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Abstract

We reformulate expected utility theory, from the viewpoint of bounded rationality, by
introducing probability grids and a cognitive bound; we restrict permissible probabilities
only to decimal (`-ary in general) fractions of �nite depths up to a given cognitive bound.
We distinguish between measurements of utilities from pure alternatives and their extensions
to lotteries involving more risks. Our theory is constructive, from the viewpoint of the
decision maker. When a cognitive bound is small, the preference relation involves many
incomparabilities, but these diminish as the cognitive bound is is relaxed. Similarly, the EU
hypothesis would hold more for a weaker cognitive bound. The main part of the paper is
a study of preferences including incomparabilities in cases with �nite cogntive bounds; we
give representation theorems in terms of a 2-dimensional vector-valued utility functions. We
exemplify the theory with one experimental result reported by Kahneman-Tversky.

JEL Classi�cation Numbers: C72, C79, C91

Key Words: Expected Utility, Measurement of Utility, Bounded Rationality, Probability
Grids, Cognitive Bound, Incomparabilities

1 Introduction

We reconsider EU theory from the viewpoint of preference formation and of bounded rational-
ity. We restrict permissible probabilities to decimal (`-ary, in general) fractions up to a given
cognitive bound �; if � is a natural number k, the set of permissible probabilities is given as
�� = �k = f 0

10k
; 1
10k
; :::; 10

k

10k
g: The decision maker makes preference comparisons step by step

using probabilities with small k to those with larger k0 to obtain accurate comparisons. The
derived preference relation is incomplete in general, but the EU hypothesis holds for some lot-
teries and would hold more when there is no cognitive bound, i.e., � =1: Our main concern is
the case � <1. Since the theory involves various entangled aspects, we �rst disentangle them.

The concepts of probability grids and cognitive bounds are introduced based on the idea of
�bounded rationality�. This idea can be interpreted in many ways such as bounded logical

�The author thanks J. J. Kline, P. Wakker, M. Lewandowski, S. Shiba, M. Cohen, O. Shulte, and Y. Rebille for
helpful comments on earlier versions of this paper. In particular, comments given by the two referees improved the
paper signi�cantly and are greatly appreciated. The author is supported by Grant-in-Aids for Scienti�c Research
No.26245026 and No.17H02258, Ministry of Education, Science and Culture.

yWaseda University, Tokyo, Japan (mkanekoepi@waseda.jp)
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inference, bounded perception ability, though Simon�s [30] original concept meant a relaxation
of utility maximization. The mathematical components involved in EU theory are classi�ed
to two types; object-components used by the decision maker and meta-components used by the
outside analyst and possibly by the decision maker himself. The former is primary targets in EU
theory, and the latter such as highly complex rational as well as irrational probabilities is added
for analytic convenience. A free use of the latter leads to a critique that the theory presumes
�super rationality�(Simon [31]).

As a signi�cance level for statistical hypothesis testing is typically 5% or 1%; probability val-
ues t

102
(t = 0; :::; 102) are already quite accurate for ordinary people. However, the classical EU

theory starts with the full real number theory and makes no separation between the viewpoints
of the decision maker and the outside analyst for available probabilities. This is still a problem
of degree, but it would be meaningful if they are separated in some manner. The concepts of
probability grids and a cognitive bound � make this separation.

Turing [32] in his attempt to de�ne computable numbers faced a similar situation: �::: The
di¤erences from our point of view between the single and compound symbols is that the compound
symbols, if they are too lengthy, cannot be observed at one glace. This is in accordance with
experience. We cannot tell at a glance whether 0.9999999999999999 and 0.999999999999999
(the underlined parts by the author) are the same ([32], p.250).�1 In contrast, it is easy for
us to distinguish between 0:999 and 0:99: Turing�s theory tried to abstract calculation in the
human mind, while a built machine has no such problem since it reads each primitive symbol
but a compound symbol not as one symbol, like a human. This is nature of human cognition.
A cognitive bound � is a bound on such distinguishability and on how deep the decision maker
cares about those probabilities.

The set of probability grids up to depth k is given as �k = f 0
10k
; 1
10k
; :::; 10

k

10k
g. The decision

maker thinks about his preferences with �k from a small k to a larger k up to bound �; for
example, when � = 2; �0; �1; and �2 are only allowed. This is a constructive approach from
the viewpoint of the decision maker in the sense that he �nds/forms his own preferences.2 ;3

We turn our attention to the development of our constructive EU theory. Constructiveness
needs a start; we take a hint from von Neumann-Morgenstern [33]. They divided the motivating
argument into the following two, though this separation was not re�ected in their development:

Step B : measurements of utilities from pure alternatives in terms of probabilities;

Step E : extensions of these measurements to lotteries involving more risks.

These steps di¤er in their natures: Step B is to measure a �satisfaction�, �desire�, etc. from
a pure alternative, while Step E is to extend the measured satisfactions given by Step B to
lotteries including more risks. An important di¤erence is that Step B is to �nd the subjective
preferences hidden in the mind of the decision maker, while Step E is to extend logically the

1 I thank Oliver Schulte for mentioning this quotation
2This sounds similar to �constructive decision theory� in Shafer [28], [29] and in Blume et al. [4]. These

authors study Savage�s [27] subjective utility/probability theory so as to introduce certain constructive features
for decision making. Our theory is constructive more explicitly with the introduction of probability grids and a
cognitive bound. The chief di¤erence is that we formulate how a decision maker �nds/forms his own preferences,
while they add new constructs like �goals�or �frames�that shape the choices of the decision maker.

3Our concept of probability grids may be interpreted as �imprecise probabilities/similarity� (cf. Augustin et
al. [2], Rubinstein [26]). Imprecision/similarity is de�ned as an attribute of a probability/a set of probabilities,
allowing all real number probabilities. In our approach, however, probability grids in �k are exact; the restriction
of probabilities to �k expresses imprecision in cognitive acts taken by the decision maker.
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Benchmark lotteries

: upper benchmark

: lower benchmark

Figure 1: Step B with the benchmark scale

preferences found in Step B to lotteries with more risks.

We develop our theory based on the above two steps and also take two approaches in terms
of preferences and utilities; each approach consists of Steps B and E. In this introduction, we
focus mainly on the former theory, and we give a brief explanation of the latter.4

We assume two pure alternatives y and y; called the upper and lower benchmarks; these
together with the probability grids �k form the benchmark scale Bk(y; y) in layer k: In Step B,
pure alternatives are measured by this scale. Preferences are constructed in shallow to deeper
layers, where preferences are incomplete in the beginning, except for benchmark lotteries as
measurement units, and in deeper layers, more precise preferences may be found. In Fig.1, the
benchmark scale for layer k is depicted as the right broken line with dots; x is measured exactly
by the scale; y need a more precise scale within �. However, z is not done within �.

Two di¤erent roles of probability grids appear in Step E for evaluation of a lottery:

(i) probability grids used for measurement of a pure alternative in Step B;

(ii) probability coe¢ cients to pure alternatives.

By these, relevant cognitive depths of lotteries become more complex especially with a �nite
cognitive bound; this leads to incomparabilities in preferences and some violation of the EU
hypothesis. This is central in our development and is closely related to the issue of �bounded
rationality�. Let us illustrate (i) and (ii) via an example.

Consider one example with the upper and lower benchmarks y; y; and the third pure alter-
native y with strict preferences y � y � y. In Step B, the decision maker looks for a probability
� so that y is indi¤erent to a lottery [y; �; y] = �y � (1� �)y with probability � for y and 1� �
for y; this indi¤erence is denoted by

y � [y; �; y]: (1)

Suppose that this � is uniquely determined as � = �y = 83
102

2 �2: Here, exact measurement of
y is successful in layer 2; where Step B is enough here.

We have the other source of cognitive depths. Consider lottery d = 25
102
y� 75

102
y; which includes

the third pure alternative y. The independence condition of the classical EU theory dictates

4Our theory is dual to that in terms of certainty equivalent of a lottery (cf. Kontek-Lewandowski [21] and its
references). In our method, the set of benchmark lotteries forms a base scale, while the set of monetary amounts
is the base scale in the latter (see Section 4.2 in [21]).
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that because of (1), [y; 83
102
; y] is substituted for y in d; and d is reduced to:

d = 25
102
y � 75

102
y � 25

102
[y; 83

102
; y] � 75

102
y = 2075

104
y � 7925

104
y: (2)

Thus, y is evaluated as being indi¤erent to [y; 83
102
; y] in Step B, but y also has a probability

coe¢ cient 25
102

in d, which is taken into account in Step E. These steps leads to probability 2075
104
;

which is much more precise than either of 83
102

and 25
102
:

As indicated in (i) and (ii), lottery d = 25
102
y � 75

102
y has two types of cognitive depths; one

is simply a probability coe¢ cient 25
102

and the other is �y = 83
102

from (1). Although d itself is
expressed as a lottery of depth 2; the total depths including these two types is 4; which is beyond
the cognitive bound � = 2: One point is that the resulting probability may be very precise with
a relatively small cognitive bound, and the other is that this is intimately related to the EU
hypothesis. When � is small, the EU hypothesis does not typically hold, while it would hold
more as � is getting larger.

The preference formation by Steps B and E is formulated as a form of mathematical in-
duction; Step B is the inductive base and Step E is the inductive step. Step B is spread out
to layers of various depths, i.e., the induction base is spread too. These steps are described in
Table 1.1: the relation Dk for layer k of row B expresses preferences measured in Steps B. In
layer k; %k is derived from Dk and %k�1; the former is a part of the inductive base and the
latter is the inductive step. This is a weak form of �independence condition�:

Table 1.1
Layers 0 1 ::: k � 1 k ::: �

B : base relations D0 � D1 � ::: � Dk�1 � Dk � ::: � D�
# # # # #

E : constructed relations %0 ! %1 ! :::! %k�1 ! %k ! :::! %�

We also provide another approach in terms of a 2-dimensional vector-valued utility func-
tions h�kik<�+1 = h[�k; �k]ik<�+1 and hukik<�+1 = h[uk; uk]ik<�+1 with Fishburn�s [8] interval
order �I . In each of Steps B and E, this approach is entirely equivalent to the preference ap-
proach, depicted in Table 1.2. This may be interpreted as what von Neumann- Morgenstern
[33], p.29 indicated. The approaches in terms of preferences and utilities enable us to view Steps
B and E in di¤erent ways as well as serve di¤erent analytic tools for studies of incomparabili-
ties/comparabilities involved:

Table 1.2
Preference theory Utility theory
Step B (B0 to B3) () (Sec.3) Step B (b0 to b3)
� Extension (Sec.4) � Extension (Sec.5)
Step E (E0 to E3) () (Sec.5) Step E (e0 to e3)

Our theory enjoys a weak form of the expected utility hypothesis. This will be discussed
in Section 6. In the case of � = 1; restricting our attention to the set of measurable pure
alternatives, in Section 7, we show that our theory exhibits a form of the classical EU theory.
We provide a further extension of %1 to have the full form of classical EU theory; this extension
involves some unavoidable non-constructive step, which may be interpreted as the criticism of
�super rationality�by Simon [31].
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We apply our theory to the Allais paradox, speci�cally, to an experimental result from
Kahneman-Tversky [15]. We show that the paradoxical results remains when the cognitive
bound � � 3. However, when � = 2; the resultant preference relation %� is compatible with
their experimental result, where incomparabilities play crucial roles in explaining them.

A remark is on the relationship between k and � exhibiting a layer and a cognitive bound.
The former is a variable in our theory and the latter is a parameter of the theory. We talk
about the sequences h%kik<�+1 and hukik<�+1 describing the process of preference formation
layer to layer up to �: Nevertheless, the �nal target preferences and utilities are %� and u�: In
the context of the quotation from Turing [32], within the layers up to �; the decision maker can
distinguish each probability as a single symbol but beyond �; he would have a di¢ culty; it is
assumed here that he does not think about his decision problem beyond �. When � = 1; he
can treat any grid probability as a single entity. This remark leads to the view that our theory
is a generalization of the classical EU theory, which is discussed in Section 7.

The paper is organized as follows: Section 2 explains the concept of probability grids and
other basic concepts. Section 3 formulates Step B in terms preferences and utilities, and states
their equivalence. Section 4 discusses Step E in terms of preferences and Section 5 does it
in terms of utilities. Section 6 discusses the measurable/non-measurable lotteries, and shows
that the expected utility hypothesis holds for the measurable lotteries. Section 7 discusses the
connection from our theory to the classical EU theory. In Section 8, we exemplify our theory
with an experimental result in Kahneman-Tversky [15]. Section 9 concludes this paper with
comments on further possible studies. Proofs of all the results in each section are given in a
separate subsection; only proof of Lemma 2.1 is given in Section 10.

2 Preliminaries

Our theory is about preference formation in the context of EU theory. The classical EU theory is
the reference point, but our theory deviates from it in various manners. To have clear relations
between the classical EU theory and our development, we �rst mention the classical theory (cf.
Herstein-Milnor [13], Fishburn [11]), and then, we start our development. In Section 2.2, we give
various basic concepts for our theory and one basic lemma. In Section 2.3, we give de�nitions
of preferences, indi¤erences, incomparabilities, and their counterparts in terms of vector-valued
utility functions.

2.1 Classical EU theory

Let X be a given set of pure alternatives with cardinality jXj � 2. A lottery f is a function over
X taking real values in [0; 1] with

P
x2S f(x) = 1 for some �nite subset S of X: This subset S is

called a support of f: We de�ne L[0;1](X) = ff : f : X ! [0; 1] is a lotteryg: The set L[0;1](X) is
uncountable: We de�ne compound lotteries: for any f; g 2 L[0;1](X) and � 2 [0; 1]; �f � (1� �)g
is a lottery in L[0;1](X) de�ned by (�f � (1� �)g)(x) = �f(x) + (1� �)g(x) for all x 2 X.

Let %E be a binary relation over L[0;1](X); and we assume NM0 to NM2 on %E : This system
is one among various equivalent systems.

Axiom NM0 (Complete preordering): %E is a complete and transitive relation on L[0;1](X):
Axiom NM1 (Intermediate value): For any f; g; h 2 L[0;1](X); if f %E g %E h;
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then �f � (1� �)h �E g for some � 2 [0; 1]:
Axiom NM2 (Independence): For any f; g; h 2 L[0;1](X) and � 2 (0; 1];
ID1: f �E g implies �f � (1� �)h �E �g � (1� �)h;
ID2: f �E g implies �f � (1� �)h �E �g � (1� �)h;

where the indi¤erence part and strict preference part of %E are denoted by �E and �E ; that
is, f �E g means f %E g & g %E f ; and f �E g does f %E g & not (g %E f):

The following two are the key theorems in the classical EU theory. For a fruitful development
of our theory, we should be conscious of how they remain in our theory.

