not require the actual allotment to locate at the “central” point of d;. We regard this as
evidence that the degree of satiation k; affects subjects’ bidding patterns.

In sum, our identified functional forms and estimation results imply a subject’s learning
process based on its own past experience in adjusting the amount of bids. Furthermore, it also
demonstrates the role of the degree of satiation k; in stabilizing b; ; through making the range of
actual allotments where the subjects can attain maximum utility wider and through enhancing
subjects” incentives to continue bidding the same amount over successive periods. In the next
subsection, we further examine the effects of changes in the degree of satiation on bidding

patterns by a simple calibration using the estimated parameters in the bid function (5).

4.4 Calibration

As shown in the previous subsection, the satiated objective function has the effect of stabilizing
the participants’ bidding behavior. However, the results also entail the possibility that a change
in the degree of satiation could destabilize bidding patterns in this type of auction, even when
a certain degree of satiation is preserved. To examine this issue, we select equation (5) and
consider the following specific functional form based on the estimated parameter derived for

Scenario 1:
bi,t = 0.94171',,5_1 + 0.05dum3i,t . bi,t—l - 3.5d1/lm].j,t . (500 - Mi/t_l) + 1.2d1/lm2i,t . (500 - ui,t—l) (6)

We check the evolution of bids for each different degree of satiation k; under a specific amount
of funds provided and the initial demands of participants. Specifically, at the initial period ¢,
suppose that a = 2000, d; = 500, k; = 200, and (b;; = 500)(Vi € N). That is, at the initial period
t, the sum of all bids exceeds the amount of funds provided, but all participants obtain the
maximum utility of 500 because the actual allotment a;; = 400 lies in the range of [d;—k;, d; +ki] =
[300,700]. Furthermore, we assume that, at t + 1, k;;1 decreases and remains at this level until
the end of the game. Fig.11 plots the evolution of average bids for the different k;..

The chart illustrates that b;; tends to explode even when k > 0, specifically, 0 < k < 60.
Recalling that the existence of positive satiation corresponds to an accommodative financial
environment, we consider the evolution of bids for each of the cases. First, when k;,; = 100,
i1 = 500 is realized. Therefore, duml; ;o = dum2;;.0 = 0 and dum3;;,» = 1, thus, the bidding
function (6) simply becomes b;; = 0.99b;;_;. This produces a linear declining trend of b;; and
this continues as long as b;; > 400 holds!3. Once bi; < 400 holds, however, then equation (6)
changes to b;y = 0.94b; ;1 + 1.2(500 — u; ;1) because a;; < 400 and u;; < 500, that is, i’s allotment
is too small. Once this condition holds, b;; could increase depending on the effect of decreasing
bids by 0.94b;;_1 and the effect of increasing bids by 1.2(500 — u;;_1) (indeed b;; increases to 382
at t = 26 from 376 at t = 25, after showing a moderate decreasing trend). However, the bids
exhibit a stable evolution under a relatively large k; = 100 overall. The same argument holds

31f the estimated parameter regarding b;, is 0.95 instead of 0.94, then b;; = 500 continues permanently given (6)
becomes b;; = b;;1.
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for k = 80.

Conversely, when k < 60, b;; follows an increasing trend. For example, select the case when
ki1 = 40. Then, [dir1 — ker1,dee1 + k1] = [460,540] thus a; 4.1 = 400 locates out of this range,
which results in dum?2;;,» = 1 and duml;;4» = dum3;;,» = 0. Therefore, the bidding function
(6) becomes b;; = 0.94b;;_1 + 1.2(500 — u;;—1) from t + 2. Att+2, bjs0 = 0.94-495(= bj1q) +
1.2(500 — 440) = 537.3. In this case, b;t+2 > b;;1 because the effect of the term 1.2(500 — u;;_1)
to increase the amount of bids is dominant. Given that this mechanism works, the bids follow
an increasing trend and the same argument holds for k = 40, 20, and 0. This result implies that
a vulnerability to overbidding in fixed-rate operations can materialize, even when subjects’
objective functions are locally satiated.

While we identify increasing trends of bids even under strictly positive k;, the speed appears
to decelerate. This is because the term 0.94b; ;_; in the bid function (6) exerts downward pressure
on the increase in bids. However, note that in this calibration we only include a one-shot change
in the degree of satiation k1. During the process of “normalization” in the actual conduct of
monetary policy, k; is naturally expected to decrease gradually and continuously over a certain
number of periods. In such a scenario, the speed of increase might not be able to decelerate,
and we could then not exclude the risk of a bid explosion judging from these observations.

Figure 11: Calibration: Average bids for different k
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t 145 t+10 t+15 420 t+25 £+30 1£35 t+40 £+45
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Notes: We assume that (i) each bidder follows the bid function expressed as (6) and (ii) at f (initial period), d; = 500,
k: = 200, and (b;; = 500)(Vi € N). Each line represents the evolution of average bids when k;,; decreases to the
associated number from 200 to 0 at f + 1 and remains at this level by ¢ = 50.

5 Conclusion

In this paper, we implemented an experiment using fixed-rate funds-supplying operations. The
results showed that: (1) when participants’ initial demands are sufficiently small, they simply
play the unique Nash equilibrium strategy of bidding their true demand, (2) as the demand
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becomes large and no satiation exists in their objective functions, participants tend to overbid.
However, (3) even as the demands become large, the explosion of bids does not occur if the
objective functions are sufficiently satiated. Furthermore, (4) we estimate subjects’ bid functions
in which the bids are influenced by the degree of satiation through their utility functions and
(5) a simple calibration based on the estimated bid functions points out the vulnerability of
fixed-rate operations to overbidding even when satiation is preserved.

We conclude the analysis by identifying several questions for further research. First, while
the calibration implemented in this paper reveals the effects of change in the degree of satiation
on subjects” bidding patterns, there is as yet no direct evidence of how the differences in the
speed of easing or normalization affects their bids. In this regard, a larger number of periods
may be needed to derive a significant difference between Scenarios 1 and 2. Furthermore,
regarding the appropriate number of periods, if some periods were to be added to the phases
of (i) “small initial demands environment” (t with 1 < t < 7) and (ii) “large initial demands
without satiation environment” (t with 8 < t < 10), then “initial effects”referred in Subsection
4.2 would wane and it might give rise to more evident findings. Lastly, an examination of the
effects of negative interest rates, as introduced by both the ECB and the BOJ in recent years, on
bidding patterns in fixed-rate operations could be an intriguing topic'*.

Appendix: some complementary charts

Figure 12: Median bids of each team in Scenario 1
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4Shino [17] refers to two completely opposing hypotheses regarding the effects of negative interest rate policy on
fixed-rate operation: (i) to shift the demand curve left [the market view], or (ii) to make the objective functions less
satiated [a view derived from Shino [16]] and argues that the latter is empirically supported.
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Figure 13: Median bids of each team in Scenario 2
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Figure 14: Average and median aggregate bids in Scenario 1
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Figure 15: Average and median aggregate bids in Scenario 2
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