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Abstract

Hart and Kurz (1983) introduced four stability concepts, called α-, β-, γ-, and δ-stability. In

contrast to the intensive studies on their conceptual aspects, these notions have rarely been adopted

to analyze stable coalition structures in an application because the definitions consist of multiple

intermediate steps. The purpose of this paper is to solve these practical difficulties. We provide an

explicit form for each of the four stability concepts and reformulate each concept without using any

intermediate steps. Moreover, we offer some sufficient conditions that guarantee the existence of

stable coalition structures and the inclusion relation among the four stability notions. In addition,

we propose a new approach to characterize the notions of stability. An application of our results

to Cournot oligopoly is also provided.
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JEL Classification: C71

1 Introduction

Hart and Kurz wrote two path-breaking papers on the stability of coalition structures: Hart and

Kurz (1983, 1984). In these works, they combined two game-theoretic concepts, namely, value and

stability. A value concept means a payoff distribution, which describes “who receives how much payoff

in which coalition structure”. Note that the term “coalition” means a group of players who jointly

make a decision. A “coalition structure” means a collection of disjoint coalitions, namely, a partition

of the set of players. Although most of traditional models had assumed that the coalition structure

is given and fixed exogenously, Hart and Kurz regarded it as an endogenous outcome that players

reach after iteratively splitting and merging coalitions. As this approach suggests, the purpose of their

theory was to predict which coalition structure would be endogenously formed and be stable in the

sense that no group of players attempts to deviate from the coalition structure to improve their payoffs.

To analyze stable coalition structures, they introduced four stability concepts, called α-, β-, γ-, and

δ-stability. These notions were widely accepted from a conceptual perspective. However, the connection

they proposed, namely, the connection between the four stability notions, and the exploration of stable
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coalition structures, have gradually diverged in two directions.

On one hand, in the context of strategic form games, studies of the core concepts known as α-, β-, γ-,

and δ-cores have incorporated the conceptual aspects of the four stability notions. These core notions

are defined in strategic form games that admit joint strategies and binding commitments. However, the

main purpose of the four cores is to specify stable strategy profiles instead of stable coalition structures.*1

On the other hand, in the context of coalition formation, the framework of hedonic games (Banerjee et

al., 2001; and Bogomolnaia and Jackson, 2002) has played a central role in the analysis of stable coalition

structures. For hedonic games, other stability notions, e.g., Nash stability, individual stability, and the

farsighted vNM stable set, have been proposed.*2 Although the core is also defined, since most hedonic

games assume the absence of externalities among coalitions (elaborated in Section 2), the four stability

notions reduce to the unique core.

As summarized above, the four notions of stability have rarely been adopted to analyze stable coalition

structures. The reason is that the definitions of the four stability notions consist of multiple steps and

are not suitable for applications. As we will elaborate in Section 2, to check whether a coalition structure

is α-stable in a game, we have to construct a coalition function form game with non-transferable utility

(an NTU-game) based on the game and check whether the payoff distribution in the coalition structure

belongs to the core of the NTU-game. We need another NTU-game for β-stability. Moreover, for γ- and

δ-stability, we also have to construct a strategic form game and compute a strong Nash equilibrium. The

steps of forming intermediate games, such as NTU-games and strategic form games, makes the use of

the stability notions in application more difficult.

The purpose of this paper is to resolve these practical difficulties. We first provide an explicit form for

each of the stability notions and reformulate each notion without using any intermediate games. In other

words, we show that we can “remove” such intermediate steps from the definitions. Moreover, utilizing

the explicit forms, we offer some sufficient conditions that are useful to examine the relationship among

the four stability notions and the existence of stable coalition structures in application. In addition,

we introduce the notion of a consistent partition to describe what partition consistently connects the

partition from which the players deviate and the partition to which they deviate. We propose and

demonstrate a constructive procedure to obtain such consistent partitions. This notion is a new approach

to characterize the stability notions. We provide an application of our results to Cournot oligopoly.

The remainder of this paper is organized as follows. In section 2, we introduce basic definitions and

the four stability concepts. In section 3, we provide an equivalent expression for each of the four stability

concepts without using any intermediate steps. In section 4, we offer some conditions for externalities

and internalities that are useful to analyze stable coalition structures in applications. In section 5,

we introduce the notions of δ-consistent partitions and γ-consistent partitions. By using them, we

offer another approach to characterize the stability concepts. In section 6, we analyze stable coalition

structures under Cournot oligopoly. Section 7 provides a summary and possibilities for future research.

*1 Therefore, we distinguish between the four cores and the four stability concepts. In this paper, we discuss the four

stability concepts.
*2 Nash stability is not Nash equilibrium. The former is the stability of a coalition structure, while the latter is a

stability concept (or an equilibrium concept) of a strategy profile.
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Most proofs are provided in the appendix. Some short proofs are offered in the main body of the paper.

2 Preliminaries

2.1 Coalitions and partitions

Let N = {1, ..., n} be a finite set of players. A subset S ⊆ N is a coalition of players. Let P be a

partition (or a coalition structure). We typically use P, Q, or R to denote a partition. For any S ⊆ N ,

let Π(S) be the set of all partitions of S. Let Π(S) = {P|P ∈ Π(T ), T ⊆ S} =
∪

T⊆S Π(T ). For any

i ∈ N and any P ∈ Π(N), P(i) is the coalition to which player i belongs. This is uniquely determined

for any i and P.

We now introduce some useful notions. Examples are provided after the definitions. For any nonempty

coalition S ⊆ N and any partition P ∈ Π(N), the projection of P on S is given as P|S = {S ∩ C|C ∈
P, S∩C ̸= ∅}. For any nonempty coalition S ⊆ N and any partition P ∈ Π(N), the covering of P on S is

given as PS = {C|C ∈ P, S ∩C ̸= ∅}. Let P̂S =
∪

C∈PS
C. For any P ∈ Π(N), let P̂ =

∪
C∈P C. Hence,

for any P ∈ Π(N) and S ⊆ P̂, we have PS ⊆ P and P̂S ⊆ P̂. For example, let P = {{1, 2}, {3, 4}, {5}}
and S = {2, 3}. Then, P|S = {{2}, {3}} and PS = {{1, 2}, {3, 4}}. Moreover, P̂S = {1, 2, 3, 4} and

P̂ = {1, 2, 3, 4, 5}. Note that P|S and PS are partitions and P̂S and P̂ are coalitions.

In addition, the following equality holds. Let S ⊆ N . For any P ∈ Π(S) and T ⊆ S, we have

P \ PT = P|
N\P̂T

. (2.1)

For example, let S = {1, 2, 3, 4, 5}. For P = {{1, 2}, {3, 4}, {5}} and T = {2, 3}, we have PT =

{{1, 2}, {3, 4}} and N \ P̂T = {5}. Hence, the equality holds with partition {{5}}. This holds for

any P ∈ Π(S) and T ⊆ S. Although this relationship is straightforward, since we sometimes use this

equality, we provide its proof below.

Proof of (2.1): Let C ∈ P \ PT . For this C, since C ∈ P, there exists a coalition C ′ ∈ P such that

C ′ ∩ C = C (namely, C ′ is C). Hence, C ∈ P|
N\P̂T

. Now, let C ∈ P|
N\P̂T

. In view of the definition of

P̂T and the fact PT ⊆ P, we have P|
N\P̂T

⊆ P. Hence, C ∈ P. Moreover, since P|
N\P̂T

is the projection

on N \ P̂T , we have C ⊆ N \ P̂T . Hence, C ̸∈ PT . Thus, together with C ∈ P, we have C ∈ P \ PT .

This completes the proof.

For any S ⊆ N , let [S] denote the partition of S into singletons, [S] := {{i}|i ∈ S}. Similarly, for any

P ∈ Π(N), let [P] :=
∪

S∈P [S] = [P̂].

2.2 A partition function form game and externalities

We introduce the notions of an embedded coalition and a partition function. These are basic concepts

to describe externalities among coalitions. An embedded coalition of N is a pair (S,P) satisfying S ∈ P.

The set of all embedded coalitions of N is given by

EC(N) = {(S,P) | ∅ ̸= S ⊆ N, P ∈ Π(N), and S ∈ P}.

A partition function v assigns a real number to each embedded coalition, namely, v : EC(N) → R. A

partition function form game (also known as a game with externalities) is a pair (N, v). Omitting N , we
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often use v to denote a game with externalities. A game with externalities v has positive externalities if

for any mutually disjoint nonempty coalitions S, T1, T2 ⊆ N and any partition P ′ ∈ Π(N \ (S ∪T1∪T2)),

v(S, {S, T1 ∪ T2} ∪ P ′) > v(S, {S, T1, T2} ∪ P ′). (2.2)

Replacing the inequality with <, ≥, or ≤, we define negative, nonnegative, or nonpositive externalities,

respectively. If equality = holds, the game is said to have no externalities.

2.3 Hart and Kurz’s four stability concepts

We now introduce the stability notions known as α-, β-, γ-, and δ-stability. As mentioned in Section

1, certain “intermediate” games are needed to define these concepts: Hart and Kurz (1983) use a non-

transferable utility game in coalitional form (an NTU-game) to define α- and β-stability and a strategic

form game to define γ- and δ-stability. As elaborated below, since the construction of the NTU-game

for α- and β-stability depends on the strategic form game for γ- and δ-stability, we first introduce the

strategic form game.