Theorem 2.1 (Classical EU theorem). A preference relation %E satis�es Axioms NM0 to
NM2 if and only if there is a function u : X ! R so that for any f; g 2 L[0;1](X);

f %E g if and only if Ef (u) � Ef (u); (3)

where the expected utility functional Ef (u) is de�ned as:

Ef (u) =
P
x2S f(x)u(x) for each f 2 L[0;1](X) with its support S: (4)

Theorem 2.2 (Uniqueness up to A¢ ne transformations). Suppose that %E satis�es
Axioms NM0 to NM2. If two functions u; v : X ! R satisfy (3), then there are two real
numbers � > 0 and � such that u(x) = �v(x) + � for all x 2 X:

In these theorems, preference relation %E is given with Axioms NM0 to NM2. The theory
is silent about how a decision maker �nds/forms his preferences. As mentioned in Section 1, we
consider this question from simple cases to more complex cases, while distinguishing between
Steps B and E. In the above axiomatization, these are mixed in NM1 and NM2. We will make a
clear-cut distinction between Steps B and E. In these steps, we avoid the existence of a complete
preference relation dictated by Axiom NM0. Another salient restriction in our theory is on the
available probabilities and is formulated by the concept of probability grids. This allows us to
think about his preferences from simpler lotteries to complex ones step by step. The step-by-step
consideration collapses in Axioms NM2 and NM3.

The system (L[0;1];%E) with Axioms NM0 to NM2 itself is not in the central part of our
theory, but our theory is closely related to the EU hypothesis that preferences are represented
by the expected utility functional Ef (u). We will discuss the EU hypothesis time to time, and
touch the system (L[0;1];%E) only in Section 7.

Aumann [3] and Fishburn [9] considered one-way representation theorem (i.e., the only-if of
(3)), dropping completeness. See Fishburn [10] for further studies. Dubra-Ok [6] and Dubra, et
al. [7] developed representation theorems in terms of utility comparisons based on all possible
expected utility functions for the relation without completeness. In this literature, incompara-
bilities are given in the preference relation. In contrast, in our approach, incomparabilities are
changing with a cognitive bound and may disappear when there are no cognitive bounds.

2.2 Probability grids, lotteries, and decompositions

Let ` be an integer with ` � 2: This ` is the base for describing probability grids; we take ` = 10
in the examples in the paper. The set of probability grids �k is de�ned as

�k = f �`k : � = 0; 1; :::; `
kg for any �nite k � 0: (5)
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Here, �1 = f�` : � = 0; :::; `g is the base set of probability grids for measurement, whereas
�0 = f0; 1g is needed for technical completeness. Each �k is a �nite set, and �1 := [t<1�t is
countably in�nite. We use the standard arithmetic rules over �1; sum and multiplication are
needed.5 We allow reduction by eliminating common factors; for example, 20

102
is the same as

2
10 : Hence, �k � �k+1 for k = 0; 1; ::: The parameter k is the precision of probabilities that the
decision maker uses. We de�ne the depth of each � 2 �1 by: �(�) = k i¤ � 2 �k � �k�1: For
example, �( 25

102
) = 2 but �( 20

102
) = �( 210) = 1: The concept of a layer of probability grids up to a

given depth k is well de�ned. The decision maker thinks about his preferences along probability
grids from a shallow layer to a deeper one.

We use the standard equality = and strict inequality > over �k: Then, trichotomy holds:
for any �; �0 2 �k;

either � > �0; � = �0; or � < �0: (6)

Each element in �k is obtained by taking the weighted sums of elements in �k�1 with the equal
weights:

�k = f
P̀
t=1

1
`�t : �1; :::; �` 2 �k�1g for any k (1 � k <1): (7)

This is basic for the connection between layer k�1 to the next. A proof of (7) is not given here,
but an extension will be given in Lemma 2.1 with a proof given in the Appendix.

The union �1 = [k<1�k is a proper subset of [0; 1] \ Q; where Q is the set of rational
numbers. For example, when ` = 10; �1 has no recurring decimals, but they are rationals: We
also note that �1 depends upon the base `; for example, �1 with ` = 3 has 1

3 ; but �1 with
` = 10 has no element corresponding to 1

3 :

For any k <1; we de�ne Lk(X) by

Lk(X) = ff : f is a function from X to �k with
P
x2X f(x) = 1g: (8)

We identify each pure alternative x with the lottery having x as its support; so X is regarded as
a subset of Lk(X): Speci�cally, L0(X) = X: Since �k is a �nite set, every f 2 Lk(X) has a �nite
support. Since �k � �k+1; it holds that Lk(X) � Lk+1(X): We denote L1(X) = [k<1Lk(X):
As long as X is �nite, Lk(X) is also a �nite set, but L1(X) is a countable set and is dense in
L[0;1](X).

We de�ne the depth of a lottery f in L1(X) by �(f) = k i¤ f 2 Lk(X) � Lk�1(X): We
use the same symbol � for the depth of a lottery and the depth of a probability. It holds that
�(f) = k if and only if maxx2X �(f(x)) = k: This is relevant in Section 6. Lottery d = 25

102
y� 75

102
y

is in L2(X)�L1(X) and its depth �(d) = 2; but since d0 = 20
102
y � 80

102
y = 2

10y �
8
10y 2 L1(X); we

have �(d0) = 1:

The decision maker thinks about preferences from shallow layers to deeper ones. This stops
at a cognitive bound �; which is a natural number or in�nity 1. If � = k < 1; he eventually
reaches the set of lotteries L�(X) = Lk(X); and if � = 1; he has no cognitive limit; we de�ne
L�(X) = L1(X) = [k<1Lk(X):

We formulate a connection from Lk�1(X) to Lk(X). We say that bf = (f1; :::; f`) in Lk�1(X)` =
Lk�1(X)� � � � � Lk�1(X) is a decomposition of f 2 Lk(X) i¤ for all x 2 X;

f(x) =
P`
t=1

1
` � ft(x) and �(ft(x)) � �(f(x)) for all t � `: (9)

5See Mendelson [23] for related basic mathematics.
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We denote this by
P`
t=1

1
` � ft; and letting be = (1` ; :::;

1
` ); it is written as be� bf: We can regardbe� bf as a compound lottery connecting Lk�1(X) to Lk(X) by reducing be� bf to f in (9). Our

theory allows only this form of a compound lotteries and reduction with the depth constraint.
The next lemma states that Lk(X) is generated from Lk�1(X) by taking all compound lotteries
of this kind. It facilitates our induction method described in Table 1.1 reducing an assertion in
layer k to layer k � 1: A proof of Lemma 2.1 is given in Section 10:6

Lemma 2.1 (Decomposition of lotteries). Let 1 � k <1: Then,

Lk(X) = ff 2 Lk(X) : f has a decomposition bfg: (10)

Furthermore, for any f 2 Lk(X) with �(f) > 0; there is a decomposition of bf of f so that
�(ft(x)) < �(f(x)) for any x 2 X with f(x) > 0: (11)

The right-hand side of (10) is the set of composed lotteries from Lk�1(X) with the equal
weights: The inclusion � states that the composed lotteries from Lk�1(X) belong to Lk(X):
The converse inclusion � is essential and means that each lottery in Lk(X) is decomposed to an
equally weighted sum of some (f1; :::; f`) in Lk�1(X)` with the depth constraint in (9). In the
trivial case that f = x 2 L0(X) is decomposed to bf = (x; :::; x). This will be used in Proposition
4.1.(2). The latter asserts the choice of a strictly shallower decomposition for f with �(f) > 0.

One remark is that when f is a benchmark lottery in Bk(y; y); for its decomposition bf =
(f1; :::; f`); each ft is a benchmark lottery in Bk�1(y; y): This fact will be used without referring.

For the set of lotteries over subsetX 0 ofX; i.e., Lk(X 0); we introduce the following convention.
We de�ne Lk(X 0) = ff 2 Lk(X) : f(x) > 0 implies x 2 X 0g: Hence, Lk(X 0) is a subset of Lk(X):
Lemma 2.1 hods for Lk(X 0) and Lk�1(X 0):

The lottery d = [y; 25
102
; y] has three types of decompositions:

d = t
10 � y +

5�2t
10 � [y; 510 ; y] +

5+t
10 � y for t = 0; 1; 2: (12)

Here, a decomposition bf = (f1; :::; f10) is given as f1 = ::: = ft = y; ft+1 = ::: = f5�t = [y; 510 ; y]
and f5�t+1 = ::: = f10 = y: We use this short-hand expressions rather than a full speci�cation

of bf = (f1; :::; f10): We should be careful about this multiplicity.
The reason for explicit considerations of layers for Lk(X) and also preference relation %k is

to avoid collapse from a layer to a shallower one. Without them, we may have a di¢ culty in
identifying the sources for preferences. For example, the weighted sum 5

10 [
25
102
y� 75

102
y] � 510 [

75
102
y �

25
102
y] is reduced to 5

10y �
5
10y; preferences about

5
10y �

5
10y may possibly come from layer 2 or

from layer 0: To prohibit such collapse, we take explicitly depths of layers into account in (9).

2.3 Incomplete preference relations and vector-valued utility functions

We consider two methods to represent the decision maker�s desires: a preference relation and
a utility function. We starts with incomplete preferences and, correspondingly, representing

6When ` > 2; binary decompositions are not enough for Lemma 2.1, For example, consider lottery f =
3
10
y � 3

10
y � 4

10
y. This is not expressed by a binary combination of elements in L0(X) = X with weights in �1:
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utility functions become vector-valued with the interval order. These are �rst departures from
the classical EU theory.

Let % be a preference relation over a given set, say A: For f; g 2 A; the expression f % g
means that f is strictly preferred to g or is indi¤erent to g: We de�ne the strict (preference)
relation �; indi¤erence relation �; and incomparability relation 1 by

f � g if and only if f % g and not g % f ; (13)

f � g if and only if f % g and g % f ;
f 1 g if and only if neither f % g nor g % f:

All the axioms are given on the relations %; �; �; and the relation 1 is de�ned as the residual
part of %. Although � and 1 are sometimes regarded as closely related (cf. Shafer [28], p.469),
they are well separated in Theorem 6.2 in our theory.

In the classical theory in Section 2.1, the preference relation %E is assumed to be complete.
Since, however, we consider a formation of preferences, our theory should avoid this completeness
assumption. Nevertheless, it appears as a result when a domain of lotteries is restricted.

Another method of measurement of desires is by a vector-valued function u with the interval
order introduced by Fishburn [8]. Let u(f) = [u(f); u(f)] be a 2-dimensional vector-valued
function from its domain A to the set Q2 = Q�Q with u(f) � u(f) for each f 2 A: The
components u(f) and u(f) are interpreted as the least upper and greatest lower bounds of
possible utilities from f: We say that u(f) is e¤ectively single-valued i¤ u(f) = u(f); in this
case, we write u(f) = u(f) = u(f); dropping the upper and lower bars. We use the interval
order �I over the values of u; for f; g 2 A;

u(f) �I u(g) if and only if u(f) � u(g): (14)

That is, f and g are ordered if and only if the greatest lower bound u(f) from f is larger than
or equal to the least upper bound u(g) from g: This �I allows incomparabilities, for example, if
u(f) = [ 910 ;

7
10 ] and u(g) = [

83
102
; 83
102
]; then f and g are incomparable by �I : The relation �I is

transitive, but (u(f) �I u(g) & u(g) �I u(f)) is equivalent to u(f) = u(f) = u(g) = u(g); i.e.,
this is the case only when the values u(f) and u(g) are e¤ectively single-valued and identical.

3 Measurement Step

We formulate Step B of measurement of pure alternatives up to cognitive bound �: This has two
sides: in terms of preference relations hDkik<�+1 and in terms of vector-valued utility h�kik<�+1.
We show the representation theorem on hDkik<�+1 by h�kik<�+1; and the uniqueness theorem
on h�kik<�+1 up to positive linear transformations. Finally, we mention that these are well
interpreted in terms of Simon�s [30] satis�cing/aspiration argument.

3.1 Base preference streams

The set of pure alternatives X is assumed to contain two distinguished elements y and y; which
we call the upper and lower benchmarks. Let k < 1: We call an f 2 Lk(X) a benchmark
lottery of depth (at most) k i¤ f(y) = � and f(y) = 1 � � for some � 2 �k; which we denote
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by [y; �; y]: The benchmark scale of depth k is the set Bk(y; y) = f[y; �; y] : � 2 �kg: In
particular, B0(y; y) = fy; yg: The dots in Fig.1 express the benchmark lotteries. We de�ne
B1(y; y) = [k<1Bk(y; y): The depth of a benchmark lottery [y; �; y] is determined to be the
depth of �; i.e., �([y; �; y]) = �(�):

We denote a cognitive bound by �; which is a natural number or � = 1: We use k as a
variable expressing a natural number of a layer within the theory, but � as a constant parameter
of it. Stipulating 1+ 1 =1; �k < �+ 1�expresses the two statements �k � � if � <1�and
�k < � if � = 1�. This constant � plays an active role as a small constraint such as � = 2 or
3 in Example 5.1 and Section 8, and as � = 1 in Section 7 for consideration of the expected
utility hypothesis.

Let Dk be a subset of
Dk = Bk(y; y)

2 [ f(x; g); (g; x) : x 2 X and g 2 Bk(y; y)g: (15)

Thus, Dk consists of the scale part of the benchmarks and the measurement part of pure alter-
natives. The scale part allows the decision maker to make comparisons between any grids of
depth k. For a pure alternative x 2 X; he thinks about where x is located in the benchmark
scale Bk(y; y); it may or may not correspond to a grid, which is seen in Fig.1. For example, if
(x; g) 2 Dk but (g; x) =2 Dk; then x is strictly better than the grid g; and if (x; g) =2 Dk and
(g; x) =2 Dk; then x and g are incomparable for him.

We make four axioms on hDkik<�+1. Axiom B0 requires pure alternatives be between the
upper and lower benchmarks y; y:

Axiom B0 (Benchmarks): y D0 x and x D0 y for all x 2 X:

The next states that preferences over Bk(y; y) are the same as the natural order on �k:

Axiom B1 (Benchmark scale): For �; �0 2 �k; [y; �; y] Dk [y; �0; y] if and only if � � �0

It follows from Axiom B1 that for �; �0 2 �k;
[y; �; y] Bk [y; �0; y] if and only if � > �0: (16)

Also, � = �0 if and only if [y; �; y] and [y; �0; y] are indi¤erent: Thus, Dk is a complete relation
over Bk(y; y) by (6). This is the scale part of Dk; and is precise up to �k: Since y = [y; 1; y] and
y = [y; 0; y]; it follows from (16) that y �B;0 y:

Measurement is required to be coherent with the scale part given by Axiom B1.