For every player i ∈ N , Ai is the set of coalitions containing player i, namely, Ai = {S ⊆ N |i ∈ S}.
We denote by Ai the set of strategies of player i: each player chooses a coalition to join. We use σi ∈ Ai

to denote player i’s strategy. For any S ⊆ N , let AS = ×j∈SAj and σS = (σi)i∈S ∈ AS . We simply use

σ to denote a strategy profile in AN , namely, σ = (σi)i∈N ∈ AN . For any P ∈ Π(N), σP is the strategy

profile such that σP
i = P(i) for every i ∈ N , namely, the strategy profile in which every player chooses

the coalition to which she belongs in the given partition P. In the same manner, for any S ⊆ N , let

σP
S = (σP

i )i∈S . For example, let P = {{1, 2}, {3, 4}, {5}}. We have σP
1 = σP

2 = {1, 2}, σP
3 = σP

4 = {3, 4},
and σP

5 = {5}.
A strategic form game needs a function that assigns a payoff distribution to each strategy profile. We

now establish such a function. In this framework, such a function consists of two functions. The first

function assigns a partition to each strategy profile. The second function assigns a payoff distribution

to each partition. For the first function, Hart and Kurz (1983) propose two types of functions. These

functions generate the two types of strategic form games called model γ and model δ. The names of the

stability concepts stem from these two models.

We first define model γ. Let Bγ : AN → Π(N) be a function that assigns a partition to a strategy

profile. The function Bγ is given as Bγ(σ) = {T i
σ|i ∈ N}, where

T i
σ =

{
σi if σi = σj for all j ∈ σi,
{i} otherwise.

To understand this function, let T be a coalition proposed to form. This formulation states that to form

coalition T , every member of T has to choose coalition T as his strategy. If someone chooses a different

coalition, the other members in T are partitioned into singletons. In other words, the players are required

to submit a unanimous agreement on their coalition to form it. Let ϕ be a function that assigns a payoff

profile to a partition. For any P ∈ Π(N), ϕi(P) is player i’s payoff in partition P.*3 As a result, the

*3 No assumption has to be imposed on the form of ϕ in this step. The role of function ϕ is elaborated in Section 3.
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composite function ϕ ◦ Bγ assigns a payoff profile to every strategy profile. Let Gγ
ϕ := ϕ ◦ Bγ . Together

with the player set N and the strategy sets (Ai)i∈N , tuple (N, (Ai)i∈N , Gγ
ϕ) is a strategic form game.

Model δ is defined in a similar manner. The only difference lies in the function B. Define

Bδ(σ) = {T ⊆ N |i, j ∈ T ⇐⇒ σi = σj}.

Let Gδ
ϕ := ϕ ◦ Bδ, where ϕ is the same as the function used in model γ. This formulation indicates that

the players, say T , choosing the same coalition, say S, are assigned to the coalition T . Unlike model

γ, only a partial agreement is needed to form a coalition. To see the difference, consider the following

strategy profile: (σ1, σ2, σ3) = ({1, 2, 3}, {1, 2, 3}, {2, 3}). The resulting partition is Bγ = {{1}, {2}, {3}}
because of the different choice of player 3. In contrast, Bδ = {{1, 2}, {3}}, because players 1 and 2 choose

the same strategy.

A coalition structure is γ- or δ-stable if no group of players has an incentive to change their coalition.

We use the notion of a strong equilibrium: a strategy profile σ ∈ AN is a strong equilibrium in a strategic

form game (N, (Ai)i∈N ,G) if there exists no T ⊆ N and no σ′
T ∈ AT such that Gi(σ

′
T , σN\T ) > Gi(σ) for

all i ∈ T .

Definition 2.1. Let ϕ : Π(N) → RN and P ∈ Π(N). A partition P is γ-stable if strategy profile σP is

a strong equilibrium in Gγ
ϕ. A partition P is δ-stable if strategy profile σP is a strong equilibrium in Gδ

ϕ.

Now, we define α-stability and β-stability. These notions are probably simpler and more popular than

γ-stability and δ-stability. To define these notions, we use either Bγ or Bδ. As described below, whichever

we choose, the definition is the same. Let B∗ denote Bγ or Bδ. Let ϕ : Π(N) → RN . For any S ⊆ N ,

Hart and Kurz (1983) define

V α
ϕ (S) = {(xi)i∈S ∈ RS | there is σS ∈ AS such that for all σN\S ∈ AN\S ,

ϕi(B∗(σ)) ≥ xi for all i ∈ S}.

For any S ⊆ N , define

V β
ϕ (S) = {(xi)i∈S ∈ RS | for all σN\S ∈ AN\S , there is σS ∈ AS such that

ϕi(B∗(σ)) ≥ xi for all i ∈ S}.

Together with the player set N , (N,V α
ϕ ) and (N,V β

ϕ ) are NTU-games.*4

We define the core of an NTU-game. Let V denote an NTU-game. The core of V is defined as follows:

C(V ) = {x ∈ V (N)| there is no T ⊆ N and no y ∈ V (T ) such that yi > xi for every i ∈ T}.

Definition 2.2. Let ϕ : Π(N) → RN and P ∈ Π(N). A partition P is α-stable if ϕ(P) is in the core of

V α
ϕ . A partition P is β-stable if ϕ(P) is in the core of V β

ϕ .

For any ϕ, let Cα(ϕ) be the set of α-stable partitions. We similarly define Cβ , Cγ , and Cδ. The

following relationship readily follows: for any ϕ,

Cα(ϕ) ⊇ Cβ(ϕ) ⊇ (Cγ(ϕ) ∪ Cδ(ϕ)). (2.3)

*4 For the definitions of V α
ϕ and V β

ϕ , we can consider V αγ
ϕ and V αδ

ϕ and, similarly, V βγ
ϕ and V βδ

ϕ . Hart and Kurz

(1983)’s definition states that V αγ
ϕ = V αδ

ϕ =: V α
ϕ and V βγ

ϕ = V βδ
ϕ =: V β

ϕ .
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3 Equivalent expressions without intermediate games

In the previous section, the four stability concepts are defined by using intermediate steps: strategic

form games are used to define γ- and δ-stability and NTU-games are used to define α- and β-stability.

As stated in Section 1, although these stability notions are known as a theoretical approach to study

stable coalition structures, it is difficult to apply them to economic/social situations. This is because

the intermediate steps of the definitions make it difficult to compute the concepts in application. Our

purpose is to solve this practical difficulty. Our first attempt is to “remove” the intermediate steps from

these definitions and offer a simple equivalent expression.

The following lemma is a technical result.

Lemma 3.1. Let T ⊆ N and σT ∈ AT . For any P,P ′ ∈ Π(N \ T ),

B∗(σT , σ
P
N\T )|T = B∗(σT , σ

P′

N\T )|T =: Q.

Moreover, for any P ∈ Π(N \ T ),
Q ⊆ B∗(σT , σ

P
N\T )

and
Q∪ P = B∗(σT , σ

P
N\T ).

The following proposition is our first result.

Proposition 3.2. For any partition P ∈ Π(N), the following four statements hold.

(i) P is α-stable if and only if there exist no T ⊆ N and no Q ∈ Π(T ) such that for any P ′ ∈ Π(N \T ),
ϕi(Q∪ P ′) > ϕi(P) for every i ∈ T .

(ii) P is β-stable if and only if there exist no T ⊆ N such that for any P ′ ∈ Π(N \ T ), there exists

Q ∈ Π(T ) such that ϕi(Q∪ P ′) > ϕi(P) for every i ∈ T .

(iii) P is γ-stable if and only if there exist no T ⊆ N and no Q ∈ Π(T ) such that ϕi(Q ∪ [P̂T \ T ] ∪
(P \ PT )) > ϕi(P) for every i ∈ T .

(iv) P is δ-stable if and only if there exist no T ⊆ N and no Q ∈ Π(T ) such that ϕi(Q ∪ (P|N\T )) >

ϕi(P) for every i ∈ T .

In the necessary and sufficient conditions above, each of the stability notions is defined in terms of

partition, and any strategic form games and NTU-games are no longer used. It is easy to interpret these

conditions. For each condition, coalition T ⊆ N is a deviating coalition. Partition P is the partition

from which the coalition T deviates. The players in coalition T choose an internal partition Q ∈ Π(T )

that they form after their deviation. The difference among the stability notions lies in the reaction from

the other players N \T . The concept of α-stability exhibits the deviating players’ careful attitude: for all

the coalition structures that the other players can organize as their reaction, namely, P ′ ∈ Π(N \T ), the
deviating players’ coalition structure Q must be beneficial. The notion of β-stability may be closer to the

concept of best response: the deviating players obtain their benefits by choosing an appropriate coalition
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structure Q for each reaction P ′ by the other players. In other words, α-stability requires the deviating

players to have a certain coalition structure that guarantees the benefits, while β-stability requires that

they are not prevented from obtaining the benefits.*5

A similarity between α-stability and β-stability is to focus on a reaction from all the non-deviating

players. In contrast, γ-stability and δ-stability only take into account a reaction from the players who

shared the same coalition in the original partition. We first consider γ-stability. This notion indicates

that the players who shared the same coalition in the original partition are partitioned into singletons.

For example, let P = {{1, 2, 3}, {4, 5, 6}, {7, 8}}, T = {3, 4} and Q = {{3, 4}}. In view of (iii) of

Proposition 3.2, the coalition P̂T is {1, 2, 3, 4, 5, 6}, and PT is partition {{1, 2, 3}, {4, 5, 6}}. In other

words, P̂T is the set of players who share the coalitions with the members of T in the original partition

P. Therefore, such players are partitioned into singletons after the deviation Q of T , and the resulting

coalition is Q∪ [P̂T \T ]∪ (P \PT ) = {{1}, {2}, {3, 4}, {5}, {6}, {7, 8}}. In this sense, γ-stability exhibits

a disintegrative reaction. The concept of δ-stability can be seen as an integrative reaction: the remaining

players maintain their (sub)coalitions. In the same example, the resulting partition is now Q∪(P|N\T ) =

{{1, 2}, {3, 4}, {5, 6}, {7, 8}}.
We have established the equivalent expressions of the stability concepts without using any intermediate

game such as a strategic form game and an NTU-game (Proposition 3.2). Henceforth, we will regard

ϕ : Π(N) → RN as a game. Function ϕ describes who obtains how much payoff under which coalition

structure: ϕi(P) is player i’s payoff in partition P. To avoid ambiguity, we call ϕ a coalition structure

game (a CS-game). A CS-game can be thought of as a variation of the hedonic games introduced by

Banerjee et al. (2001) and Bogomolnaia and Jackson (2002), in which each player has ordinal preferences

over coalitions. Our game is its cardinal version when including externalities.*6 This setting is also used

by, for example, Hart and Kurz (1984), Casajus (2009), and Abe (2018).

4 Externalities, internalities, and the stability concepts

4.1 Externalities and the stability concepts

We begin by analyzing the externalities of a CS-game. We show that some basic properties of ex-

ternalities bring about a coincidence and an inclusion relationship between the stability notions. The

summary of the results is provided at the end of this section.

A CS-game ϕ is said to have nonnegative externalities if for any mutually disjoint nonempty coalitions

S, T1, T2 ⊆ N and any partition P ′ ∈ Π(N \ (S ∪ T1 ∪ T2)),

ϕi({S, T1 ∪ T2} ∪ P ′) ≥ ϕi({S, T1, T2} ∪ P ′) for any i ∈ S.

*5 As Hart and Kurz (1983) state, these notions correspond to the α-core and the β-core introduced by Aumann (1967).

As mentioned in Section 1, the α-core and the β-core are defined to analyze the stability of strategy profiles in a

strategic form game, while α-stability and β-stability are introduced to examine the stability of coalition structures.
*6 Bogomolnaia and Jackson (2002) call their model a hedonic game, and Banerjee et al. (2001) call theirs a coalition

formation game. Although the names are different, these two models are the same. Since our game is slightly different

from their model in the sense of its cardinal setting, we refer to our model ϕ as a CS-game. This is consistent with

the terminology of Hart and Kurz (1984), Casajus (2009), and Abe (2018), as each contribution uses a coalition

structure value (a CS-value) to construct a game.
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Replacing the inequality with ≤, >, or <, we define nonpositive, positive, or negative externalities,

respectively. If = holds, the game has no externalities. Now, we define its slight variations. A CS-game

ϕ has weak nonnegative externalities if for any nonempty coalition S ⊆ N and any partition P ′ ∈ Π(N\S),

ϕi({S} ∪ P ′) ≥ ϕi({S} ∪ [N \ S]) for any i ∈ S.

Similarly, a CS-game ϕ has weak nonpositive externalities if for any nonempty coalition S ⊆ N and any

partition P ′ ∈ Π(N \ S),
ϕi({S} ∪ P ′) ≥ ϕi({S,N \ S}) for any i ∈ S.

The partition [N \ S] is the finest partition of N \ S. The condition of weak nonnegative externalities

compares the finest partition and each partition of N \ S. Regarding the condition of weak nonpositive

externalities, in contrast, the coarsest partition {N \ S} is compared with each partition of N \ S.
Combining externalities and Proposition 3.2 reveals the relationship among the stability notions. The

following proposition shows that even the weaker conditions are sufficient for the notions of α-stability

and β-stability to coincide.

Proposition 4.1. If a CS-game ϕ has weak nonnegative externalities or weak nonpositive externalities,

then Cα(ϕ) = Cβ(ϕ).

Note that we readily have the following relationship (“ext.” means externalities): positive ext. ⇒
nonnegative ext. ⇒ weak nonnegative ext.; negative ext. ⇒ nonpositive ext. ⇒ weak nonpositive ext.

Many economic applications have either weak nonnegative externalities or weak nonpositive externalities.

For example, as discussed in 6, Cournot oligopoly is known as a model that has positive externalities.*7

Externalities also determine the relationship between γ-stability and δ-stability.

Proposition 4.2. If a CS-game ϕ has nonnegative externalities, then Cγ(ϕ) ⊇ Cδ(ϕ). If a CS-game ϕ

has nonpositive externalities, then Cδ(ϕ) ⊇ Cγ(ϕ).

An intuition behind this proposition can be derived from Proposition 3.2. In model γ, the non-

deviating players are partitioned into singletons. This disintegrative reaction makes it more difficult for

the deviating players to deviate under nonnegative externalities, which makes more coalition structures

γ-stable. In contrast, the model δ exhibits the integrative reactions from the non-deviating players.

Therefore, the non-deviating players form larger coalitions, which makes it easier for the deviating

players to deviate in the presence of nonnegative externalities. As a result, fewer coalition structures are

δ-stable

4.2 Internalities and the stability concepts

In this subsection, we focus on internalities. Internalities describe the relationship between a merger

of coalitions and the benefit of the coalitions. In the same manner as externalities, internalities specify

*7 Moreover, Yi (1997) formulates a wide range of economic and social problems as games with positive or negative

externalities, e.g., the provision of public goods and customs unions in international trade.
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integrative/disintegrative tendencies of coalition formation. The most typical concepts of internalities

are probably superadditivity and subadditivity as defined below.

Definition 4.3. A CS-game ϕ is superadditive (SUPA) if for any P ∈ Π(N), S, T ∈ P, and i ∈ S ∪ T ,

ϕi({S ∪ T} ∪ (P \ {S, T})) ≥ ϕi(P). Similarly, a CS-game ϕ is subadditive (SUBA) if ϕi({S ∪ T} ∪ (P \
{S, T})) ≤ ϕi(P).

Superadditivity is an integrative condition that facilitates a merger of coalitions, while subadditivity is a

disintegrative condition. By using integrative/disintegrative internalities and externalities, we divide the

class of all CS-games into four subclasses, namely, {integrative internalities , disintegrative internalities}
× {integrative externalities , disintegrative externalities}. To avoid ambiguity, let integrative externali-

ties include positive, nonnegative, and weak nonnegative externalities. Similarly, disintegrative external-

ities include negative, nonpositive, and weak nonpositive externalities. Integrative internalities include

superadditivity and its variations defined below; disintegrative internalities include subadditivity and

its variations. Table 2 and the list provided at the end of this section summarize these conditions and

results.

One might conjecture that if both internalities and externalities are integrative, the grand coalition is

stable, and similarly, if they are both disintegrative, then the partition into singletons is stable. Propo-

sitions 4.4 and 4.5 show that this conjecture is correct. Moreover, Proposition 4.4 shows that integrative

internalities guarantee that the grand coalition is stable even in the presence of disintegrative externalities.

In contrast, Example 4.6 shows that the existence of stable coalition structures is not straightforwardly

guaranteed under the combination of disintegrative internalities and integrative externalities. To see

this, we define a weak form of superadditivity: a CS-game ϕ satisfies weak partition-wise superadditivity

(PSUPA−) if for any P ∈ Π(N), Q ⊆ P, T ∈ Q, there exists i ∈ T such that

ϕi({Q̂} ∪ (P \ Q)) ≥ ϕi(P). (4.1)

We note that SUPA implies PSUPA−.

Proposition 4.4. If a CS-game ϕ satisfies PSUPA−, then the grand coalition {N} satisfies all four

stability concepts.

Proof. Let S ⊆ N and Q ∈ Π(S). Assume that there exists P ′ ∈ Π(N \ S) such that ϕi(Q ∪ P ′) >

ϕi({N}) for any i ∈ S. Since {N} = {Q̂ ∪ P ′}, PSUPA− implies that there exists i∗ ∈ S such that

ϕi∗({N}) ≥ ϕi∗(Q∪ P ′) > ϕi∗({N}). This is a contradiction.

Although Proposition 4.4 holds independent of externalities, if the game has nonnegative (nonpositive)

externalities, then Cγ(ϕ) ⊇ Cδ(ϕ) (Cδ(ϕ) ⊇ Cγ(ϕ)). Moreover, if the game has nonnegative externalities,

the following weaker condition is also sufficient for the grand coalition to satisfy all four stability concepts:

for any S ⊆ N there exists i ∈ S such that

ϕi({N}) ≥ ϕi({S,N \ S}). (4.2)

Proposition 4.4 shows that integrative internalities allow us to provide a simple sufficient condition

in the presence of both integrative and disintegrative externalities. In contrast, we need to perform a
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careful investigation for disintegrative internalities. If externalities are also disintegrative, then an analog

of (4.2) guarantees the nonemptiness of stable coalition structures as follows: a CS-game ϕ satisfies weak

singleton subadditivity (SSUBA−) if for any S ⊆ N there exists i ∈ S such that

ϕi([N ]) ≥ ϕi({S} ∪ [N \ S]). (4.3)

Note that SUBA implies SSUBA−.

Proposition 4.5. If a CS-game ϕ has nonpositive externalities and satisfies SSUBA−, then [N ] satisfies

all four stability concepts.

Proof. Let S ⊆ N andQ ∈ Π(S). Assume that there exists P ′ ∈ Π(N\S) such that ϕi(Q∪P ′) > ϕi([N ])

for any i ∈ S. Fix a coalition T ∈ Q. Note that T ⊆ S. Since ϕ has nonpositive externalities, we have

ϕi({T} ∪ [N \ T ]) ≥ ϕi(Q ∪ P ′) for any i ∈ T . SSUBA− implies that there exists i∗ ∈ T such that

ϕi∗([N ]) ≥ ϕi∗({T} ∪ [N \ T ]). This is a contradiction. Hence, [N ] is γ-stable. Since ϕ has nonpositive

externalities, [N ] satisfies all four stability notions.