Axiom B2 (Monotonicity): For all x 2 X and �; �0 2 �k; if [y; �; y] Dk x and �0 > �;
then [y; �0; y] Bk x; and if x Dk [y; �; y] and � > �0; then x Bk [y; �0; y]:

This implies no reversals with Axiom B1; if [y; �; y] Dk x and x Dk [y; �0; y]; then � � �0:
Indeed, if � < �0; then [y; �0; y] Bk x by B2, which implies not x Dk [y; �0; y]: If we assume
transitivity for Dk over Dk; B2 could be derived from B1, but we adopt B2 instead of transitivity,
since B2 gives a more speci�c property to the measurement step.

The last requires the preferences in layer k be preserved in the next layer k + 1: This is
expressed by the set-theoretical inclusion � in Table 1.1.
Axiom B3 (Preservation): For all f; g 2 Dk; f Dk g implies f Dk+1 g:

The above axioms still allow great freedom for base preference relations hDkik<�+1: To see
this fact as well as how the measurement step B of utilities from pure alternatives goes on, we
consider vector-valued utility functions with the interval order �I in Section 3.2.
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3.2 Base utility streams

We consider another way of Step B in terms of vector-valued utility functions with the interval
order �I . Let h�kik<�+1 = h[�k; �k]ik<�+1 be a sequence of vector-valued functions so that
for each k < � + 1; �k is a function from Bk(y; y) [ X to Q2 such that �k(f) � �k(f) for all
f 2 Bk(y; y) [X: Recall that when �k(f) is e¤ectively single-valued, we write �k(f) = �k(f) =
�k(f). The following conditions on h�kik<�+1 are not exactly parallel to the axiomatic system
B0 to B3, but these two systems are equivalent, which is stated in Theorem 3.1.

We de�ne a base (upper-lower) utility stream h�kik<�+1 = h[�k; �k]ik<�+1 by b0 to b3 :

b0: �0(y) > �0(y);

and for k < �+ 1;

b1: �k([y; �; y]) = ��k(y) + (1� �)�k(y) for all [y; �; y] 2 Bk(y; y);
b2: for each x 2 X; �k(x) = �k([y; �x; y]) and �k(x) = �k([y; �x; y])

for some �x and �x in �k;

b3: for each x 2 X; �k(x) � �k+1(x) � �k+1(x) � �k(x):

Condition b0 �xes the utility values from the upper and lower benchmarks y and y; which
corresponds to the implication of B0. Then, b1 means that for benchmark lotteries [y; �; y] 2
Bk(y; y); �k([y; �; y]) is e¤ectively single-valued and takes the expected utility value of y and y;
which corresponds to B1. Here, the EU hypothesis is included. b2 states that the least upper
and greatest lower utilities of x 2 X are measured by the benchmark scale Bk(y; y); this does
not exactly correspond to B2, but it does an implication of B2 with the help of transitivity for
�k implied by the interval order �I . Corresponding to B3, b3 states that �k(x) and �k(x) are
getting more accurate as k increases. These imply

�k(y) = �0(y) and �k(y) = �0(y) for any k < �+ 1: (17)

Now, we have Theorem 3.1. As stated, all proofs are given in separate subsections.

Theorem 3.1 (Representation for Step B). A base preference stream hDkik<�+1 satis�es
Axioms B0 to B3 if and only if there is a base utility stream h�kik<�+1 satisfying b0 to b3 such
that for any k < �+ 1 and (f; g) 2 Dk;

f Dk g if and only if �k(f) �I �k(g): (18)

Although �k is vector-valued, it satis�es the EU hypothesis, since by b1; �k([y; �; y]) =
��k(y) + (1 � �)�k(y) for [y; �; y] 2 Bk(y; y); and by b2; �k(x) = �x�k(y) + (1 � �x)�k(y)
and �k(x) = �x�k(y) + (1 � �x)�k(y) for x 2 X: The EU hypothesis does not hold for the
representation theorem for Step E (Theorem 5.1).

We have the uniqueness theorem.

Theorem 3.2 (Uniqueness). Let hDkik<�+1 satisfy Axioms B0 to B3. If h�kik<�+1 and
h�0kik<�+1 satisfying b0 to b3 represent hDkik<�+1 in the sense of (18), there are rational numbers
� > 0 and � such that �0k(x) = ��k(x)+� = [��k(x)+�; ��k(x)+�] for all x 2 X and k < �+1:

Conditions b0 to b3 require �k(x) = (�k(x); �k(x)) be represented essentially by two values
� and �0 in �k with �0(y) and �0(y): However, �0(y) and �0(y) for each h�kik<�+1 are allowed
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Figure 2: upper and lower utility functions

to take any two rational numbers in Q only with �0(y) > �0(y): This is the reason for the above
uniqueness result.

The uniqueness up to a positive linear transformation plays a crucial role in the literature of
bargaining theories such as Nash [24] and the Nash welfare function theory (Kaneko- Nakamura
[19]). The rational number scalars are enough for the 2-person case and the real-algebraic
numbers are enough for the general n-person case (cf. Kaneko [16] for the 2-person case). It
is easy to generalize Theorem 3.2 for the real numbers scalars, but the problem is how much
we restrict the scalars. Theorem 3.2 is suggestive of how bounded rationality is incorporated to
these theories.

The processes described in terms of hDkik<�+1 and/or h�kik<�+1 are thought experiments by
the decision maker to search preferences/utilities in his mind. From the viewpoint of �bounded
rationality�, he may stop his search when he is satis�ed and/or is already tired. This is the
same as Simon�s [30] argument of satis�cing/aspiration. First, we consider Example 3.1, and
then we exemplify the satis�cing/aspiration argument.

Example 3.1. Let X = fy; y; yg; �0(y) = [1; 1]; �0(y) = [0; 0]; and �0(y) = [1; 0]: Also,
let �1(y) = [ 910 ;

7
10 ]: Then, �1(f) = [ 810 ;

8
10 ] for f = [y; 810 ; y] by b1: Then �1(y) �I �1(f)

and �1(f) �I �1(y); so y and f are incomparable with respect to D1 by (18). In Fig.2,
h�k(y)ik<�+1 = h[�k(y); �k(y)]ik<�+1 is described as solid lines in cases A, B, and C. Since
�0(y) = [1; 0]; we have y B0 y B0 y by (18). For k = 2; in A, �2(y) = [ 77

102
; 77
102
] and the

decision maker prefers f = [y; 810 ; y] to y; and in B, �2(y) = [
83
102
; 83
102
]; he prefers y to f: In C,

�k(y) = [
9
10 ;

7
10 ] is constant for k � 2; he gives up comparisons between y and f after k = 1:

Introspection Process of Simon�s�satis�cing/aspiration: The decision maker starts eval-
uating of a pure alternative y 2 X with the benchmark scale B0(y; y): Suppose that he �nds
�0(y) = [1; 0]; i.e., he attaches the upper value 1 and lower value 0 to y: If � = 0; his introspec-
tion is over. Let � � 1: Then, he goes to layer 1 and uses the more precise scale B1(y; y) to
measure y: In Example 3.1, y is better than [y; 710 ; y] but worse than [y;

9
10 ; y]: Still, he has not

reached a very precise measurement. If � = 1; he stops introspection. Let � � 2: Then, he goes
to layer k = 2; in A of Fig.2, he reaches precise utility values �2(y) = [ 77102 ;

77
102
]; but in C, he has
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still imprecise values �2(y) = [ 910 ;
7
10 ] and does not improve them any more even for k > 2.

In case A, there are several possible interpretations: one is that �2(y) = [ 77102 ;
77
102
] expresses

his preferences precisely, and the other is that he is still unsure about the value of y; for example,
the lower and upper values may be 77

102
and 78

102
; but according his aspiration level, the di¤erence

78
102
� 77

102
= 1

102
is tiny and he does not care about the choice between 77

102
and 78

102
: By chance,

he chooses �2(y) = [ 77102 ;
77
102
]: In case C, �2(y) = [ 910 ;

7
10 ] is good enough for him, and he forgets

further updating.
Thus, exact values may include some imprecision induced by his aspiration level. This is an

attribute of cognitive acts by the decision maker, instead of an attribute of probabilities.

3.3 Proofs

Proof of Theorem 3.1. (If): Suppose that h�kik<�+1 satis�es b0 to b3 and that (18) holds
for hDkik<�+1 and h�kik<�+1
B0: We have, by b0; b1 and (17), �0(y) � �0(x) and �0(x) � �0(y); i.e., y D0 x D0 y: Thus, B0.
B1: By (18), b1, and (17), we have [y; �; y] Dk [y; �0; y] if and only if �k([y; �; y]) �I �k([y; �0; y])
if and only if ��0(y) + (1� �)�0(y) � �0�0(y) + (1� �0)�0(y) if and only if � � �0: That is, B1.
B2: Let [y; �; y] Dk x and �0 > �: By b2 and (18), we have �0�k(y) + (1 � �0)�k(y) > ��k(y)+
(1� �)�k(y) � �k(x): Thus, by b1; �k([y; �0; y]) = �0�k(y) + (1� �0)�k(y) > �k(x): By (18), we
have [y; �0; y] Bk x: The other case is symmetric.
B3: Let f Dk g: By (18), we have �k(f) � �k(g): Let f = x 2 X and g = [y; �; y] 2 Bk(y; y):
Then, �k(g) = �k+1(g) by b1: Then, by b3, we have �k+1(f) � �k(f) � �k(g) = �k+1(g):
By (18), f Dk+1 g: The case f 2 Bk(y; y); g = x 2 X is parallel. The case f = [y; �; y],
g = [y; �0; y] 2 Bk(y; y) is similar.
(Only-if): Suppose that hDkik<�+1 satisfying Axioms B0 to B3 is given. We construct a base
utility stream h�kik<�+1 satisfying (18). We de�ne [�k; �k]; k < � + 1; as follows: for any
f 2 Bk(y; y) [X;

�k(f) = minf� 2 �k : [y; �; y] Dk fg; (19)

�k(f) = maxf� 2 �k : f Dk [y; �; y]g:

It holds that �k(f) = �k(f) for f 2 Bk(y; y): Consider f = [y; �f ; y]; g = [y; �g; y] 2 Bk(y; y):
Then, f Dk g if and only if [y; �f ; y] Dk [y; �g; y] if and only if �f � �g; i.e., �k(f) �I �k(g)
by B1. Let f 2 Bk(y; y) and g = x 2 X: Denote �k(f) = �f and �k(x) = �x: Suppose f Dk x:
By (19), [y; �f ; y] = f Dk [y; �x; y]: By B1, �f � �x; i.e., �k(f) �I �k(x): The converse is
obtained by tracing this back. Thus, f Dk x if and only if �k(f) �I �k(x): The case f = x 2 X;
g 2 Bk(y; y) is parallel.
By (16) and B0, we have b0: By (19), we have b2 and b3: Consider b1: Since �k(y) = 1 and

�k(y) = 0; the set f�k(f) : f 2 Bk(y; y)g is the same as �k: For any f = [y; �; y]; g = [y; �0; y]
2 Bk(y; y); we have, by (17), �k(f) > �k(g) if and only if f Bk g if and only if � > �0: Hence,
�k(f) = � = ��k(y) + (1� �)�k(y), which is b1:�
Proof of Theorem 3.2. Let � = (�00(y) � �00(y))=(�0(y) � �0(y)) and � = (�0(y)�

0
0(y) �

�00(y)�0(y))=(�0(y)��0(y)): Noting (17), we have �0k(y) = ��k(y)+� and �0k(y) = ��k(y) +�.
For any [y; �; y] 2 Bk(y; y); we have �0k([y; �; y]) = ��k(y)+ (1��)�k(y) = ��k([y; �; y]) +� by
b1.
For any x 2 X; we have �x and �x in�k by b2 for �k such that �k(x) = [�k([y; �x; y]); �k([y; �x; y])]:
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Let �
0
x and �

0
x be given by b2 for �

0
k: Suppose �

0
x 6= �x; say, �x > �

0
x: Then, �k([y; �x; y]) �I

�k(x); but �k(x) = �k([y; �
0
x; y]) > �k([y; �

0
x; y]): Hence, �k([y; �

0
x; y]) �I �k(x): However, by

de�nition of �
0
x; we have �

0
k([y; �

0
x; y]) �I �0k(x): This is impossible since �k and �0k represent

the same Dk : The case �x < �
0
x is parallel. Thus, �

0
x = �x; and similarly, �

0
x = �x; which imply

�0k(x) = [�
0
k([y; �x; y]); �

0
k([y; �x; y])] = �[�k([y; �x; y]); �k([y; �x; y])] + � = ��k(x) + �:�

4 Extension Step: Extended Preference Streams

Step B is an introspective process to �nd preferences hidden in the mind of the decision maker.
On the other hand, Step E is a logical process to extend base preferences found in Step B. This
di¤erence may create some logical di¢ culty in adopting the standard method of representing
preferences in terms of a binary relation. We actually show that we can avoid this di¢ culty.
Keeping this remark in mind, we present our axiomatic system for Step E. Throughout this
section, let hDkik<�+1 be a given base preference stream satisfying Axioms B0 to B3.

4.1 Extended preference stream

Here, we consider how Dk is extended to Lk(X) for k < � + 1: Axiom E0 is to convert base
preferences Dk to %k for each k < �+ 1; depicted as the vertical arrows in Table 1.1.
Axiom E0 (Extension)(i): For any (f; g) 2 D0; f D0 g if and only if f %0 g:
(ii): For any k (1 � k < �+ 1) and (f; g) 2 Dk; if f Dk g; then f %k g:

This is the ultimate source for preferences for Step E. For k = 0; the base preferences are
only the direct source for %0 : For k � 1; in addition to the base preferences, there is another
source from the previous %k�1; thus, (ii) has only one direction. However, we will show that
as long as the domain Dk is concerned, the converse of (ii) holds for our intended preference
stream h%kik<�+1.

Consider the connection between layers k � 1 and k: For bf = (f1; :::; f`) and bg = (g1; :::; g`);
we write bf %k bg i¤ ft %k gt for all t = 1; :::; `: Recall that a decomposition of f 2 Lk(X) is
de�ned by (9): We formulate a derivation of %k from %k�1 as follows: let 1 � k < �+ 1:
Axiom E1 (Derivation from the previous layer): Let f 2 Lk(X); g 2 Bk(y; y); and bf; bg

their decompositions: If bf %k�1 bg or bg %k�1 bf; then f %k g or g %k f; respectively.
In layer k�1; each ft of bf = (f1; :::; f`) is compared with the corresponding benchmark lottery

gt. These preferences are extended to layer k. In Table 1.1, the horizontal arrows indicate this
derivation. When � = 2; the lottery d = 25

102
y � 75

102
y in the example of (2) should be evaluated in

terms of lotteries in B2(y; y): Axiom NM2 (Independence) is much stronger in that comparisons
jump from one layer to a layer of any depth. In E1, a connection from one layer to the next
with equal weights describes the step-by-step extension of preferences by the decision maker.