For a game with disintegrative internalities and integrative externalities, even the following stronger

version of subadditivity is no longer sufficient: a CS-game ϕ satisfies partition-wise subadditivity (PSUBA)

if for any P ∈ Π(N), Q ⊆ P, and i ∈ Q̂,

ϕi(P) ≥ ϕi({Q̂} ∪ (P \ Q)). (4.4)

Example 4.6. Let N = {1, 2, 3, 4}. Consider the game given in Table 1. In this example, we write,

for example, 12, 3, 4 instead of {{1, 2}, {3}, {4}} for simplicity. This game is symmetric: for example,

ϕ1(34, 1, 2) = ϕ2(34, 1, 2) = 6 and ϕ3(34, 1, 2) = ϕ4(34, 1, 2) = 3. This game has positive externalities

Table 1 All coalition structures are neither γ- nor δ-stable

P ϕ1 ϕ2 ϕ3 ϕ4

1234 1 1 1 1

123, 4 2 2 2 7

12, 34 5 5 5 5

12, 3, 4 3 3 6 6

1, 2, 3, 4 4 4 4 4

and satisfies PSUBA, while both Cγ and Cδ are empty.

Example 4.6 shows that we need another perspective to guarantee the existence of stable partitions

in this class. We introduce the following two conditions. A CS-game ϕ satisfies weak partition-wise

singleton subadditivity (PSSUBA−) if for any P ∈ Π(N) and Q ⊆ P, there exists i ∈ Q̂ such that

ϕi([Q̂] ∪ (P \ Q)) ≥ ϕi(P). (4.5)

Let P ∈ Π(N). Partition P satisfies individual rationality (IR) if for any i ∈ N ,

ϕi(P) ≥ ϕi({i} ∪ {P(i) \ {i}} ∪ (P \ {P(i)})) = ϕi({i} ∪ (P|N\{i})). (4.6)
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Proposition 4.7. Let ϕ have nonnegative externalities and satisfy PSSUBA−. For any P ∈ Π(N), if P
satisfies IR, then P satisfies all four stability concepts.

Proof. Let partition P∗ satisfy ϕi(P∗) ≥ ϕi({i} ∪ (P∗|N\{i})) for any i ∈ N . Consider S ⊆ N and

Q ∈ Π(S), and set P := Q ∪ (P∗|N\S). Assume that ϕi(P) > ϕi(P∗) for any i ∈ S. It follows

from PSSUBA− that there exists i ∈ S such that ϕi([S] ∪ (P \ Q)) ≥ ϕi(P). Fix player i. We have

ϕi([S] ∪ (P \ Q)) > ϕi({i} ∪ (P∗|N\{i})).

Since P \ Q = P∗|N\S , for any C ∈ P \ Q, there exists C ′ ∈ P∗ such that C ⊆ C ′. Moreover, [S]

is the finest partition of S. Hence, in view of N \ S ⊆ N \ {i}, partition [S] ∪ (P \ Q) is finer than

{i}∪ (P∗|N\{i}). From nonnegative externalities, it follows that ϕi({i}∪ (P∗|N\{i})) ≥ ϕi([S]∪ (P \Q)).

This is a contradiction. Hence, P is δ-stable and satisfies all four stability concepts in the presence of

nonnegative externalities.

Proposition 4.7 shows that under PSSUBA−, we can regard individual rationality as a condition for the

partition to be stable in all four senses. The proposition also states that the combination of PSSUBA−

and nonnegative externalities prevents all coalitions consisting of two or more players from deviating.

The class of games with disintegrative internalities and integrative externalities contains some impor-

tant economic applications. For example, Cournot oligopoly belongs to this class. Cournot oligopoly

does not satisfy the conditions of Proposition 4.7. However, this is consistent because Cournot oligopoly

has no δ-stable coalition structure. This is further investigated in Section 6.

The following list and table summarize the results discussed in this section. In Table 2, NNE (NPE)

means nonnegative (nonpositive) externalities.

• Integrative internalities: SUPA(Def.4.3) ⇒ PSUPA−(4.1)

• Disintegrative internalities: PSUBA(4.4) ⇒ SUBA(Def.4.3) ⇒ PSSUBA−(4.5) ⇒ SSUBA−(4.3)

• Integrative externalities: Positive ext.⇒Nonnegative ext.⇒Weak nonnegative ext.

• Disintegrative externalities: Negative ext.⇒Nonpositive ext.⇒Weak nonpositive ext.

• (2.3): Cα ⊇ Cβ ⊇ (Cγ ∪ Cδ)

• Prop.4.1: weak nonnegative ext. or weak nonpositive ext. ⇒ Cα = Cβ

• Prop.4.2: nonnegative ext. ⇒ Cγ ⊇ Cδ; nonpositive ext. ⇒ Cδ ⊇ Cγ

• Ex.4.6: Positive ext., PSUBA, Cδ = ∅, Cγ = ∅

5 Necessary and sufficient conditions

As we have already seen in Definitions 2.1 and 2.2, there are some structural differences between the

pair of α- and β-stability and that of γ- and δ-stability. One is the difference in the intermediate game

needed to define the stability concepts: an NTU-game and a strategic game. Another lies in how to

determine the resulting partition. In this section, we focus on this second difference.

Proposition 3.2 shows that a deviation in models γ and δ specifies the partition that results from the

deviation: Q∪ [P̂T \T ]∪(P\PT ) for γ and Q∪(P|N\T ) for δ. In other words, given a partition P ∈ Π(N)

and a pair (T,Q) of a deviating coalition T and its partition Q ∈ Π(T ), we can specify the resulting

11



Table 2 Summary of internalities and externalities

Externalities

Integrative Disintegrative

Internalities

Integrative
Prop.4.4

PSUPA− ⇒ {N} : αβγδ

Prop.4.7 Prop.4.5

Disintegrative NNE
⇒ P with IR : αβγδ

NPE
⇒ [N ] : αβγδ

PSSUBA− SSUBA−

Note: Cα = Cβ ⊇ Cγ ⊇ Cδ Cα = Cβ ⊇ Cδ ⊇ Cγ

partition P ′. Now, our new question is as follows: given two partitions P and P ′, what pair (T,Q)

consistently connects P and P ′ for the pair (T,Q) to deviate from P to P ′? This can be illustrated as

follows.

(i) Proposition 3.2: P (T,Q)−→ ?

(ii) The new question: P ?−→ P ′
(5.1)

The answer to question (i) is provided in Proposition 3.2, namely, as mentioned above, P ′ γ
= Q ∪ [P̂T \

T ] ∪ (P \ PT ) and P ′ δ
= Q ∪ (P|N\T ). This offers a necessary and sufficient condition for a partition to

be γ- or δ-stable. Below, by answering question (ii), we provide a new approach that leads us to another

characterization. To this end, we need some notions. Fix P ∈ Π(N). For any P ′ ∈ Π(N) with P ̸= P ′,

we define

• LP(P ′) = {C ′ ∈ P ′|C ′ ⊆ C for some C ∈ P} ⊆ P ′,

• ZP(P ′) = P ′ \ LP(P ′) ⊆ P ′.

For example, setting P = {{1, 2, 3}, {4, 5, 6}, {7, 8}} and P ′ = {{1, 2}, {3, 4}}, we have LP(P ′) = {{1, 2}}
and ZP(P ′) = {{3, 4}}. We provide a technical lemma used in the proofs.

Lemma 5.1. For any P,P ′ ∈ Π(N) and any T ⊆ N ,

P|T ⊆ P ′ ⇒ P|T ⊆ LP(P ′).

Proof. Let S ∈ P|T . Hence, S ∈ P ′. There exists C ∈ P such that S = T ∩ C. Hence, S ⊆ C, C ∈ P.

Since S ∈ P ′, we have S ∈ LP(P ′).

5.1 δ-consistent partitions

Since model δ is simpler than model γ, we begin with δ. We reformulate the question above as follows.

Given P,P ′ ∈ Π(N), what partition Q ∈ Π(N) satisfies P ′ = Q∪ (P|N\Q̂)? How can we construct such

Q by using the two given partitions P and P ′? We refer to such a partition Q as a δ-consistent partition

from P to P ′.
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Definition 5.2. Let P,P ′ ∈ Π(N) with P ̸= P ′. A partition Q ∈ Π(N) is a δ-consistent partition from

P to P ′ if Q satisfies P ′ = Q∪ (P|N\Q̂).

We first offer some examples.

Example 5.3. Let

P = {{1, 2, 3}, {4, 5, 6}},
P ′ = {{1, 2}, {3, 4}, {5, 6}}.

What partition is a δ-consistent partition from P to P ′? The most intuitive answer might beQ = {{3, 4}},
which actually satisfies P ′ = Q ∪ (P|N\Q̂). However, this is not the only instance. The list of all δ-

consistent partitions is

{{3, 4}}; {{1, 2}, {3, 4}}; {{3, 4}, {5, 6}}; {{1, 2}, {3, 4}, {5, 6}}.

We now briefly analyze these partitions. We first notice that every partition contains coalition {3, 4}. This
coalition is in ZP(P ′). Moreover, each of the partitions consists of the coalition {3, 4} and a collection of

the other coalitions in P ′, namely {1, 2} and {5, 6}. These coalitions are in LP(P ′). Therefore, one might

conjecture that a δ-consistent partition is composed of the partitions in ZP(P ′) and some partitions in

LP(P ′); formally, Q = ZP(P ′) ∪ R for some R ⊆ LP(P ′), where R can be empty. This conjecture is

correct even in the case with empty Z as the next example shows.

Example 5.4. Now, let

P = {{1, 2, 3}},
P ′ = {{1}, {2}, {3}}.

The list of all δ-consistent partitions is

{{1}, {2}}; {{1}, {3}}; {{2}, {3}}; {{1}, {2}, {3}}.

The points of this example are as follows: (i) ZP(P ′) is empty, and (ii) P ′|N\Q̂ = P|N\Q̂ for any δ-

consistent partition Q. Although ZP(P ′) is empty, we can obtain a δ-consistent partition in the same

manner as the previous example. Moreover, every partition listed above clearly satisfies the second

condition.*8 In addition, as a remark, we note that even if a partition is a δ-consistent partition from P
to P ′, it is not that from P ′ to P, as shown in the above examples.

From these observations, we can derive a characterization of a δ-consistent partition.

Proposition 5.5. Let P,P ′ ∈ Π(N) with P ≠ P ′. Partition Q is a δ-consistent partition from P to P ′

if and only if Q ∈ ∆
P
(P ′), where

∆
P
(P ′) = {Q ∈ Π(N)| there exists R ⊆ LP(P ′) such that

Q = ZP(P ′) ∪R and P ′|N\Q̂ = P|N\Q̂}.

Note that R can be empty.

*8 The same observation holds in Example 5.3.
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Given this result and the examples above, one might consider that some δ-consistent partitions are

“minimal.” Formally, a partition Q ∈ ∆
P
(P ′) is a minimal δ-consistent partition from P to P ′ if for any

T ∈ Q, Q \ {T} ̸∈ ∆
P
(P ′). Let ∆P(P ′) be the set of minimal δ-consistent partitions from P to P ′.

The advantage of defining a minimal δ-consistent partition lies in the fact that we can straightforwardly

construct it by removing some coalitions from P ′. Below is the procedure. We call this procedure

procedure λ. Let P,P ′ ∈ Π(N) with P ̸= P ′.

Procedure λ: For every S ∈ P, if there is a nonempty coalition T ∈ P ′ such that T ⊆ S, then

we remove the coalition T from P ′. Note that if there are two or more such partitions T in P ′,

choose one and remove it from P ′.

The partition consisting of the remaining coalitions is a minimal δ-consistent partition (Proposition

5.6). Now we formulate a procedure λ as a function. For P and P ′ in Π(N), let λ be a function

λ : P → P ′ ∪ {∅} given as follows: for any S ∈ P,

λ(S) =

{
T if there exists T ∈ P ′ such that T ⊆ S,
∅ otherwise.

(5.2)

For a function λ, we define ΛP(P ′) = {λ(S)|S ∈ P, λ(S) ̸= ∅}. Therefore, ΛP(P ′) is the set of coalitions

that we remove through procedure λ.

Demonstration of procedure λ: Following procedure λ, we demonstrate the construc-

tion of a minimal δ-consistent partition. We consider the partitions in Example 5.3:

P = {{1, 2, 3}, {4, 5, 6}}, P ′ = {{1, 2}, {3, 4}, {5, 6}}. First, for coalition {1, 2, 3} ∈ P,

coalition {1, 2} ∈ P ′ satisfies {1, 2} ⊆ {1, 2, 3}. Hence, we remove this coalition from P ′ and

obtain partition {{3, 4}, {5, 6}}. Next, for coalition {4, 5, 6} ∈ P, coalition {5, 6} ∈ P ′ satisfies

{5, 6} ⊆ {4, 5, 6}. Hence, we remove this coalition from {{3, 4}, {5, 6}} and obtain partition

{{3, 4}}. The procedure stops here. The remaining partition {{3, 4}} is δ-consistent from P to

P ′ and clearly minimal. This is the only minimal δ-consistent partition in this example.

Now, we consider the partitions in Example 5.4: P = {{1, 2, 3}}, P ′ = {{1}, {2}, {3}}. The

coalition {1, 2, 3} is the only coalition in P. For this coalition, there are three coalitions T in

P ′ such that T ⊆ {1, 2, 3}, namely, the three one-person coalitions. We choose one of them, say

{1}, and remove this from P ′. We obtain partition {{2}, {3}}. Since P consists of one coalition,

the procedure stops here. The resulting partition {{2}, {3}} is one of the minimal δ-consistent

partitions from P to P ′. If we choose {2} or {3}, the resulting partition is {{1}, {3}} or {{1}, {2}},
respectively. These three partitions are all of the minimal δ-consistent partitions of this example.

The following proposition formally states that procedure λ generates a minimal δ-consistent partition

of P ′.

Proposition 5.6. For any P and P ′ ∈ Π(N) with P ̸= P ′, P ′ \ ΛP(P ′) is a minimal δ-consistent

partition from P to P ′.

Remark 5.7. For any P,P ′ ∈ Π(N) with P ̸= P ′, there must exist a δ-consistent partition from
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P to P ′, because the partition P ′ is an obvious δ-consistent partition. In other words, ∆
P
(P ′) ̸= ∅.

Moreover, ∆P(P ′) is also nonempty. This is because P ′ is a finite set of coalitions. To be more specific,

let Q ∈ ∆
P
(P ′). If Q \ {T} ̸∈ ∆

P
(P ′) for any T ∈ Q, then by definition, the partition Q is minimal. If

Q is not minimal, then there is T1 ∈ Q such that Q \ {T1} ∈ ∆
P
(P ′). If Q \ {T1} is minimal, then this

process ends; if not, then there is T2 ∈ Q \ {T1} such that Q\ {T1, T2} ∈ ∆
P
(P ′). However, since Q is a

finite set of coalitions and P ̸= P ′, some partition Q \ {T1, , ..., Tk} must be minimal for some k.

By using the notion of δ-consistent partitions, we can obtain a necessary and sufficient condition for a

partition to be δ-stable.

Proposition 5.8. For any P ∈ Π(N), P is δ-stable if and only if for any P ′ ∈ Π(N) \ {P} and any

Q ∈ ∆P(P ′), there exists i ∈ Q̂ such that ϕi(P) ≥ ϕi(P ′).

Proposition 5.8 shows that by comparing a partition P ∈ Π(N) with the other partitions P ′ ∈ Π(N),

we can check whether the partition P is δ-stable. Moreover, we only have to examine all minimal

δ-consistent partitions.

5.2 γ-consistent partitions

Now we analyze γ-stability. The approach is the same as that for δ-stability. The corresponding

consistent partition is now defined as follows.

Definition 5.9. Let P,P ′ ∈ Π(N) with P ≠ P ′. A partition Q ∈ Π(N) is a γ-consistent partition from

P to P ′ if Q satisfies P ′ = Q∪ (P \ PQ̂) ∪ [P̂Q̂ \ Q̂].

We apply this notion to the partitions in Examples 5.3 and 5.4. What partitions are γ-consistent? For

the partitions P = {{1, 2, 3}, {4, 5, 6}} and P ′ = {{1, 2}, {3, 4}, {5, 6}} (Example 5.3), partition

{{1, 2}, {3, 4}, {5, 6}}

is the only γ-consistent partition. For the partitions P = {{1, 2, 3}} and P ′ = {{1}, {2}, {3}} (Example

5.4), the list of all γ-consistent partitions is

{{1}}; {{2}}; {{3}}; {{1}, {2}}; {{1}, {3}}; {{2}, {3}}; {{1}, {2}, {3}}.

From these examples, one might derive the fact that the partition of the players outside Q̂ consists

of singletons. This conjecture is partly true. To see this more precisely, consider the following varia-

tion of the first example: P = {{1, 2, 3}, {4, 5, 6}, {7, 8}} and P ′ = {{1, 2}, {3, 4}, {5, 6}, {7, 8}}. Par-

tition {{1, 2}, {3, 4}, {5, 6}} is still γ-consistent even in this variation. Similarly, for the partitions

P = {{1, 2, 3}, {4, 5}} and P ′ = {{1}, {2}, {3}, {4, 5}}, that is a modification of the second example,

all seven γ-consistent partitions listed above are still γ-consistent. As these examples describe,*9 the

coalitions in P that do not have an intersection with Q̂ can be straightforwardly projected onto P ′ as

*9 To make the symbols in this sentence easier to read, we provide the instances below. For the last example P =

{{1, 2, 3}, {4, 5}} and P ′ = {{1}, {2}, {3}, {4, 5}}, consider Q = {{1}}. Hence, Q̂ = {1}. We have PQ̂ = {{1, 2, 3}},
and hence, P \ PQ̂ = {{4, 5}}. Moreover, P̂Q̂ = {1, 2, 3}.
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P \PQ̂. Note that PQ̂ refers to the coalitions in P, each of which has an intersection with Q̂. Therefore,

every player who is in the set P̂Q̂ but is not a member of Q̂, namely the player in P̂Q̂ \ Q̂, is supposed

to form a one-person coalition in P ′.

Given the observation above, the following proposition, which corresponds to Proposition 5.5, charac-

terizes a γ-consistent partition.

Proposition 5.10. Let P,P ′ ∈ Π(N) with P ̸= P ′. Partition Q is a γ-consistent partition from P to

P ′ if and only if Q ∈ Γ
P
(P ′), where

Γ
P
(P ′) = {Q ∈ Π(N)| there exists R ⊆ LP(P ′) such that

Q = ZP(P ′) ∪R and P ′|N\Q̂ = (P \ PQ̂) ∪ [P̂Q̂ \ Q̂]}.

Note that R can be empty.

A minimal γ-consistent partition is defined in the same manner. A partition Q ∈ Γ
P
(P ′) is a minimal

γ-consistent partition from P to P ′ if for any T ∈ Q, Q\{T} ̸∈ Γ
P
(P ′). Let ΓP(P ′) be the set of minimal

γ-consistent partitions from P to P ′. We now offer the procedure to obtain a minimal γ-consistent

partition. Compared with procedure λ, this procedure, say procedure κ, is slightly complicated. Let P
and P ′ ∈ Π(N) with P ≠ P ′.