The preferences derived by the above axioms are extended by transitivity: let 0 � k < �+1:

Axiom E2 (Transitivity): For any f; g; h 2 Lk(X); if f %k g and g %k h; then f %k h:

Here, we regard Axioms E0 to E2 as inference rules, rather than properties to be satis�ed by
%k. This means that the decision maker constructs %0;%1; :::; step by step, using these axioms.
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As mentioned above, this view may involve some di¢ culty; it is logically possible that Axioms
E0 to E2 may lead to new unintended preferences. Theorem 4.1 states that this is not the case
for the constructed preferences. These also have the following additional conditions:

E0� : for all k < �+ 1 and (f; g) 2 Dk; f Dk g if and only if f %k g;
E1� : E1 holds and if the premise of E1 includes strict preferences, so does the conclusion.

Condition E0� states that h%kik<�+1 is a faithful extension of hDkik<�+1 in that as long as a
pair of lotteries in Dk is concerned; the extended relation %k has no super�uous preferences.
E1� is a strengthening of E1, too. Without these, some preferences would be added in the
derivation process of %0;%1; :::; and also we would have inconveniences in applications. Note
that E2 (transitivity) preserves strict preferences in the same way as E1�:

To prove that our constructive extended stream h%kik<�+1 enjoys E0�, E1�; and E2, we �rst
show the following lemma using the EU hypothesis. However, this di¤ers from the intended
stream, which enjoys the EU hypothesis only partially. For this lemma, a base utility stream
h�kik<�+1 satisfying (18) given in Theorem 3.1 is used.

Lemma 4.1 (Consistency of E0�, E1�, and E2). There is a stream of binary relations
h%�kik<�+1 satisfying Axioms E0�; E1�, and E2. One of such a h%�kik<�+1 is given as follows: for
all k < �+ 1; we de�ne %�k by

f %�k g if and only if Ef (�k) � Eg(�k): (20)

A point of this lemma is that we have no problem in regarding E0 to E2 as requirements for
binary relations h%�kik<�+1; and also, some satis�es E0� and E2�:

Now, we prepare a few concepts for the main theorem, i.e., Theorem 4.1, of this section: Let
h%kik<�+1 be a stream satisfying E0 to E2. We say that h%kik<�+1 is the smallest stream i¤
for any h%0kik<�+1 satisfying E0 to E2, and f; g 2 Lk(X); k < �+ 1;

f %k g implies f %0k g: (21)

Also, the set of preferences over Lk(X) derived from %k�1 by E1 is denoted by (%k�1)E1; and
the set of transitive closure of F � Lk(X)

2 is denoted by F tr; i.e., (f; g) 2 F tr if and only if
there is a �nite sequence f = h0; h1; :::; hm = g such that (ht; ht+1) 2 F for t = 0; :::;m� 1:

Theorem 4.1 (Smallest extended stream). The sequence h%kik<�+1 of the sets generated
by the following induction:

%0 = (D0)tr; and %k = [(%k�1)E1 [ (Dk)]tr for each k (1 � k < �+ 1) (22)

is the smallest stream satisfying E0 to E2. Also, h%kik<�+1 satis�es E0� and E1�:

The construction starts with %0 = (D0)tr; which is well de�ned since D0 is a binary relation in
D0: Then, provided that %k�1 and Dk are already given, %k is de�ned to be [(%k�1)E1[ (Dk)]tr:
This is a subset of Lk(X)2; thus, it is a binary relation. This preference stream is unique, and
is the smallest among the streams satisfying E0 to E2. Furthermore, the constructed stream
satis�es E0� and E1�:

We extract the essential addition in (22) to Axioms E0 to E2 and formulate it as Axiom E3.
It states that a preference f %k g is based on comparisons with the benchmark scale Bk(y; y)
with either Dk or %k�1 : We note that h in E3 may be the same as f or g:

15



Axiom E3 (i): For any f; g 2 L0(X); if f %0 g; then f %0 h %0 g for some h 2 B0(y; y):
(ii): For any f; g 2 Lk(X) (k � 1); if f %k g; then there is an h 2 Bk(y; y) with f %k h %k g
such that for the �rst pair (f; h); f Dk h holds or f; h have decompositions bf;bh with bh %k�1 bg;
and the same holds for the second pair (h; g):

The key of Axiom E3 is to include the depth constraint; comparison f %k g e¤ectively comes
from the benchmark scale Bk(y; y) of the same depth k: This constraint with a �nite cognitive
bound � makes the EU hypothesis hold partially. The preference stream given by (20) of Lemma
4.1 enjoys the EU hypothesis, but since it does not take the depths of f; g into account, Axiom
E3 is violated. This violation will be seen in Example 5.1.

The stream h%kik<�+1 given by (22) is characterized by adding E3 to E0 to E2.
Theorem 4.2 (Uniqueness by E0 to E3). Any extended stream satisfying E0 to E3 is the
same as the preference stream h%kik<�+1 given by Theorem 4.1.

Throughout the following, the stream given by (22) is denoted by h%kik<�+1: Other streams
may have some additional superscripts such as 0; �:

Proposition 4.1 will be used in the subsequent analyses: (1) is the horizontal arrows in Table
1.1, and (2) that %k is bounded in Lk(X) by the upper and lower benchmarks y and y:
Proposition 4.1. Let h%kik<�+1 satis�es E0 to E3, and 1 � k < �+ 1:
(1)(Preservation of preferences): For any f; g 2 Lk�1(X); f %k�1 g implies f %k g:
(2): y %k f %k y for any f 2 Lk(X):

We have extended an already built preference relation %k�1 and a given base relation Dk to
%k by Axioms E1 and E2; which is the weakest relation. This extension process is somewhat
similar to Dubra-Ok�s [6] argument: they extend a preference relation on a �nite set of lotter-
ies to the smallest relation satisfying Axiom NM2.ID1, and they show the extended relation is
represented by a set of expected utilities. Our extension process is weaker than theirs in that it
requires only Axioms E1 and E2 (and E3), and as stated above, it is much weaker than NM2.

Remark 4.1 (Partial EU hypothesis in the two systems). Axiom B1 and b1 assume
the EU hypothesis along the benchmark scale Bk(y; y); and E1 is a very weak form of Axiom
NM2 (independence). The other axioms are related to it only in that preferences are consid-
ered through comparisons with Bk(y; y). As mentioned above, Axiom E3 includes the depth
constraint on preference comparisons; it follows from Lemma 4.1 and Theorem 4.1 that there
are possibly many preference streams satisfying E0 to E2; among which the EU representation
in (20) is allowed. A departure from the EU hypothesis is caused by two types of depths in-
cluded in a lottery and their interactions with a cognitive bound � < 1: For example, lottery
d = 25

102
y � 75

102
y involves the depths of coe¢ cient 25

102
and of evaluation �y. This and E3 make

the EU hypothesis hold only for some partial domain, which is explicitly studied in Section 6.

4.2 Proofs

Proof of Lemma 4.1. We show that h%�kik<�+1 given by (20) satis�es E0�; E1�; and E2. By
Theorem 3.2, we can assume that �k(y) = 1 and �k(y) = 0:
Since Ef (�k) = � if f = [y; �; y] 2 Bk(y; y) and Ex(�k) = �k(x) if f = x 2 X: Hence, by (18)

and b2; f Dk x if and only if � � �k(x) if and only if Ef (�k) � Ex(�k): The other cases are
symmetric. Thus, E0� holds for any (f; g) 2 Dk:
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It remains to show that h%�kik<�+1 satis�es E1� and E2. Since (20) gives the interval order over
the set f[Ef (�k); Ef (�k)] : f 2 Lk(X)g; E2 holds. We show E1�: Let f 2 Lk(X); g 2 Bk[y; y]
and their decompositions bf and bg with bf %�k�1 bg: By (20), Eft(�k) � Egt(�k) for all t = 1; :::; `:
Then, Ef (�k) = Ebe� bf (�k) = P`

t=1
1
`Eft(�k) �

P`
t=1

1
`Egt(�k) = Ebe�bg(�k) = Eg(�k): If strict

preferences are included in the decompositions, the conclusion is strict; thus we have E1�:�
Proof of Theorem 4.1. This has the three assertions: (a) h%kik<�+1 is a sequence of a binary
relations satisfying Axioms E0 to E2; (b) it is the smallest in the sense of (21) among streams
h%0kik<�+1 satisfying E0 to E2; and (c) E0�; E1� hold for h%kik<�+1:
(a): E2 follow directly from (22). Consider E0. (ii) follows from (22). We show that %0 = (D0)tr
satis�es that for any (f; g) 2 D0; f %0 g implies f D0 g: Since %0 = (D0)tr; there is a sequence
f = h0 D0 ::: D0 hm = g. If ht 2 X � B0(y; y); then ht�1 2 B0(y; y) and ht+1 2 B0(y; y): By
B2, �t�1 � �t+1; where ht�1 = [y;�t�1; y] and ht+1 = [y;�t+1; y]: If ht; ht+1 2 B0(y; y); then
�t � �t+1: Hence, we can shorten the sequence to f = h0 D0 hm = g: Thus, f D0 g:
Consider E1. Suppose that f 2 Bk[y; y] and g 2 Lk(X) have decompositions bf; bg 2 Lk�1(X)

with bf %k�1 bg: By (22), we have f = e � bf %k e � bg = g: The symmetric case, bg %k�1 bf; is
similar.

(b): We prove by induction on k that h%kik<�+1 satis�es (21) for any h%0kik<�+1 satisfying E0
to E2. When k = 0; we have %0 = (D0)tr by (22): Let f %0 g; i.e., f (D0)trg; which implies
that there is a sequence f = h0 D0 h1 D0 ::: D0 hm = g: By E0.(i), we have f = h0 %00 h1 %00
::: %00 hm = g: By E2 for %00; we have f %00 g.
Now, we assume that (21) holds for k� 1: Let f %k g: By (22), there is a sequence f = h0 %k

::: %k hm = g such that each ht %k ht+1 is a consequence of E1 or ht %k ht+1 is ht Dk ht+1:
In the �rst case, there are decompositions bht;bht+1 of ht; ht+1 such that bht %k�1 bht+1: By the
induction hypothesis, we have bht %0k�1 bht+1: Thus, ht %0k ht+1 by E1 for %0k : In the second case,
ht Dk ht+1 implies ht %0k ht+1 by E0.(ii) for %0k : Hence, f %0k g by E2 for %0k :
(c): Take h%�kik<�+1 given by Lemma 4.1. Since h%�kik<�+1 satis�es E0 to E2, it holds that for
all k < �+ 1 and f; g 2 Lk(X);

f %k g implies f %�k g: (23)

E0�: Since E0� holds for %�k by Lemma 4.1, we have: for any (f; g) 2 Dk; f %�k g implies f Dk g;
thus, f %k g implies f Dk g: The converse is from (22).

E1�: Let f; g 2 Lk(X): Let bf; bg be decompositions of f; g so that bf %k�1 bg with strict preferences
for some components. Hence, by (23), the same holds for %�k�1 : Hence, by E2 for %�k�1; we have
f ��k g: In this case, g %k f is impossible; if it was the case, we would have, by (23), f ��k g; a
contradiction. Hence, f �k g:�
Proof of Theorem 4.2. Let h%�kik<�+1 be any extended stream satisfying E0 to E3. We prove
by induction on k < �+ 1 that for any f; g 2 Lk(X);

f %�k g if and only if f %k g: (24)

Since h%kik<�+1 is the smallest stream satisfying E0 to E2 by Theorem 4.1, the if part holds
for any k < � + 1: Consider the only-if part. Let k = 0: Let f; g 2 L0(X) with f %�0 g: Then,
by E3.(i), we have an h 2 B0(y; y) with f %�0 h %�0 g: But this h is either y or y: If h = y; then
h D0 f and f D0 h by B0: Since h D0 g by B0, we have f (D0)trg; i.e., f %0 g by (22). The case
h = y is similar.
We make the induction hypothesis that the only-if part holds for k� 1: Let f %�k g: Then, by

E3, we have h0 := f %�k h1 %�k h2 := g for some h1 2 Bk(y; y): If h0 = x 2 X; then, h0 = x has

17



no decomposition; thus, by E3.(ii), h0 Dk h1; which implies h0 %k h1 by E0� for %k. Let h0 =2 X:
By E3.(ii), bh0 %�k�1 bh1 for some decompositions bh0; bh1 of h0; h1: By the induction hypothesis,
we have bh0 %k�1 bh1: Thus, by E1 for %k; we have h0 %k h1: By the same argument, we have
h1 %k h2: Thus, by (22), h0 %k h2; i.e., f %k g:�
Proof of Proposition 4.1. (1): Let f 2 Lk�1(X) and g 2 Bk�1(y; y): Suppose f %k�1 g: Then,
f; g 2 Lk�1(X) � Lk(X): Let f1 = ::: = f` = f and g1 = ::: = g` = g: Then, f =

P`
t=1

1
` � ft

and f =
P`
t=1

1
` � gt: By E1, we have f %k g: The case g %k�1 f is similar.

Let f; g 2 Lk�1(X) with f %k�1 g: Then, by E3.(ii) for k; f %k�1 h %k�1 g for some
h 2 Bk�1(y; y): It follows from the conclusion of the above paragraph that f %k h %k g: By E2,
we have f %k g:
(2): Let f 2 L0(X) = X: By B0 and %0 = D0, we have the assertion for k = 0. Suppose the
induction hypothesis that y %k�1 f %k�1 y for any f 2 Lk�1(X): Consider f 2 Lk(X): Then,
by Lemma 2.1, there is a vector bf 2 Lk�1(X)` such that f = be � bf: By the induction hypothesis,
y %k�1 ft %k�1 y for any t � `: By E1, y = be � y %k f = be � bf %k be � y = y:�
5 Extension Step: Vector-valued Utility Stream

We extend a base utility stream h�kik<�+1 to hukik<�+1 so that each uk is a function over
Lk(X). We show that this approach is equivalent to that given in Section 4. It provides clear-
cut interpretations and mathematical tractability of the entire theory.

5.1 Extended utility stream hukik<�+1

Let a base utility stream h�kik<�+1 satisfying conditions b0 to b3 be given. We consider a stream
of functions hukik<�+1 = h[uk; uk]ik<�+1 so that each uk = [uk; uk] is a function from Lk(X) to
Q2 with uk(f) � uk(f) for all f 2 Lk(X): As for a base utility stream, the values uk(f) and
uk(f) are interpreted as the least upper and greatest lower bounds of possible utilities from f:
For bf = (f1; :::; f`); we write uk( bf) = (uk(f1); :::; uk(f`)) and uk( bf) = (uk(f1); :::; uk(f`)): Also,
recall that when uk = [uk; uk] is e¤ectively single-valued for f; we drop the upper and lower
bars from uk(f); uk(f); and write it as uk(f):

We assume the following four conditions on hukik<�+1 : for each k < �+ 1;

e0: The restriction of uk to Bk(y; y) [X coincides with �k:

e1: Let f 2 Lk(X); g 2 Bk(y; y); and bf; bg be their decompositions. If uk�1(bg) � uk�1( bf)
or uk�1( bf) � uk�1(bg); then uk(g) � uk(f) or uk(f) � uk(g); respectively.

e2: For any f 2 Lk(X) with �(f) � 1; there are decompositions bf; bf 0 2 Lk�1(X)`
such that uk(f) = be � uk�1( bf) and uk(f) = be � uk�1( bf 0):
e3: For any f 2 Lk(X); there are g and h in Bk(y; y) such that uk(f) = uk(g)
and uk(f) = uk(h):

Conditions e0 and e1 correspond to E0 and E1, while e2 does not to E2, since transitivity
is already included in the interval order �I : Condition e2 requires that the least upper and
greatest lower utilities uk(f) and uk(f) come from those of some decompositions. Condition e3
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is a depth constraint corresponding to Axiom E3 : it requires uk(f) and uk(f) be in Bk(y; y) of
the same same layer.

First, we present the uniqueness of a possible utility stream hukik<�+1 extended by e0 to e3.
Proposition 5.1 (Unique extension): If hukik<�+1 and hu0kik<�+1 are extended streams from
a base stream h�kik<�+1; then hukik<�+1 and hu0kik<�+1 are the same.

Here, the extended utility stream hukik<�+1 is uniquely determined relative to a given base
preference stream h�kik<�+1 representing hDkik<�+1 : Hence, it follows from Theorem 3.2 that
the stream of pair h�k;ukik<�+1 is unique up to positive linear transformation.

The existence of hukik<�+1 is guaranteed by the next theorem and Theorems 4.2. Recall
that hDkik<�+1 with B0 to B3 are assumed behind E0 and that h�kik<�+1 with b0 to b3 are
assumed behind e0: They are are connected by (18).

Theorem 5.1 (Representation of h%kik<�+1 by hukik<�+1). A preference stream h%kik<�+1
satis�es E0 to E3 if and only if there is a utility stream hukik<�+1 satisfying e0 to e3 such that
for any k < �+ 1 and f; g 2 Lk(X);

f %k g if and only if uk(f) �I uk(g): (25)

Theorem 5.1 can regarded as a substantiation of the indication, by von Neumann-Morgenstern
[33], p.29, of a possibility of a representation of a preference relation involving incomparabilities
in terms of a higher-dimensional vector-valued function.

The structure of the arguments given in Sections 3 to 5 is summarized in Table 1.2. We
started with the theory of a base preference stream hDkik<�+1 and of a base utility stream
h�kik<�+1: In Section 4, hDkik<�+1 is extended to h%kik<�+1; Theorems 4.1 and 4.2 show the
unique existence of h%kik<�+1 satisfying E0 to E3, relative to hDkik<�+1. Proposition 5.1 im-
plies that this hukik<�+1 is uniquely determined relative to h�kik<�+1: Theorem 5.1 implies
the existence of an extended utility stream hukik<�+1: Instead of this way of proving the exis-
tence of hukik<�+1, we can prove it directly from a given h�kik<�+1: However, the present way
through Theorem 4.1 to the introduction E3 explains better our motivation of the construction
of extended preference stream hukik<�+1:

The EU representation given in Lemma 4.1 di¤ers from that in Theorem 5.1 since it violates
condition e3. In this sense, Theorem 5.1 is di¤erent from Theorem 3.1. This creates some
di¢ culty in practical calculation of hukik<�+1 for the case � <1; for practical purpose, it may
be useful to observe the following: for for any f 2 Lk(X) with �(f) > 0;

uk(f) = minfbe � uk�1( bf) : bf is a decomposition of fg; (26)

uk(f) = maxfbe � uk�1( bf) : bf is a decomposition of fg:
This can be proved by using conditions e2 and e3: Using this, we calculate uk and uk in an
example; which will be used in Section 8. In fact, the general existence result of hukik<�+1
mentioned above is based on this observation.

Example 5.1. Consider A and B of Example 3.1 with X = fy; y; yg: Recall �0(y) = �1(y) =
[1; 1]; �0(y) = �1(y) = [0; 0]; �0(y) = [1; 0]; �1(y) = [ 910 ;

7
10 ]: These values are the same as

u0;u1: Keeping �0 and �1 in mind, consider the two cases:

A : �2(y) = u2(y) = [
77
102
; 77
102
] and B : �02(y) = u

0
2(y) = [

83
102
; 83
102
]: (27)
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In these cases, we consider how to calculate u2(d) and u3(d) for d = 25
102
y � 75

102
y: We mainly

consider case A, and will mention how to adjust the calculation in case B:
The lottery d has the three types of decompositions t

10 � y +
5�2t
10 � [y; 510 ; y] +

5+t
10 � y for

t = 0; 1; 2 indicated in (12). Among these, the one with t = 2 gives u2 and u3; and the others
give wider intervals; since y is evaluated in a shallower layer through 5�2t

10 � [y; 510 ; y] than
t
10 � y;

it would be more accurate to use y than [y; 510 ; y]: Thus, we take the largest weight, t = 2; to y.
By this remark, the min and max operators in (26) become unnecessary.
First, since 5

10y �
5
10y itself is regarded as a unique decomposition, we have, by e1;

u1(
5
10y �

5
10y) = 5

10�0(y) +
5
10�0(y) = [

5
10 ; 0]; (28)

u2(
5
10y �

5
10y) = 5

10�1(y) +
5
10�1(y) = [

45
102
; 35
102
]:

Plugging these to the decomposition 2
10y �

1
10(

5
10y �

5
10y) �

7
10y, we have, by e1,

u2(d) = u2(
2
10y �

1
10(

5
10y �

5
10y) �

7
10y) =

2
10u1(y) +

1
10u1(

5
10y �

5
10y) +

7
10u1(y) (29)

= 2
10 [

9
10 ;

7
10 ] +

1
10 [

5
10 ; 0] +

1
10 [0; 0] = [

23
102
; 14
102
]:

This is compared with u2(c) = u2(
2
10y �

8
10y) = [ 210 ;

2
10 ]; and these imply that c and d are

incomparable with respect to %2. This incomparability will be interpreted in the experimental
environment in Section 8.
Incidentally, for the EU relation %�2 de�ned by (20) of Lemma 4.1, it holds that c ��2 d for

case A; since Ed(�2) = [1925
104
; 1925
104
] and Ec(�2) = [ 210 ;

2
10 ]: This comparability is possible since

(20) ignores the depth constraint; Axiom E3 and b3 are violated.
Based on the above results, we can calculate u3(d) for case � = 3 :

u3(d) = u3(
2
10y �

1
10(

5
10y �

5
10y) �

7
10y) =

2
10u2(y) +

1
10u2(

5
10y �

5
10y) +

7
10u2(y) (30)

= 2
10 [

77
102
; 77
102
] + 1

10 [
45
102
; 35
102
] + 7

10 [0; 0] = [
199
103
; 189
103
]:

In this case, c is strictly prefers to d; since u3(c) = u3( 210y �
8
10y) = [

2
10 ;

2
10 ]; though d is not yet

measurable. Incidentally, d becomes measurable for k � 4; since uk(d) = [1925
104
; 1925
104
]; and c is

strictly preferred to d:
Consider case B : u02(y) = [ 83

102
; 83
102
] for � = 2: Then, the above calculation (29) for u2(d)

remains the same for u02(d) with u
0
2(d) = [

23
102
; 14
102
], but for � = 3; u03(d) is calculated as follows:

u03(d) = u03(
2
10y �

1
10(

5
10y �

5
10y) �

7
10y) =

2
10u2(y) +

1
10u2(

5
10y �

5
10y) +

7
10u2(y) (31)

= 2
10 [

83
102
; 83
102
] + 1

10 [
45
102
; 35
102
] + 7

10 [0; 0] = [
211
103
; 201
103
]

Here, d is strictly preferred to c: For k � 4; u0k(d) = [2075104
; 2075
104
]; d is also strictly preferred to c:

5.2 Proofs

First, we show that the condition corresponding to Axiom E3 holds for hukik<�+1.

Lemma 5.1. Let k < �+1: For any f; g 2 Lk(X) with uk(f) �I uk(g); there is an h 2 Bk(y; y)
such that uk(f) �I uk(h) �I uk(g); and �k(f) �I �k(h) or f; h have decompositions bf;bh with
uk�1( bf) �I uk�1(bh), and the same holds for h; g:7

7When f or g belongs to Bk(y; y); h can be f or g; respectively.
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Proof. Let f; g 2 Lk(X) with uk(f) �I uk(g); i.e., uk(f) � uk(g): If (f; g) 2 Dk; then,
uk(f) � uk(g) is equivalent to �k(f) � �k(g) by e0: We consider the case (f; g) 2 Lk(X)�Dk:

By e3, there are �f and �g in such �k that uk(f) = �f and uk(g) = �g: Then, �f � �g:
Now, let h = [y; �f ; y]: Then

uk(f) = uk(h) = �f � �g = uk(g): (32)

Thus, it remains to show that (f; h) and (h; g) have decompositions ( bf;bh) and (bh0; bg) such that
uk�1( bf) = uk�1(bh) and uk�1(bh�) � uk�1(bg): Note that the second holds in inequality:

By e2; there is a decomposition of bf of f such that be � uk�1( bf) = uk(f): By e3, there
are �f1 ; :::; �f` in �k such that uk�1(ft) = �ft for t � `: Let ht = [y; �ft ; y] for t � ` and letbh = (h1; :::; h`): Since bf 2 Lk�1(X)

`�1; bh = (h1; :::; h`) belongs to Lk�1(X)`�1: Since �f =

uk(f) = be � uk�1( bf) =P 1
` � �ft ; we have h = [y; �f ; y] =

P
t
1
` � ht: Hence, bh is a decomposition

of h with uk�1( bf) = uk�1(bh): This implies uk�1( bf) �I uk�1(bh):
In the same manner, we can show that (h; g) has decompositions (bh0; bg) such that uk�1(bh0) =

uk�1(bg): Since Pt
1
` � �ft = �f � �g =

P
t
1
` � �gt ; we �nd (�

�
g1 ; :::; �

�
g`
) so that

P
t �
�
gt =

P
t �ft

and �
�
gt � �gt for all t � `: Then, bh� = ([y; �

�
gt ; y] : t � `) is a decomposition of h and

uk�1(bh�) � uk�1(bg): Thus, uk�1(bh) �I uk�1(bg):�
Proof of Proposition 5.1. We prove by induction that uk = [uk; uk] = [vk; vk] = vk for all
k < � + 1: For all k < � + 1; by e0, uk(f) = vk(f) = �k(f) for all f 2 Bk(y; y) [X: The case
k = 0 is the induction base.
Suppose that uk�1 = vk�1: First, we show that for any f; g 2 Lk(X); uk(f) �I uk(g) ()

vk(f) �I vk(g): Let uk(f) �I uk(g): By Lemma 5.1; there is an h 2 Bk(y; y) with uk(f) �I
uk(h) �I uk(g) such that �k(f) �I �k(h) or f; h have decompositions bf;bh with uk�1( bf) �I
uk�1(bh); and the same holds for h; g: By the above remark, �k(f) �I �k(h) implies vk(f) �I
vk(h): By the induction hypothesis, we have vk�1( bf) �I vk�1(bh): By e1; we have vk(f) �I vk(h):
Similarly, we have vk(h) �I vk(g): By transitivity of �I , we have vk(f) �I vk(g): The converse
can be proved in the symmetric manner. Thus, uk(f) �I uk(g) if and only if vk(f) �I vk(g):
It remains to show that uk(f) = vk(f) and uk(f) = vk(f) for all f 2 Lk(X): By e3; there

are �; �0 2 �k such that uk(f) = �k([y; �; y]) and vk(f) = �k([y; �
0; y]): If � 6= �0; say � > �0;

then, by b1 and e0; uk(f) = �k([y; �; y]) > �k([y; �
0; y]) = uk([y; �

0; y]): By the result of the
above paragraph, this implies vk(f) > vk([y; �

0; y]); which contradicts vk(f) = �k([y; �
0; y]) =

vk([y; �
0; y]): Hence, � = �0; i.e., uk(f) = vk(f). The proof of uk(f) = vk(f) is symmetric.�

Proof of Theorem 5.1. (If ): Let hukik<�+1 be the extended utility stream satisfying e0 to
e3: Let %k be the binary relation over Lk(X) de�ned by (25) and its restriction to Dk by Dk :
Since h�kik<�+1 is the restriction of hukik<�+1 to hBk(y; y)[Xik<�+1; h�kik<�+1 satis�es b0 to
b3 by Theorem 3.1: Thus, we have E0. It remains to show that h%kik<�+1 satis�es E1 to E3.
Since the relation �I over fuk(f) : f 2 Lk(X)g is transitive, E2 is satis�ed.

Consider E1. Let bf 2 Lk�1(X)
` and bg 2 Bk�1(y; y)

` be decompositions of f 2 Lk(X)

and g 2 Bk(y; y): Suppose that bf %k�1 bg; which implies uk�1( bf) �I uk�1(bg) by (25): Thus,be � uk�1( bf) � be � uk�1(bg) = uk�1(be � bg) = uk(g): By e1; we have uk(f) � be � uk�1( bf): Hence,
uk(f) �I uk(g) : thus, f %k g by (25). The other case of bg %k�1 bf is symmetric.
Axiom E3 follows from Lemma 5.1.