Procedure κ: For every S ∈ P, if there is the same coalition in P ′, then we remove the coalition

from P ′. If there is a strict subset T ⊊ S satisfying [T ] ⊆ P ′, we remove the partition [T ] from

P ′. Note that if some strict subsets T1, ..., Tm of S satisfy the condition, we choose the largest

coalition T from the subsets T1, ..., Tm and remove [T ] from P ′. If there are two or more such

largest coalitions, then we choose one, say T ∗, and remove [T ∗] from P ′.

Let KP(P ′) be the set of coalitions that we choose to remove through the procedure. Below, we

formally define KP(P ′). For P and P ′ in Π(N), let κ be a function κ : P → 2P
′ ∪ {∅} given as follows:

for any S ∈ P,

κ(S) =


{T} if there exists T ∈ P ′ such that T = S,
[T ] if there exists T ⊊ S such that [T ] ⊆ P ′ and

no T ′ with T ⊊ T ′ ⊊ S satisfies [T ′] ⊆ P ′,
∅ otherwise.

(5.3)

For a function κ, we define KP(P ′) =
∪

S∈P,κ(S)̸=∅ κ(S). The following demonstration shows how this

procedure works.

Demonstration of procedure κ: We begin with the partitions in Example 5.3: P =

{{1, 2, 3}, {4, 5, 6}}, P ′ = {{1, 2}, {3, 4}, {5, 6}}. For coalition {1, 2, 3} ∈ P, P ′ has neither

this coalition nor the partition of any subset of this coalition into singletons. Therefore, we

remove no coalition from P ′. The same applies to coalition {4, 5, 6} ∈ P. Consequently, the

remaining partition is {{1, 2}, {3, 4}, {5, 6}}. This is the only minimal γ-consistent partition in

this example.

We now consider the partitions in Example 5.4: P = {{1, 2, 3}}, P ′ = {{1}, {2}, {3}}. For

the coalition {1, 2, 3} ∈ P, there are three strict subsets such that P ′ contains its partition into
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singletons: {1, 2}, {1, 3}, and {2, 3}. We exclude the other strict subsets {1}, {2}, and {3} because

each has some strict supersets. We choose, for example, {1, 2} and remove [{1, 2}] from P ′. The

resulting partition is {{3}}. This is a minimal γ-consistent partition. The others are {{1}} and

{{2}}.

In general, procedure κ yields a minimal γ-consistent partition. As stated in Remark 5.7, for any P
and P ′ ∈ Π(N) with P ̸= P ′, there is at least one minimal γ-consistent partition from P to P ′.

Proposition 5.11. For any P and P ′ ∈ Π(N) with P ≠ P ′, P ′ \ KP(P ′) is a minimal γ-consistent

partition from P to P ′.

We characterize a γ-stable coalition structure by using the notion of minimal γ-consistent partitions.

Proposition 5.12. For any P ∈ Π(N), P is γ-stable if and only if for any P ′ ∈ Π(N) \ {P} and any

Q ∈ ΓP(P ′), there exists i ∈ Q̂ such that ϕi(P) ≥ ϕi(P ′).

In view of Propositions 5.8 and 5.12, the difference between γ-stability and δ-stability boils down

to the difference between ΓP(P ′) and ∆P(P ′). Note that these two collections consist only of the

terms of partitions: neither ΓP(P ′) nor ∆P(P ′) includes any information about payoffs and incentives.

Independent of ΓP(P ′) and ∆P(P ′), the two stability notions share the same system of inequalities on

payoffs.

5.3 Another characterization approach

The consistent partition approach in the previous subsection does not apply to α-stability and β-

stability because, unlike γ-stability and δ-stability, a deviating coalition does not specify its resulting

partition. Can we fill such a gap and compare all four concepts in a simple term? We conclude this

section by offering an attempt to achieve this.

The root of this gap can be ascribed to the fact that no expectation formation rule applies to α-

stability and β-stability. The concept of an expectation formation rule is introduced by Bloch and van

den Nouweland (2014) as a function f that assigns a partition of the player set N to a tuple (S,Q,P, v),

where S ⊆ N is a coalition of deviating players, Q ∈ Π(S) is its partition, P ∈ Π(N) is the initial

partition from which the players deviate, and v is a partition function (see Subsection 2.2).

The reason that no expectation formation rule applies to α-stability is that a CS-game ϕ does not

necessarily have transferable utility. An illustrating example is the pessimistic rule formulated by Bloch

and van den Nouweland (2014), which is often referred to as an analog of α-stability:

f(S,Q,P, v) = arg min
P′∈Π(N\S)

∑
T∈Q

v(T,Q∪ P ′).

The pessimistic rule indicates that the non-deviating players N \ S reorganize their coalition structure

P ′ ∈ Π(N \ S) to minimize the total worth of the deviating coalition S, namely,
∑

T∈Q v(T,Q ∪ P ′).

However, this summation is clearly based on the premise that the underlying game v has transferable
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utility.*10 Since we do not assume that utility is transferable in a CS-game ϕ, we cannot adopt this type

of minimization.

In addition to the NTU-setting of a CS-game ϕ, β-stability has another reason: it consists of two steps

of reactions. First, the deviating players form S. Next, as the first reaction, the players in N \ S choose

a coalition structure P ′ of N \ S. Finally, as the second reaction, the players in S choose a coalition

structure Q of S. Since an expectation formation rule is defined to formulate a one-step reaction, it does

not cover such multi-step reactions as β-stability.

We provide a framework to extend the notion of an expectation formation rule. As mentioned above,

the purpose is to incorporate all four stability notions into this framework. The structure of the framework

is similar to that of two-sided matching. For any S ⊆ N and any P ∈ Π(N), define

G +
S,P := {(Q,P ′) ∈ Π(S)×Π(N \ S)| for any i ∈ S, ϕi(Q∪ P ′) > ϕi(P)},

G −
S,P := {(Q,P ′) ∈ Π(S)×Π(N \ S)| there exists i ∈ S such that ϕi(Q∪ P ′) ≤ ϕi(P)}.

We regard G +
S,P and G −

S,P as graphs, both of which are sets of links that connect partitions Q ∈ Π(S)

and P ′ ∈ Π(N \ S). For each partition P ∈ Π(N) and coalition S ⊆ N , an expectation formation

rule associates exactly one partition of N \ S with a partition of S, while each graph may assign some

partitions of N \S to a partition of S. In that sense, these notions can also be thought of as multi-valued

functions. If pair (Q,P ′) is in G +
S,P , then the partition P ′ is beneficial for all players in S. If it is in

G −
S,P , then some player in S does not agree with the partition Q because of the partition P ′ of N \ S.
Below, let G ∗

S,P denote G +
S,P or G −

S,P . A partition Q ∈ Π(S) is single in G ∗
S,P if there is no P ′ ∈ Π(N \S)

such that (Q,P ′) ∈ G ∗
S,P . Similarly, a partition P ′ ∈ Π(N \ S) is single in G ∗

S,P if there is no Q ∈ Π(S)

such that (Q,P ′) ∈ G ∗
S,P . By using the notion of a single partition, Proposition 3.2 can be written as

follows.

Corollary 5.13. Let P ∈ Π(N).

P is α-stable if and only if no Q ∈ Π(S) is single in G −
S,P for any S ⊆ N .

P is β-stable if and only if some P ′ ∈ Π(N \ S) is single in G +
S,P for any S ⊆ N .

P is γ-stable if and only if (P \ PS) ∪ [P̂S \ S] is single in G +
S,P for any S ⊆ N .

P is δ-stable if and only if P|N\S is single in G +
S,P for any S ⊆ N .

6 Cournot oligopoly

In this section, we analyze stable coalition structures in oligopolistic competition. Specifically, we

focus on the CS-game based on Cournot oligopoly formulated by Ray and Vohra (1997). Following their

discussion, we first define the game.

*10 This does not mean that they place a special assumption on a partition function form game. A partition function

form game is often assumed to have transferable utility.
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6.1 The model

We assume that n ≥ 3. Let c be the constant marginal cost of producing one unit of identical divisible

goods. Let p(q̄) = a − q̄ be an inverse demand function, where a is a parameter, and q̄ is the (total)

quantity. Fix a partition P ∈ Π(N). In this partition, every coalition S ∈ P simultaneously determines

its quantity qS . Let q = (qS)S∈P be a quantity profile. For each quantity profile q and each coalition

S ∈ P, coalition S’s profit is given as bS(q) = qS · (p(
∑

S∈P qS)− c). For the partition P, solving for the

(unique) Nash equilibrium, we obtain coalition S’s equilibrium profit M
(|P|+1)2 , where M = (a− c)2. For

simplicity, let M = 1 and 1
(|P|+1)2 . Since all players are symmetric, we assume that the members of each

coalition S equally share their profit: in the partition P ∈ Π(N), player i receives

ϕi(P) =
1

(|P|+ 1)2 · |P(i)|
.

Recall that P(i) is the coalition in P that contains player i. Applying this computation to all partitions

in Π(N), we obtain function ϕ : Π(N) → RN .*11 We treat ϕ as a CS-game of the Cournot oligopoly.

We call ϕ a Cournot CS-game. For example, Table 3 is the Cournot CS-game with five players. A check

mark means that the coalition structure satisfies the corresponding stability, and a “-” means that it

violates the stability concept.