(Only-if ): Suppose that h%kik<�+1 satis�es Axioms E0 to E3 with its base stream hDkik<�+1:
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Then, hDkik<�+1 satis�es B0 to B3 by E0. We de�ne hukik<�+1 = h[uk; uk]ik<�+1 as follows: for
each f 2 Lk(X);

uk(f) = minf� 2 �k : [y; �; y] %k fg; (33)

uk(f) = maxf� 2 �k : f %k [y; �; y]g:

Because of Lemma 4.1.(2), these functions are well de�ned. Let f; g 2 Lk(X): Let uk(f) = �f
and uk(g) = �g: Then, uk(f) �I uk(g) if and only if �f � �g: This implies that uk(f) �I uk(g)
if and only if f %k g: Indeed, if uk(f) �I uk(g); then f %k [y; �f ; y] %k [y; �g; y] %k g; i.e.,
f %k g by E2. Conversely, let f %k g: By (33), uk(f) � uk(g):
When f 2 Bk(y; y); we have uk(f) = �f = �k(f): Thus, e0 holds. Consider e1 to e3:

e1 : Let bf = (f1; :::; f`) 2 Lk�1(X)`: By (33) for k � 1, uk�1(ft) is written as �t 2 �k�1 for all
t = 1; :::; `: Let b� = (�1; :::; �`): In this case, be � uk�1( bf) = be � b� 2 �k. By (33) for k; it holds
that be � uk�1( bf) = be � b� � uk(be � bf): The other assertion that uk(be � bf) � be � uk�1( bf) is similarly
proved.

e2 : Let us prove that be� uk�1( bf) = be � b� = uk(f) for some decomposition bf of f: The other
half can be proved similarly. By (33); we have uk(f) = �f 2 �k: Let h = [y; �f ; y]: By (33), h is
the least preferred among h0 %k f , where B1 and E2 are used. By (22), the preference h %k f
is derived by E1, i.e., there are decompositions bh; bf of h; f such that bh %k�1 bf and h = be � bh;
f = be � bf . Then, each ft of bf has h0t such that ut�1(ft) = ut�1(h0t) = �0ft : By (33) and bh %k�1 bf;
we have bh %k�1 bh0: Since uk(h) = be � uk�1(bh) � be � uk�1(bh0) = be � uk�1( bf) � uk(h); we have
uk(f) = uk(h) = uk�1( bf): The other half can be proved similarly.
e3 : By (33), uk(x) = � 2 �k and uk(x) = �0 2 �k for some � and �0 in �k. Hence, uk(x) =
uk([y; �; y]) and uk(x) = uk([y; �

0; y]): This is the conclusion of e2:�

6 Measurability, Comparability, and the EU hypothesis

Our main concern is the behavior of the preference stream h%kik<�+1 and utility stream hukik<�+1
for a �nite �: Here, we study the concepts of measurable and non-measurable lotteries; incom-
parabilities are intimately related to non-measurable lotteries. Conversely, comparability and
the EU hypothesis hold for measurable lotteries. In this section, � is still allowed to be �nite
or in�nite. In the following, we assume that h%kik<�+1 satis�es E0 to E3; relative to a base
preference stream hDkik<�+1 satisfying B0 to B3:

6.1 Measurable and non-measurable lotteries

We de�ne the set Mk for k < �+ 1 by

Mk = ff 2 Lk(X) : f �k g for some g = [y; �; y] 2 Bk(y; y)g: (34)

Each f 2 Mk is precisely measured by the benchmark scale Bk(y; y); while measurement of
f 2 Lk(X)�Mk contains some indeterminacy. We call f 2Mk measurable and f 2 Lk(X)�Mk

non-measurable: Here, we study measurability and non-measurability.

Under our axioms, it holds that

for each f 2Mk; the probability weight � with f �k [y; �; y] is unique; (35)
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which we denote by �f : In Mk, no incomparabilities are observed; that is, if f; g 2 Mk with
�f � �g; then f �k [y; �f ; y] %k [y; �g; y] �k g: It also holds by Proposition 4.1.(1) that

Mk �Mk+1 for all k < �+ 1: (36)

To analyze the structure of Mk; we de�ne Yk = Mk \ X for all k < � + 1: By (36), we have
Yk � Yk+1 for all k < � + 1: It follows from E0� that y 2 Yk if and only if y and [y; �y; y] are
indi¤erent with respect to Dk; pure alternative y is precisely measure by the benchmark scale.
Measurability for a pure alternative is a property of a base preference relation Dk : In Example
3.1, Y0 = Y1 = fy; yg and Y2 = X = fy; y; yg in A and B of Fig.2, but in C, Yk = fy; yg even
when � =1; i.e., y becomes never measurable:

The following lemma is about the structure of Mk:

Lemma 6.1 (1): If f 2 Mk; then f(y) = 0 or 1 for all y 2 Yk � Yk�1 and f(y) = 0 for all
y 2 X � Yk; where Y�1 = ;:
(2): Mk � Lk(Yk) for all k < �+ 1:

One implication from Lemma 6.1.(1) is; for any f 2 Mk with �(f) > 0; if f(x) > 0; then
x 2 Yk�1; which will be used in the proof of Theorem 6.1. Lemma 6.1.(2) states that we can
concentrate on Lk(Yk) for consideration of Mk:

As indicated in (i) and (ii) in Section 1, each lottery f 2 Lk(Yk) involves two types of
depths, i.e., the measurement depth �(�y) of y 2 Yk with f(y) > 0 and the depth �(f(y)) of the
probability value f(y): In fact, measurability is characterized by their sum:

Theorem 6.1 (Measurability criterion). Let k < �+1 and f 2 Lk(X): Let kf =maxf�(�y)+
�(f(y)) : f(y) > 0g: Then,

f 2Mk if and only if kf � k: (37)

We can read (37) in two ways. One is to �x a lottery f 2 Lk(Yk) but to change (increase)
k: Any lottery f in L1(Y ) = [k<1Lk(Y ) = [k<1Lk(Yk) becomes measurable when k is large
enough: For example, when f = 25

102
y� 75

102
y and y �2 [y; 83102 ; y]; we have kf = �(

83
102
)+�( 25

102
) = 4;

by (37), f 2Mk if and only if k � 4: The other reading of (37) is to �x a k and to change f . If
�(�y) > 0 for some y 2 Yk; there is an f 2 Lk(Yk) such that �(�y) + �(f(y)) > k; thus f =2 Mk

by (37). Thus, non-measurable lotteries exist as long as fy; yg ( Yk:

Incomparability 1k and indi¤erence �k may appear similar: indeed, Shafer [28], p.469,
discussed whether 1k and �k could be de�ned together and pointed out a di¢ culty from the
constructive point of view. Theorem 6.2 gives a clear distinction between �k and 1k : By E2,
�k is transitive, but 1k is not; indeed, we have distinct f; h 2Mk with f �k h; but by Theorem
6.2, for any g =2Mk; f 1k g and g 1k h: Also, re�exivity holds only for the measurable domain
Mk:

Theorem 6.2. Let f; g 2 Lk(X):
(1) (No indi¤erences outside Mk): If f =2Mk; then f �k g:
(2) (Re�exivity): f �k f if and only if f 2Mk:

6.2 EU hypothesis for measurable lotteries

Our theory is closely related to the expected utility hypothesis. It is explicitly assumed for the
benchmark scale, i.e., B1 and b1: For the other part, it is only partially observed by looking at
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conditions e1; e2 for hukik<�+1 as well as Axiom E1 for preference relations h%kik<�+1: In fact,
the EU hypothesis holds for the measurable domain Mk; which is now shown.

Let hukik<�+1 be the extended utility stream satisfying e0 to e3; given Theorem 5.1, relative
to a base utility stream h�kik<�+1: It follows from (34) and (25) that for any f 2 Lk(X);

uk(f) = uk(f) if and only if f 2Mk: (38)

Following our convention, we drop the upper and lower bars and write uk(f) for f 2 Mk:
In fact, uk(f) is expressed as the expected utility value of the base utility function �k; recall
�k = �k = �k over Yk because Yk =Mk \X:
Theorem 6.3 (EU hypothesis in the measurable domain). For each k < �+ 1; uk(f) =
Ef (�k) for all f 2Mk:

Thus, the EU hypothesis holds for measurable lotteries, which gives a simple method of
calculation of uk(f): On the other hand, by (34) and (25), it holds that

uk(f) > uk(f) if and only if f 2 Lk(X)�Mk: (39)

Thus, the EU hypothesis does not hold in the simple form for non-measurable lotteries.

6.3 Proofs

Proof of Lemma 6.1. We show (1) and (2) by induction on k � 0: Let k = 0: Since Y0 =M0;
we have f 2 M0 = Y0 = L0(Y0); which implies (1) and (2): Suppose the induction hypothesis
that (1) and (2) hold for k: Now, we take any f 2Mk+1:
Suppose, on the contrary, that 0 < f(yo) < 1 for some yo 2 Yk+1 � Yk or 0 < f(yo) � 1

for some yo 2 X � Yk+1: If f(yo) = 1 and yo 2 X � Yk+1; by (35), there is no g 2 Bk+1(y; y)
such that f �k+1 g, a contradiction to f 2 Mk+1: Hence, we can assume 0 < f(yo) < 1: Since
yo 2 Yk+1 � Yk or yo 2 X � Yk+1; yo di¤ers from y and y: Hence, f =2 Bk+1(y; y):

By f 2 Mk+1; we have a g 2 Bk+1(y; y) with f �k+1 g: Since 0 < f(yo) < 1; it holds
that f 2 Lk+1(X) � X: Hence, E3 is applied to f �k+1 g with the middle h = g; we have
decompositions bf; bg of f; g with bf %k bg: If one preference was strict, then f �k+1 g by E1�;
impossible; hence bf �k bg: By the induction hypothesis, we have bf 2 Lk(Yk)`: Thus, by E1,
f = be � bf 2 Lk+1(Yk): Hence, we have the assertion (1) for k+1. This implies (2) for k+1; that
is, any f 2Mk+1 has a support in Yk+1:�
Proof of Theorem 6.1. We prove (37) by induction on k � 0: Let k = 0: Since Y0 = L0(Y0) =
M0, it holds that �(�f ) = �(f(y)) = 0 for all f 2 L0(Y0) = M0: Thus, (37) holds for k = 0:
Now, suppose the induction hypothesis that (37) holds for k: We prove (37) for k + 1: In the
following, let f 2 Lk+1(Yk+1):
Let f(y) > 0 for some y 2 Yk+1�Yk: By Lemma 6.1.(1), f(y) = 1; i.e., f = y and �(f(y)) = 0:

Since y 2 Yk+1 � Yk; we have f = y 2 Yk+1 �Mk+1 and �(�y) = k + 1: In this sense, f 2Mk+1

() �(�y) + �(f(y)) = k + 1; i.e., (37) holds for k + 1:
Now, we take any f 2 Lk+1(Yk+1) satisfying

f(y) = 0 for any y 2 Yk+1 � Yk: (40)

We prove (a): kf � k + 1 > 0) f 2Mk+1; and (b): its converse.

(a): Let kf � k + 1: Let k� = maxf�(f(y)) : y 2 Yk+1g: Then, k� � k + 1: Let k� = 0: Then,
f = y for some y 2 Yk+1; hence, f = y 2 Yk+1 �Mk+1:
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Let kf < k + 1: By the induction hypothesis, we have f 2 Mk: Now, let kf = k + 1: Then,
by Lemma 2.1, we have a decomposition bf of f such that bf 2 Lk(Yk+1) and for all t � `;
�(ft(x)) < �(f(x)) for all x 2 Yk+1 with f(x) > 0: This implies kft < kf for t = 1; :::; `: Thus,
by the induction hypothesis, we have ft 2 Mk for t = 1; :::; `: Thus, we have gt 2 Bk(y; y) with
ft �k gt for t = 1; :::;m: By E1, we have f = be� bf �k+1 be�bg 2 Bk+1(y; y). This means f 2Mk+1:

(b): Let f 2Mk+1: If f 2Mk; we have the right-hand side of (37) by the induction hypothesis.
Hence, we can suppose f 2 Mk+1 �Mk: Also, we can assume f =2 Bk+1(y; y); indeed, if f 2
Bk+1(y; y); i.e., f = [y; �f ; y] for some �f 2 �k+1; we have maxf�(�x) + �(f(x)) : f(x) > 0g
= �(�f ) � k + 1: Also, it holds that 0 < f(y) < 1 for some y 2 Yk: Indeed, by (40), we have
0 < f(y) for some y 2 Yk and f(y) < 1 by f 2Mk+1 �Mk:

Since f 2 Mk+1 � Mk; we have f �k+1 g for some g 2 Bk+1(y; y): By E3, there are

decompositions bf and bg of f; g; and bf �k bg: Thus, bf 2 (Mk)
`: By the induction hypothesis,

we have �(�y) + �(ft(y)) � k for all y 2 Yk with ft(y) > 0 and t = 1; :::; `: Since f = be� bf; it
holds that �(f(y)) � maxt�` �(ft(y)) + 1 for all y 2 Yk with ft(y) > 0: Since �(f(y)) = 0 for all
y 2 Yk+1 � Yk by (40), we have �(�y) + �(f(y)) � k + 1 for all y 2 Yk+1 with f(y) > 0:�
Proof of Theorem 6.2. (1): Suppose that f =2 Mk and g 2 Mk: Then, g �k [y; �g; y]: If
f �k g; then f 2 Mk by E2; a contradiction. Hence, f �k g: Now, let f; g =2 Mk: Suppose
f �k g: By Lemma 5.1, f %k h %k g for some h 2 Bk(y; y) but g %k h0 %k f for some
h0 2 Bk(y; y): By E2, this implies f �k h �k g and h = h0: This is impossible since f; g =2 Mk:
Hence, f �k g:
(2): The if part is by (34) and E2. The only-if part (contrapositive) follows from (1).�
Proof of Theorem 6.3. When f 2 Bk(y; y) [ X; we have, by e0, uk(f) = uk(f) = �k(f); if
f = [y; �; y] 2 Bk(y; y); then, by b1; �k(f) = ��k(y)+ (1� �)�k(y) = Ef (�k); and if f = x 2 X;
then �k(f) = 1� �k(x) = Ef (�k): Now, we show the assertion by induction on k < �+ 1: The
case k = 0 is included in the case f 2 Bk(y; y) [X; k < �+ 1:
Suppose that the assertion holds for k � 1: Let f 2 Mk: We assume that f =2 Bk(y; y) [X:

Then, �(f) > 0; as remarked after Lemma 6.1, if f(x) > 0; then x 2 Yk�1; so, �k(x) = �k�1(x):
Since f 2 Mk; we have f �k h for some h 2 Bk(y; y): By (22), this f �k h is derived by
E1 from the decompositions bf and bh of f and h: By E1�; it holds that bf �k�1 bh: Hence, bf
2 (Mk�1)

`: By the induction hypothesis, we have uk�1(ft) = uk�1(ft) = Eft(�k�1) for t � `:

Thus, by e1; be � uk�1( bf) � uk(f) � uk(f) � be � uk�1( bf); thus these are all equal. Now, we have
uk(f) = be � uk�1( bf) = Pt

1
`Eft(�k�1) = Ef (�k):�

7 Toward the Classical EU Theory

Up to Section 4, we have focussed on the development of our theory from the constructive point
of view. Theorem 4.1 re�ects this constructiveness, which is extracted by Axiom E3 as well as
condition b3: These are constraints on depths and interact on a �nite cognitive bound. When we
delete these constraints, we go to the classical EU theory. Nevertheless, we have two steps to the
classical EU theory; the �rst is to go to the case � =1 with Y = [k<1Yk; where Yk =Mk \X
for k < 1: This Y is typically a proper subset of X so that each y 2 Y is exactly measured
at some �nite k: The second is to allow all real number probabilities for lotteries, i.e., we take
lotteries in L[0;1](Y ): In this section, we focus on the set Y and give only a remark on the case
of X:
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7.1 Two steps to the classical EU theory

Let h%kik<1 be a preference stream satisfying E0 to E2; relative to a base preference stream
hDkik<1 satisfying B0 to B3. Note that Axiom E3 is not assumed in this section. Also, let
h�kik<1 be a base utility stream satisfying (18) of Theorem 3.1: Note that h�kik<1 satis�es
conditions b0 to b3:

The limit preference relation of h%kik<1 is de�ned to be %1 = [k<1 %k; that is, the decision
maker can go to a layer of any depth k for his preference comparisons. Let x 2 Y = [k<1Yk;
where Yk = fx 2 X : x and [y; �; y] are indi¤erent with respect to Dk for some � 2 �kg for each
k <1: By Theorem 3.2 (uniqueness), we normalize h�kik<1 so that for each x 2 Y;

x �k [y; �k(x); y] for some k <1: (41)

This holds over Y: Now, we de�ne, for each x 2 X;

�1(x) = lim
k!1

�k(x) and �1(x) = lim
k!1

�k(x): (42)

These are well de�ned by b3: In particular, when x 2 Y; there is a kx such that �k(x) = �k(x) for
all k � kx: For a large enough k; �k(x) = �k(x): Hence, we can write �1(x) = �1(x) = �1(x)
for x 2 Y: Note that these de�nitions do not need Axiom E3 at all.