Table 3 The five-player Cournot CS-game

P ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 α β γ δ

12345 1
20

1
20

1
20

1
20

1
20 ✓ ✓ ✓ -

1234, 5 1
36

1
36

1
36

1
36

1
9 - - - -

123, 45 1
27

1
27

1
27

1
18

1
18 ✓ ✓ - -

123, 4, 5 1
48

1
48

1
48

1
16

1
16 - - - -

12, 34, 5 1
32

1
32

1
32

1
32

1
16 ✓ ✓ - -

12, 3, 4, 5 1
50

1
50

1
25

1
25

1
25 - - - -

1, 2, 3, 4, 5 1
36

1
36

1
36

1
36

1
36 - - - -

6.2 Stable coalition structures

First, for any number of players n, a Cournot CS-game has positive externalities. Therefore, Propo-

sition 4.1 implies that Cα(ϕ) = Cβ(ϕ). Moreover, Proposition 4.2 implies that Cγ(ϕ) ⊇ Cδ(ϕ). Hence,

for any n, it immediately holds that

Cα(ϕ) = Cβ(ϕ) ⊇ Cγ(ϕ) ⊇ Cδ(ϕ).

The following result shows that no partition meets δ-stability.

*11 To be more precise, ϕ depends on the number of players n. Therefore, ϕn is the more formal notation. For simplicity,

we omit n and write ϕ.
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Proposition 6.1. For any n, no coalition structure is δ-stable.

Although Cδ is empty, some partitions satisfy the other three stability notions. The following propo-

sition states that the grand coalition satisfies the other three stability concepts for any n.

Proposition 6.2. For any n, partition {N} is α-, β-, and γ-stable.

Note that the stability of a coalition structure means that of a cartel in the context of oligopoly.

As Proposition 6.1 shows, some coalition, say S, has an incentive to deviate form the grand coalition

when the non-deviating players “cling” to the remaining coalition, namely, N \ S. This implies that a

monopoly, namely, the grand coalition, may endogenously split into a duopoly. However, as Proposition

6.2 shows, it is difficult for a monopoly to directly split into multiple small firms in one shot. Therefore,

a process of splits, if any, should be a sequence of small splits from the grand coalition into some fine

coalition structure, e.g., the partition into singletons.

Is there a coalition structure that stops such a process of splits? Proposition 6.3 states that some

coalition structures can be stable and stop the process.

Proposition 6.3. Let i ∈ N . Partition {N \ {i}, {i}} is γ-stable if and only if n = 6, 8.

Note that, since Cα = Cβ ⊇ Cγ , if a partition is γ-stable then it is α- and β-stable. One may interpret

this result to mean that few partitions are stable, and the process of splits is likely to continue since

it is stable only if n = 6, 8. However, in a game with more players, more coalition structures can be

stable. For example, in the game with n = 12, the partitions consisting of a seven-player coalition

and a five-player coalition are γ-stable. Moreover, one might derive the irregularity of γ-stability (and,

hence, that of α-stability and β-stability) from Proposition 6.3 because of the exceptions of n = 6 and

8. According to our computations, for all n ≤ 8, all partitions except {N} and {N \ {i}, {i}} are not

γ-stable. However, as the example with n = 12 shows, other partitions can be γ-stable in a game with

more players.

7 Concluding remarks

The main topic of this paper is the four stability notions proposed by Hart and Kurz (1983), called α-,

β-, γ-, and δ-stability. These notions were introduced to study stable coalition structures in economic,

political, or game-theoretic models. The conceptual aspects of these notions has been widely accepted.

However, they have rarely been adopted to analyze stable coalition structures in applications. The reason

lies in the fact that these definitions contain some intermediate games such as NTU-games and strategic

form games. To make these notions more useful and practical, in Section 3, we provide an explicit form

with each of the stability notions without using any intermediate game. In Section 4, we utilize this

result and provide some conditions for externalities and internalities that determine the relationship

among the four stability notions. We offer a weak condition for externalities for α-stability to coincide

with β-stability and a condition for the set of γ-stable coalition structures to be a subset of δ-stable

coalition structures (and the condition for its converse inclusion). In addition, we provide conditions
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for internalities for a game to have a coalition structure that satisfies all four stability concepts. In

Section 5, another characterization is provided. We introduce the notions of a δ-consistent partition and

a γ-consistent partition to describe what partition consistently connects the partition from which the

players deviate and the partition to which they deviate. We also propose a constructive procedure to

specify such consistent partitions. In Section 6, we apply our results to Cournot oligopoly and analyze

its stable coalition structures.

In this paper, except in Section 6, we consider a general CS-game ϕ. We can derive a CS-game ϕ

from a coalition structure value (a CS-value), namely, a solution concept for a TU-game with coalition

structures. For example, Hart and Kurz (1984) and Abe (2018) focus on the Owen value (Owen, 1977) and

analyze coalition structures in a symmetric majority game and an apex game. Casajus (2009) proposes

his value concept, called χ-value, as a new solution concept and analyzes stable coalition structures in

a gloves game. These value concepts are closely related to efficiency properties: the class of CS-values

can be divided into two classes. One is the class of N-efficient values: the Owen value and the Kamijo

(2009) value belong to this class. N-efficiency is also known as overall efficiency since the summation

of the distributed payoffs is equal to the worth of the grand coalition for any partition. The other is

the class of values satisfying coalitional efficiency: the Aumann-Drèze (1974) value, the Casajus value,

and the Wiese (2007) value belong to this class. This efficiency notion requires the payoff distribution

to be efficient within each coalition in a partition. Our future research topic is to study the relationship

between the efficiency notions and the four stability concepts. This research will reveal (i) the general

relationship between CS-games and CS-values and (ii) that between stable coalition structures and

efficiency properties.

Appendix

Proof of Lemma 3.1

Let T ⊆ N and σT ∈ AT . For any P,P ′ ∈ Π(N \ T ),

B∗(σT , σ
P
N\T )|T = B∗(σT , σ

P′

N\T )|T =: Q.

Moreover, for any P ∈ Π(N \ T ),
Q ⊆ B∗(σT , σ

P
N\T )

and
Q∪ P = B∗(σT , σ

P
N\T ).

Proof. We begin with Bγ . We first show that Bγ(σT , σ
P
N\T )|T = Bγ(σT , σ

P′

N\T )|T . Let S ∈
Bγ(σT , σ

P
N\T )|T . There exists C ∈ Bγ(σT , σ

P
N\T ) such that T ∩ C = S. By the definition of σP , P ⊆

Bγ(σT , σ
P
N\T ). We have C ⊆ T because if there is i ∈ C\T , then C

i∈C∈Bγ

= Bγ(σT , σ
P
N\T )(i)

i∈P(i)∈Bγ

= P(i)

holds, while C ∩ T ̸= ∅ and P(i) ∩ T
P∈Π(N\T )

= ∅. Now, since C ⊆ T , the fact T ∩C = S implies C = S.

Hence, S ∈ Bγ(σT , σ
P
N\T ) and S ⊆ T hold. In view of the definition of Bγ ,

σi = S for any i ∈ S. (A.1)
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Hence, S ∈ Bγ(σT , σ
P′

N\T ) and S ⊆ T follow. Thus, S ∈ Bγ(σT , σ
P′

N\T )|T . The opposite inclusion relation

is also proved in the same manner. As for Bδ, replace (A.1) by “σi = σi′ for any i, i′ ∈ S.” The fact that

for any j ∈ N \ T , σP(j) ∩ T = ∅ implies σP(j) ∩ S = ∅. Hence, S ∈ Bδ(σT , σ
P′

N\T ) also follows.

Now, we prove the second statement. Since S ∈ Bγ(σT , σ
P
N\T ) for any S ∈ Bγ(σT , σ

P
N\T )|T , we have

Bγ(σT , σ
P
N\T )|T = Bγ(σT , σ

P
N\T ) \ P. The same holds for Bδ. This completes the second statement.

The third statement follows from P,Q ⊆ Bγ(σT , σ
P
N\T ), P ∈ Π(N \ T ), and Q ∈ Π(T ).

Proof of Proposition 3.2

For any partition P ∈ Π(N), the following four statements hold.

i. P is α-stable if and only if there exist no T ⊆ N and no Q ∈ Π(T ) such that for any P ′ ∈ Π(N \T ),
ϕi(Q∪ P ′) > ϕi(P) for every i ∈ T .

ii. P is β-stable if and only if there exist no T ⊆ N such that for any P ′ ∈ Π(N \ T ), there exists

Q ∈ Π(T ) such that ϕi(Q∪ P ′) > ϕi(P) for every i ∈ T .

iii. P is γ-stable if and only if there exist no T ⊆ N and no Q ∈ Π(T ) such that ϕi(Q ∪ [P̂T \ T ] ∪
(P \ PT )) > ϕi(P) for every i ∈ T .

iv. P is δ-stable if and only if there exist no T ⊆ N and no Q ∈ Π(T ) such that ϕi(Q ∪ (P|N\T )) >

ϕi(P) for every i ∈ T .

Proof. The if-part of α-stability: Assume that P is not α-stable, namely, ϕ(P) ̸∈ C(V α). There are

T ⊆ N and y ∈ V α(T ) such that yi > ϕi(P) for any i ∈ T . For the T and y, by the definition of V α,

there exists σ̃T ∈ AT such that for any σN\T ∈ AN\T , ϕi(B∗(σ̃T , σN\T )) ≥ yi > ϕi(P) for any i ∈ T . Fix

the σ̃T . Lemma 3.1 implies that for the fixed σ̃T and any P ′ ∈ Π(N \ T ), Q := B∗(σ̃T , σ
P′

N\T )|T satisfies

Q∪P ′ = B∗(σ̃T , σ
P′

N\T ). Thus, for the T and Q, we have ϕi(Q∪P ′) > ϕi(P) for any P ′ ∈ Π(N \ T ) and
any i ∈ T . This is a contradiction.