We have the following theorem.

Theorem 7.1 (EU hypothesis without cognitive bounds). For all f; g 2 L1(Y );

f %1 g if and only if Ef (�1) � Eg(�1): (43)

Thus, without the cognitive restriction, the EU hypothesis holds for the limit relation %1
over the set of lotteries L1(Y ) = [k<1Lk(Y ) = [k<1Lk(Yk): It is important to notice that for
each pair f; g 2 L1(Y ); the equivalence (43) holds for a large enough k; i.e., (43) is written as
f %k g if and only if Ef (�k) � Eg(�k):When Y is a �nite set, the EU hypothesis holds for large
k uniform over Y: This theorem is proved without a cognitive bound �; Axiom E3 and condition
e3 are dropped. Thus, this theorem di¤ers from Theorem 6.3.

Now, we compare directly the pair (L1(Y );%1) with the classical EU theory with Axioms
NM0 to NM2 in Section 2.1. First, we need to replace the entire set X of pure alternatives by
the set Y of measurable pure alternatives. Then, Axiom NM0 (completeness and transitivity)
follows from (43). Axiom NM1 should be weakened, since �1 is not closed with division;

NM1o : for any f 2 L1(Y ); there is a � 2 �1 such that f �1 [y; �; y]:

That is, for any f 2 L1(Y ); there is some k <1 such that f �k [y; �; y] for some � 2 �k: This
is, more or less, the de�nition of measurability (34). Axiom NM2 needs to restrict the set of
scalars to �1 = [k<1�k: We summarize this observation.
Theorem 7.2 (Axioms NM0, NM1o; NM2 for (L1(Y );%1)). The system (L1(Y );%1)
satis�es Axioms NM0, NM1o; and NM2 (with �1 = [k<1�k).

This is interpreted as meaning that the axiomatic system NM0, NM1o; NM2 are an abbre-
viated fragment of our theory.

The next step is to jump to L[0;1](Y ) and to extend the relation %1 to L[0;1](Y ): The exten-
sion is uniquely determined and it is a relation in the classical theory. However, this extension
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involves non-constructive components; L[0;1](Y ) is uncountable but L1(Y ) is countable. First,
we have the following lemma:

Lemma 7.1. L1(Y ) is a dense subset of L[0;1](Y ):

Now, we de�ne a binary relation %E over L[0;1](Y ) by: for any f; g 2 L[0;1](Y );

f %E g if and only if Ef (�1) � Eg(�1): (44)

We have the following theorem.

Theorem 7.3 (Unique extension). The relation %E de�ned by (44) is a unique extension of
%1 to L[0;1](Y ) with NM0 to NM2; that is,

(1): for any f; g 2 L1(Y ); f %1 g if and only if f %E g:
(2): %E satis�es NM0 to NM2.

This theorem is proved by the denseness of L1(Y ) in L[0;1](Y ) and the continuity of Ef (�1)
with respect to f relative to point-wise convergence, where Ef (�1) is continuous i¤ for any se-
quence ff�g in L[0;1](Y ) and f 2 L[0;1](Y ); if f�(y)! f(y) for each y 2 Y; then lim�!1Ef� (�1) =
Ef (�1): The proof of the theorem may appear to be constructive, but the last extension step
to %E is non-constructive, since probabilities newly involved in f 2 L[0;1](Y )� L1(Y ) may be
given only in a nonconstructive manner.8

In (42), the limit utility functions �1 and �1 are de�ned over X: The set X is divided into
XE = fx 2 X : �1(x) = �1(x)g and XS = fx 2 X : �1(x) > �1(x)g: The set Y = [k<1Yk
may be a proper subset of XE : We may ask whether the results given above could hold for XE .
In the above results, the limit can be regarded as large �nite, but XE � Y and XS may not
enjoy such �nite approximation of the limit. For example, it would be possible �k(x) > �k(x)
for all k < 1 but �1(x) = �1(x); here, comparability may appear suddenly in limit. Hence,
this situation di¤ers from Y = [k<1Yk:

We may have more subtle relations from large �nite worlds to the limit. Since the conver-
gences in XE and XS are monotone but arbitrary, the full real number theory appear here (see
Mendelson [23], p.217). This is far from our original motivation of bounded rationality. For the
entire understanding, however, it would be helpful to see how our theory behaves in XE and XS
for � =1: This is an open problem.

7.2 Proofs

Proof of Theorem 7.1. Let Y 0 be any �nite subset of Y:We prove this by induction on k <1
that

for any f 2 Lk(Y 0); f �1 [y;Ef (�1); y] (45)

Let f 2 L1(Y ) = [k<1Lk(Y ): Since f to has a �nite support S; f belongs to Lk(Y 0) for
some �nite subset Y 0 of Y: Hence, by (45), f �1 [y;Ef (�1); y]: Now, recall that for some
ko; Ef (�1) = Ef (�k) for all k � ko: Let f; g 2 L1(Y ): For large enough k; f %1 g if and
only if [y;Ef (�1); y] �1 f %1 g �1 [y;Ef (�1); y] if and only if [y;Ef (�k); y] �k f %k

8We avoid the use of a topology for Axiom NM1. This does not change the content of classical EU theory as
long as the set of lotteries is given as L[0;1](Y ): However, NM1 allows to restrict it to L[0;1]\Q(Y ): In this case,
the extension result given in Theorem 7.3 is regarded as approximately constructive in the theoretical sense.
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g �k [y;Ef (�1); y] if and only if [y;Ef (�k); y] %k [y;Ef (�k); y] if and only if Ef (�k) � Ef (�k)
if and only if Ef (�1) � Ef (�1): Here, we use B1 and E2.

Now, we show (45) by induction on k < 1: For k = 0; f 2 L0(Y 0) is a pure alternative
x 2 Y 0: Hence, x �k [y; �k(x); y] for some k; i.e., x �k [y;Ex(�k); y] = [y;Ex(�1); y]: Suppose
the induction hypothesis that (45) holds for k: Let f 2 Lk+1(Y 0) � Lk(Y 0): By Lemma 2.1,
there is a decomposition bf = (f1; :::; fn) of f: Since each ft is in Lk(Y 0); it holds that ft �1
[y;Eft(�1); y]: This is written as: for some k < 1; ft �k [y;Eft(�k); y] for all t = 1; :::; `:

Thus, by E1, we have f = be � bf �k be � ([y;Ef1(�k); y]; :::; [y;Ef`(�k); y]) = [y;Pt
1
`Eft(�k); y] =

[y;Ebe� bf (�k); y] = [y;Ef (�k); y]: Hence, f �1 [y;Ef (�1); y]:�

Proof of Theorem 7.2. By (43), Axiom NM0 holds for (L1(Y );%1): As mentioned, NM1o
follows from (34). We can prove ID1 of NM2 by Theorem 7.1 that if f; g; h 2 L1(Y ) and
� 2 �1; if f �1 g; then �f � (1� �)h �1 �g � (1� �)h: ID2 is similar. �
Proof of Lemma 7.1. Take any f 2 L[0;1](Y ): This f has a �nite support S = fy0; y1; :::; ymg
in Y with f(yt) > 0 for t = 0; :::;m: We construct a sequence fg�g1�=�o so that g� 2 L1(Y ) for
� � �0; and for each y 2 Y; g�(y) ! f(y) as � ! 1: When m = 0; it su¢ ces to let g� = f for
all � � 0: In the following, we assume m � 1:
For any natural number �; let z�;t = maxf�t 2 �� : �t � f(yt)g for all t = 0; :::;m: Since S is

�xed and �nite, there is a �o such that for all � � �o; 1
`� � z�;t � 1�

1
`� for all t = 0; :::;m� 1

and 1
`� � 1�

P
t<m z�;t � 1� m

`� : Also, we de�ne u�;0; :::; u�;m by

u�;t =

�
z�;t if t < m
1�

P
t<m z�;t if t = m:

Then,
P
t�m u�;t = 1 and u�;t 2 �� for all t � m� 1: Since 1

`� � 1�
P
t<m z�;t = u�;m � 1� m

`� ;
we have u�;m 2 �� :
We de�ne fg�g1�=�o by

g�(y) =

�
0 if y 2 Y � S
u�;t if y = yt 2 S:

Then, each g� belongs to L�(Y ): For each t � m� 1; since g�(yt) = u�;t � f(yt) < u�;t + 1
`� =

g�(yt)+
1
`� for all � � �o; we have lim�!1 g

�(yt) = f(yt): Since g�(ym)�m
`� = 1�

P
t<m g

�(yt)�m
`�

� 1�
P
t<m f(yt) = f(ym) � 1�

P
t<m g

�(yt) = g
�(ym) for all � � �o: Thus, lim�!1 g�(ym) =

f(ym):�
Proof of Theorem 7.3.(1): Let f; g 2 L1(Y ): Then, if k is large enough; then f; g 2 Lk(Yk)
and �k(x) = �1(x) for all x 2 Yk: Now, suppose f %1 g: Then f %k g; equivalently, Ef (�1) �
Eg(�1); which implies f %E g: Conversely, if f %E g; then Ef (�1) � Eg(�1); equivalently,
f %k g for a large enough k: Thus, f %1 g:

(2): The relation %E is a complete preordering, i.e., it satis�es NM0. Let us see NM1; let
f %E h %E g: Then, Ef (�1) � Eh(�1) � Eg(�1): Choose a � 2 [0; 1] so that Eh(�1) =
�Ef (�1)+ (1 � �)Eg(�1): Then, E�f+(1��)g(�1) = �Eh(�1) = (1 � �)Eg(�1) = Eh(�1):
Finally, we can see NM2.ID1: let f %E g; i.e., Ef (�1) � Eg(�1): Hence, for any � 2 [0; 1]
and h 2 L[0;1](Y ); we have E�f+(1��)h(�1) = �Ef (�1) + (1 � �)Eh(�1) � �Eg(�1) + (1 �
�)Eh(�1) = E�g+(1��)h(�1); i.e., �f + (1 � �)h %E �g + (1 � �)h: Similarly, we can verify
NM2.ID2.
Finally, we show that %E is uniquely determined: Suppose that %0E is an extension of %1

in the sense of (1) and satis�es NM0 to NM2. Then, for any f; g 2 L1(Y ); f %E g if and only
if f %1 g;and by the supposition, f %01 g if and only if Ef (�1) � Eg(�1): Hence, for any
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f; g 2 L1(Y ); f %0E g if and only if Ef (�1) � Eg(�1):
Now, let f; g 2 L[0;1](Y ) with f %0E g: By Lemma 7.1, there are sequences ff�g and fg�g in

L1(Y ) such that they point-wise converge to f and g: As stated above, Eh(�1) is continuous
with respect to h. Then, Ef (�1) = lim�!1Ef� (�1) � lim�!1Eg� (�1) = Eg(�1): We have
shown that that for any f; g 2 L[0;1](Y ); Ef (�1) � Eg(�1) if and only if f %0E g: Thus, f %E g
if and only if f %0E g:�

8 An Application to a Kahneman-Tversky Example

We apply our theory to an experimental result reported in Kahneman-Tversky [15]. The experi-
mental instance is formulated as Examples 3.1 and 5.1, and the relevant lotteries are c = [y; 210 ; y]
and d = 25

100y�
75
100y; which are incomparable for people with � = 2: It is the key how the observed

behaviors are connected to the incomparabilities predicted in our theory. First, we look at the
Kahneman-Tversky example, and then we make a certain postulate to have such a connection.

In the Kahneman-Tversky example, 95 subjects were asked to choose one from lotteries a
and b; and one from c and d: In the �rst problem, 20% chose a; and 80% chose b: In the second,
65% chose c; and the remaining chose d:

a = [4000; 80
102
; 0] (20%) vs. b = 3000 with probability 1 (80%)

c = [4000; 20
102
; 0] (65%) vs. d = [3000; 25

102
; 0] (35%):

The case of modal choices; denoted by b ^ c; contradicts the classical EU theory. Indeed, these
choices are expressed in terms of expected utilities as:

0:80u(4000) + 0:20u(0) < u(3000) (46)

0:20u(4000) + 0:80u(0) > 0:25u(3000) + 0:75u(0):

Normalizing u(�) with u(0) = 0; and multiplying 4 to the second inequality, we have the opposite
inequality of the �rst, a contradiction. The other case violating the classical EU theory is a^ d:
It predicts the outcomes a^ c and b^ d; depending upon the value u(3000): This is a variant of
�common ratio e¤ect�discussed in the literature, which is brie�y discussed in Remark 8.1.

In [15], no more information is mentioned other than the above percentages. Consider three
possible distributions of the answers in terms of percentages over the four cases. In Table 8.1, the
�rst, second, or third entry in each cell is the percentage derived by assuming 65%; 52%; or 45%
for b^c: The �rst 65% is the maximum possibility for b^c; which leads to 0% for a^c; and these
determine the 20% for a^ d and 15% for b^ d: The second entries are based on the assumption
that the choices of b and c are stochastically independent, for example, 52 = (0:80� 0:65)� 100
for b ^ c. In the third entries, 45% is the minimum possibility for b ^ c: We interpret this table
as meaning that each cell was observed at a signi�cant level.

Table 8.1
c : 65% d : 35%

a : 20% a ^ c : EU: 0 ==13==20 a ^ d : paradox: 20==7== 0
b : 80% b ^ c : paradox: 65==52==45 b ^ d : EU: 15==28==35

Let y = 4000; y = 0; y = b = 3000; and � � 2. Consider two cases A: �2(y) = u2(y) =

[ 77
102
; 77
102
] and B : �2(y) = u2(y) = [ 83102 ;

83
102
] in Example 3.1, and recall that u2(a) = u2([y; 80102 ; y])
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= [ 80
102
; 80
102
]: Our theory predicts, independent of �; the choice a (or b) in case A (B):We assume

that the distribution of subjects over A and B is the same as that given in Table 8.1; i.e.,

A : B = 20% : 80%: (47)

We calculate the distribution of choices c and d based upon (47) and the distribution of �:

Comparisons between c and d depend upon �: In case � � 4; it follows from the calculation
results in Example 5.1 that in case A; c = [y; 210 ; y] �4 [y;

1925
104
; y] �4 [y; 25102 ; y] = d; so c is chosen,

and in case B ; d = [y; 2510 ; y] �4 [y;
2075
104
; y] �4 [y; 20102 ; y] = c; so d is chosen. In sum, our theory

predicts only the diagonal cells a ^ c and b ^ d for cases A and B ; which are the same as the
predictions of the classical EU theory. Thus, if all subjects have their cognitive bounds � � 4,
our theory is inconsistent with the experimental result.

Let � = 3: In case A, (30) states u3(c) = [ 210 ;
2
10 ] �I u3(d) = [

199
103
; 189
103
], and in case B, (31)

states u3(d) = [211
103
; 201
103
] �I u3(c) = [ 210 ;

2
10 ]: Hence, people with � = 3 behave in the same

manner as those with � � 4; though d is non-measurable.

In case � = 2: (29) states that people in cases A and B show the same base utility evaluation
of d; i.e., u2(d) = [ 23102 ;

14
102
]: Since u2(c) = [ 210 ;

2
10 ]; c and d are incomparable for these people.

Here, we �nd a con�ict between our theory and the reported experimental result in that
every subject chose one lottery in each of the above choice problems, while our theory states
that c and d are incomparable for people with � = 2: The issue is how a subject behaves for
the choice problem when the lotteries are incomparable for him. In such a situation, a person
would typically be forced (e.g., following social customs) to make a choice.9 Here, we assume
the following postulate for choice behavior for a subject having incomparabilities:

Postulate BH: each subject makes a random choice between c and d; following
the probabilities proportional to the distances from u2(c) to u2(d) and from u2(d) to u2(c):

Since u2(d) = [ 23102 ;
14
102
] and u2(c) = [ 210 ;

2
10 ]; the probabilities for the choices c and d are

2
10�

14
102

:
23
102
� 2

10 = 2 : 1:

Table 8.2
A B

� = 2 c : d = 2 : 1 c : d = 2 : 1

� � 3 c : d = 1 : 0 c : d = 0 : 1

Table 8.2 summarizes the above calculated results. To see the relationship between Table 8.1
and Table 8.2, we specify the distribution of people over � = 2; 3; :::We consider two distributions
of �

r2 : r+3 = 9 : 1 and r2 : r+3 = 8 : 2;

where r3+ is the ratio of subjects with � � 3: These are adopted based on the idea that � = 3
is already quite precise, and the portion of people with � � 3 is already small.

9 It may be di¢ cult for people to show incapability of answering a question if it appears linguistically and
logically.clear. The present author knows only one person in our profession to refuse consciously to answer such
a question. Davis-Maschler [5], Sec.6 reported that when a number of game theorists/economists were asked
about their predictions about choices in a speci�c example in a cooperative game theory, Martin Shubik refused
to answer a questionnaire. It was his reason that the speci�cation in terms of cooperative game is not enough to
have a precise prediction for the question. Usually, people answer such a question, often unconsciously by �lling
up gaps.
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In the case r2 : r+3 = 9 : 1; the percentage of the choices a^c is calculated as 100� 2
10�(

9
10�

2
3

+ 1
10�1) = 14%: The corresponding percentages b^ c is calculated as 100�

8
10�(

9
10�

2
3 +

2
10�0) =

48%: Thus, we obtain Table 8.3. Table 8.4 is based on r2 : r+3 = 8 : 2:

Table 8.3: r2 : r+3 = 9 : 1 Table 8.4: r2 : r+3 = 8 : 2

c : 62% d : 38%

a : 20% a ^ c : 14 a ^ d : 6
b : 80% b ^ c : 48 b ^ d : 32

c : 55% d : 45%

a : 20% a ^ c : 12 a ^ d : 8
b : 80% b ^ c : 43 b ^ d : 37

The results in Tables 8.3 and 8.4 are quite compatible to Table 8.2. Perhaps, we should
admit that this is based upon our speci�cations of parameter values as well as Postulate BH. To
make stronger assertions, we need to think about more cases of parameter values and di¤erent
forms of BH. Nevertheless, this study may lead to observations on new aspects on bounded
rationality that � seems quite small.

Remark 8.1 (Common ratio e¤ect). The anomaly mentioned in (46) is often called the
�common ratio e¤ect�(cf. Prelec [25], van de Kuilen-Wakker [22], and their references). It refers
to the observation such as the fact that the opposite of the second inequality in (46) is obtained
from the �rst with multiplication of 1=4 = 25=102. In our theory for case B with � = 2; b is
strictly preferred to a, but c and d; which are obtained by the multiplication, are incomparable,
and the independence condition, NM2, is violated. We made the additional postulate BH to
connect incomparability to the observed behavior in the experiment. The postulate shows a
bigger tendency to choose c: In this sense, our result shows the �common ratio e¤ect�. However,
Postulate BH does not directly take depths for the choice behavior of agents. Perhaps, there
are di¤erent postulates taking depths of lotteries to explain the �common ratio e¤ect�more
directly. This is an open problem (see Section 9, [c]).

9 Conclusions

We developed the EU theory with probability grids and preference formation. The permissible
probabilities are restricted to the form of `-ary fractions up to a given cognitive bound �. We
divide the argument into the measurement step of preferences (utilities) on pure alternatives in
terms of the benchmark scale and the extension step to lotteries with more risks. We have taken
the constructive point of view of the decision maker for our theory. The development includes
the approach in terms of vector-valued utilities with the interval order due to Fishburn [8]. The
connections between these two approaches are shown to be equivalent in Sections 3 to 5. These
approaches are complementary; each may give better interpretations as well as some technical
merits over the other.

When the cognitive bound � is �nite, the resultant preference relation %� over L�(X) is
incomplete. We divided L�(X) into the set M� of measurable lotteries and its complement
L�(X)�M�. The resultant%� is complete overM�; while it involves incomparabilities in L�(X)�
M�. In Section 6, we studied the relationship between non-measurability and incomparability.
When there is no cognitive bound; our theory gives a complete preference relation over L1(Y );
enjoying the expected utility hypothesis: However, our main concern is still the bounded case
� <1:

In Section 8, we applied the incomparability results to the Allais paradox, speci�cally, to an
experimental example in Kahneman-Tversky [15]. We showed that the prediction of our theory
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is compatible with their experimental result; incomparabilities involved for � = 2 are crucial in
interpreting their result.

We have succeeded in considering aspects of bounded rationality in terms of probability grids
and cognitive bounds for EU theory. Although our theory allows us to consider cases from very
shallow depths to the case of no cognitive bounds, the aspects of bounded rationality are more
suitably seen with shallow �: When, however, we consider a speci�c decision problem, other
aspects of bounded rationality may manifest themselves. We should have more researches on
the aspects of bounded rationality in various directions. Here, we give a few possible research
agenda.

The �rst three are related to bounded rationality.

[a] Constructive method of particular preferences: We presented our theory following
Table 1.1 to derive all the preferences in a layer from the previous layer. However, the decision
maker may think about his preferences more locally focussing only on the target lotteries and
involved pure alternatives and relevant probabilities. This question could enable us to think
about complexities of preference formation. It may give a better understanding of how much
bounded rationalities are involved when only target lotteries are concerned.

[b] Preference formation in inductive game theory (IGT): This theory studies experien-
tial sources for individual knowledge/belief about the structure of the society (cf. Kaneko-Matsui
[18]). Our approach has some parallelism to the constructive approach to IGT, due to Kline et.al
[20]. In particular, Kaneko-Kline [17] studies the other person�s preferences from experiences of
the other�s position through role-switching. However, since it is assumed that experiences in-
clude numerical utility values, their treatment does not capture the partial understanding/non-
understanding of the other�s preferences/desires. Perhaps, lack of full experiences is closely
related to incomparability in our theory.
This is also related to the case-based decision theory by Gilboa-Schmeidler [12] as well as

to the frequentist interpretation of probability in the context of the EU theory (cf., Hu [14]).
The former concerns evaluations of probabilities for causality (course-e¤ect) from experiences,
and the latter is about probability as frequency of an event. Bounded memory capacity of a
person is relevant for both. Our theory with probability grids and cognitive bounds may give a
suggestion to analyze such problems.

[c]: Behavior under incomparability: When two lotteries are incomparable, our theory is
silent about a choice by the decision maker. In Section 8, we adopted postulate BH for choices by
subjects for incomparable lotteries c and d. These lotteries have di¤erent depths, i.e., �(c) = 1
and �(d) = 2: BH did not directly take depths into account. A di¤erent postulate should take
depths into account. Then, we may discuss �common ratio e¤ect�(Remark 8.1) in a more direct
manner and possibly Ellesberg�s paradox, too. This remains an open problem.

The other three comments are on possible generalizations of our theory.

[d]: Extensions of choices of benchmarks: In this paper, the benchmarks y and y are �xed.
The choice of the lower y could be natural, for example, the status quo. The choice of y may
be more temporary in nature. In general, there could be di¤erent benchmarks than the given
ones. We could consider two possible extensions of choices of the benchmarks.
One is a vertical extension: we take another pair of benchmarks y and y such as y D0 y D0

y D0 y: The new set of pure alternatives is given as X(y; y): The relation between the original
system and the new system is not simple. In the case of measurement of temperatures, the grids
for the Celsius system do not exactly correspond to those in the Fahrenheit system. We may
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need multiple bases ` for probability grids, and may have multiple preference systems even for
similar target problems.
The other extension is horizontal : For example, y is the present status quo for a student

facing a choice problem between the alternative y of going to work for a large company and the
alternative y of going to graduate school. He may not be able to make a comparison between
y and y; while he can make a comparison between detailed choices after the choice of y or y:
This involves incomparabilities di¤erent from those considered in this paper. These possible
extensions are open problems of importance.

[e]: Extensions of the probability grids ��: The above extensions may require more subtle
treatments of probability grids. A possibility is to extend �� to [``=2�`; that is, probability
grids having the denominators ` � ` are permissible. Then, the Celsius and Fahrenheit systems
of measuring temperatures are converted from each to the other. A question is how large ` is
required for such classes of problems.

[f ]: Subjective probability: Our theory is almost directly applied to Anscombe-Aumann�s
[1] theory of subjective probability and subjective utility. An event E such as tomorrow�s
weather is evaluated asking an essentially the same question as (1) in Section 1. We could have
an extension of our theory including the subjective probability theory. It could be di¢ cult to
have an extension corresponding to Savage [27], since no benchmark scale is assumed; perhaps,
Savage�s theory is not in our scope.

Thinking about these problems and extensions makes more progress on our expected utility
theory with probability grids and preference formation.

10 Appendix

We prepare the extension �� of the depth measure � to ��k = f� : � = �=`k for some nonnegative
integer �g; where � may be larger than `k. For � 2 ��k; we de�ne �

�(�) = k� i¤ k� 2 ��k� ���k� :
Then, ��(�) = �(�) if � 2 �k: The following facts will be used in the proof of Lemma 2.1:

if � = s+ � 0=`k for an integer s and � 0 < `k; then ��(�) = ��(� 0=`k); (48)

if ��(�); ��(�0) � k; then �(� + �0) � k: (49)

Proof of Lemma 2.1.10 Let k � 1: We show that if f 2 Lk(X); then f = be� bf for somebf 2 Lk�1(X)
` with the depth constraint �(f(x)) > �(ft(x)) for all t � ` and x 2 X with

�(f(x)) > 0: We assume �(f) = k: Let fx1; :::; xmg be the support of f with f(xt) > 0 for
t = 1; :::;m and m � 2:

Notice that f can be regarded as the list (x1; �1=`k; :::; xm; �m=`k) for some xt 2 X and
0 � �t < `k for all t � m with

Pm
t=1 �t = `

k: This is expressed as:

f = (

�1 timesz }| {
x1; 1=`

k; :::; x1; 1=`
k; :::;

�m timesz }| {
xm; 1=`

k; :::; xm; 1=`
k); (50)

i.e., each xt occurs �t times with the same weight 1=`k: Since `k = `� `k�1; the list [x1; :::; x1; :::;
xm; :::; xm] of the length `k can be rewritten as the concatenation of ` sublists of length `k�1 :

[[y11; :::; y
1
`k�1 ]; :::; [y

`
1; :::; y

`
`k�1 ]]: (51)

10The author is indebted to a referee for this proof, which was much shorter than the original proof.

33



Associating weight 1=`k�1 to each element, we regard these as lotteries f1; :::; f` in Lk�1(X) :

f1 = [y
1
1; 1=`

k�1; :::; y1`k�1 ; 1=`
k�1]; :::; f` = [y

`
1; 1=`

k�1; :::; y``k�1 ; 1=`
k�1]: (52)

Then, it holds that be � (f1; :::; f`) = f ; thus, f 2 Lk(X) decomposes into (f1; :::; f`) 2 Lk�1(X)`:
To show the depth constraint (11), we need a few concepts; �rst, we denote the list [x1; :::; x1;

x2; :::; x2; :::; xm; :::; xm] as Z = [z� : 1 � � � `k] and �t =
P
s�t �s for t = 1; :::;m: Then, f(xt)

is regarded as a segment of Z; given as

[z� : �t�1 < � � �t] with weight 1=`k: (53)

This corresponds to the fragment with xt in (50). Thus, Z is partitioned in two ways: [[y11; :::; y
1
`k�1 ]

; :::; [y`1; :::; y
`
`k�1 ]] of (51) and [[z� : �t�1 < � � �t] : t = 1; :::;m] of (53). The fragments of these

partitions may have three types of (nonempty) intersections:

(1): [yt
0
1 ; :::; y

t0

`k�1 ] is a subfragment of [z� : �t�1 < � � �t];
(2): [yt

0
1 ; :::; y

t0

`k�1 ] is a superfragment of [z� : �t�1 < � � �t];
(3): one of them starts in the other but continues to the next fragment.

In (1), ft0(xt) = 1: Hence, �(ft0(xt)) = 0 < �(f(xt)): In (2), ft0(xt) = �t=`k�1 and f(xt) = �t=`k;
so, �(�t=`k�1) < �(�t=`k); i.e., �(ft0(xt)) < �(f(xt)):

Consider (3). Suppose that [z� : �t�1 < � � �t] ends in [yt
0
1 ; :::; y

t0

`k�1 ] but it starts in
a previous fragment. Then, ft0(xt) = � 0t=`

k�1 for some � 0t with 0 < � 0t < `k�1: In fact,P
s�t �s = �

0
t + (t

0 � 1)`k�1: By (48) and (49),

��(�t=`
k�1) � ��(

P
s�t �s=`

k�1) = ��(� 0t=`
k�1 + (t0 � 1)) = ��(� 0t=`k�1):

Hence, �(ft0(xt)) = �(� 0t=`
k�1) � �(�t=`k�1) < �(�t=`k) = �(f(xt)). The other case of (3) where

[z� : �t�1 < � � �t] starts in [yt
0
1 ; :::; y

t0

`k�1 ] but ends in a later fragment is similar.�
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