The only-if-part of α-stability: Assume that there exist T ⊆ N and Q ∈ Π(T ) such that for any

P ′ ∈ Π(N \ T ), ϕi(Q ∪ P ′) > ϕi(P) for every i ∈ T . For any σN\T ∈ AN\T , since Q ⊆ B∗(σQ
T , σN\T ),

we have ϕi(B∗(σQ
T , σN\T )) > ϕi(P) for every i ∈ T . Now, for any y ∈ RT , let FT (y) = {xT ∈ RT |xj ≤

yj for all j ∈ T}. For simplicity, write ϕT (σN\T ) := (ϕi(B∗(σQ
T , σN\T )))i∈T . We define

z := sup
∩

σN\T∈AN\T

FT (ϕT (σN\T )).

Note that z is unique because of the construction of FT . The payoff vector z is in V α(T ), while zi > ϕi(P)

for any i ∈ T . Hence, P is not α-stable.

The if-part of β-stability: Assume that P is not β-stable, namely, ϕ(P) ̸∈ C(V β). There are T ⊆ N

and y ∈ V β(T ) such that yi > ϕi(P) for any i ∈ T . For the T and y, by the definition of V β , for any

σN\T ∈ AN\T , there exists σ̃T ∈ AT such that ϕi(B∗(σ̃T , σN\T )) ≥ yi > ϕi(P) for any i ∈ T . Hence, for

any P ′ ∈ Π(N \ T ), there exists σ̃T ∈ AT such that ϕi(B∗(σ̃T , σ
P′

N\T )) > ϕi(P) for any i ∈ T . For any

P ′ ∈ Π(N \ T ), since B∗(σ̃T , σ
P′

N\T ) ⊇ P ′, set Q(P ′) := B∗(σ̃T , σ
P′

N\T ) \ P
′. For any P ′ ∈ Π(N \ T ), such
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Q(P ′) establishes that ϕi(Q(P ′) ∪ P ′) > ϕi(P) for any i ∈ T .

The only-if-part of β-stability: Assume that there exists T ⊆ N such that for any P ′ ∈ Π(N \T ) there
is Q ∈ Π(T ) such that ϕi(Q∪P ′) > ϕi(P) for every i ∈ T . Fix the coalition T . For any P ′ ∈ Π(N \ T ),
let Q(P ′) be a partition satisfying the inequality. Define

zT := sup
∩

P′∈Π(N\T )

FT (ϕT (Q(P ′) ∪ P ′)).

For any P ′ ∈ Π(N \ T ),
ϕi(Q(P ′) ∪ P ′) ≥ zi > ϕi(P) for any i ∈ T . (A.2)

Now, we show that zT ∈ V β(T ). For any σN\T ∈ AN\T , set Ḃγ(σN\T ) := {Ṫ i
σN\T

|i ∈ N \ T}, where

Ṫ i
σN\T

=

{
σi if σi = σj for all j ∈ σi and σi ⊆ N \ T ,
{i} otherwise.

Note that Ḃγ is defined so as to satisfy Bγ(σ
Q(Ḃγ(σN\T ))

T , σN\T ) = Q(Ḃγ(σN\T )) ∪ Ḃγ(σN\T ) for any

σN\T ∈ AN\T .*
12 Hence, in view of (A.2), for any σN\T ∈ AN\T , we have

ϕi(Bγ(σ
Q(Ḃγ(σN\T ))

T , σN\T )) = ϕi(Q(Ḃγ(σN\T )) ∪ Ḃγ(σN\T ))
(A.2)

≥ zi

for any i ∈ T . Hence, zT ∈ V β(T ), and P is not β-stable because of such T and zT .

The if-part of γ-stability: Let P ∈ Π(N). There is no T ⊆ N and no Q ∈ Π(T ) such that ϕi(Q∪ [P̂T \
T ] ∪ (P \ PT )) > ϕi(P) for every i ∈ T . Hence, for any T ⊆ N and any Q ∈ Π(T ), there exists i∗ ∈ T

such that
ϕi∗(Q∪ [P̂T \ T ] ∪ (P \ PT )) ≤ ϕi∗(P). (A.3)

Now, assume that the strategy profile σP is not a strong equilibrium in Gγ
ϕ: there exists (T ∗, σ̂T∗) such

that for any i ∈ T ∗, σ̂i ̸= σP
i and

ϕi(Bγ(σ̂T∗ , σP
N\T∗)) > ϕi(Bγ(σP)) = ϕi(P), (A.4)

where the equality holds because Bγ(σP) = P. We fix T ∗. From (A.3) and (A.4), it follows that for any

Q ∈ Π(T ∗), there exists i∗ ∈ T ∗ such that

ϕi∗(Bγ(σ̂T∗ , σP
N\T∗)) > ϕi∗(P) ≥ ϕi∗(Q∪ [P̂T∗ \ T ∗] ∪ (P \ PT∗)). (A.5)

We now focus on the partition Bγ(σ̂T∗ , σP
N\T∗). Note that T ∗ ⊆ P̂T∗ ⊆ N . In view of the strategy

profile (σ̂T∗ , σP
N\T∗), every player i ∈ N \T ∗ chooses σP

i = P(i). Hence, for every i ∈ N \P̂T∗ , σP
i = P(i).

Note that P \PT∗ is a partition of N \ P̂T∗ , which means P(i) ∈ P \PT∗ for every i ∈ N \ P̂T∗ . In other

words, for each coalition C in P\PT∗ , every member in C chooses the same C as his/her strategy. Hence,

Bγ assigns P(i) to each player i ∈ N\P̂T∗ . We next arbitrarily fix a player i in P̂T∗\T ∗. Since σ̂j ̸= σP
j for

every j ∈ T ∗, the new strategy of player j ∈ P(i)∩T ∗, namely σ̂j , is different from the player i’s strategy

σP
i = P(i). Namely, we have σP

i = P(i) = σP
j ̸= σ̂j . Hence, for the strategy profile (σ̂T∗ , σP

N\T∗), Bγ

*12 For Bδ, we set Ḃδ(σN\T ) := {Ṫ ⊆ N \ T |i.j ∈ Ṫ ⇐⇒ σi = σj}.
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assigns {i} to each player i ∈ P̂T∗ \ T ∗. As a result, Bγ(σ̂T∗ , σP
N\T∗) = [P̂T∗ \ T ∗] ∪ (P \ PT∗) ∪ Q′ for

some Q′ ∈ Π(T ∗), where Q′ is a partition of T ∗ induced by the strategy profile σ̂T∗ . However, (A.5)

must hold for any Q ∈ Π(T ∗). This is a contradiction.

The only-if-part of γ-stability: Let P be γ-stable. The strategy profile σP is a strong equilibrium in

Gγ
ϕ, which implies that for any T ⊆ N and any σ̂T ∈ AT , there exists i∗ ∈ T such that

ϕi∗(Bγ(σ̂T , σ
P
N\T )) ≤ ϕi∗(P). (A.6)

Now assume that there exist T ∗ ⊆ N and Q∗ ∈ Π(T ∗) such that for any i ∈ T ∗

ϕi(Q∗ ∪ [P̂T∗ \ T ∗] ∪ (P \ PT∗)) > ϕi(P). (A.7)

For the fixed T ∗ and Q∗, (A.6) and (A.7) result in

ϕi∗(Q∗ ∪ [P̂T∗ \ T ∗] ∪ (P \ PT∗)) > ϕi∗(Bγ(σ̂T∗ , σP
N\T∗)) (A.8)

for any σ̂T∗ ∈ AT∗ . We set σ̂i := Q∗(i) for every i ∈ T ∗. Since Q∗ is a partition of T ∗, we obtain

Bγ(σ̂T∗ , σP
N\T∗) = [P̂T∗ \ T ∗] ∪ (P \ PT∗) ∪ Q∗ in the same manner with the if-part.*13 However, this

contradicts (A.8).

The if-part of δ-stability: This is similar to the if-part of γ-stability. Replacing ϕi(Q ∪ [P̂T \ T ] ∪
(P|

N\P̂T
)) > ϕi(P) by Q∪ (P|N\T ), we have the following inequality that corresponds to (A.5): for any

Q ∈ Π(T ∗), there exists i∗ ∈ T ∗ such that ϕi∗(Bδ(σ̂T∗ , σP
N\T∗)) > ϕi∗(Q ∪ (P|N\T∗)). For the given T ∗

and σ̂T∗ , we set Q∗ := {R ⊆ T ∗|i, j ∈ R ⇐⇒ σ̂i = σ̂j}. Note that, as in the case of γ-stability, σ̂i ̸= σP
i

for every i ∈ T ∗. In view of the definition of Bδ, we obtain Q∗ ∪ (P|N\T∗) = Bδ(σ̂T∗ , σP
N\T∗). This is a

contradiction.

The only-if-part of δ-stability: In the same manner with the only-if-part of γ-stability, there exist T ∗ ⊆
N , Q∗ ∈ Π(T ∗), and i∗ ∈ T ∗ such that for any σ̂T∗ ∈ AT∗ , ϕi∗(Q∗ ∪ (P|N\T∗)) > ϕi∗(Bδ(σ̂T∗ , σP

N\T∗)).

Setting σ̂i := Q∗(i) for any i ∈ T ∗, sinceQ∗ is a partition of T ∗, we have Bδ(σ̂T∗ , σP
N\T∗) = Q∗∪(P|N\T∗).

This is a contradiction.

Proof of Proposition 4.1

If a CS-game ϕ has weak nonnegative externalities or weak nonpositive externalities, then Cα(ϕ) =

Cβ(ϕ).

Proof. Let ϕ be a CS-game that has weak nonnegative externalities. In view of (2.3), it holds that

Cα(ϕ) ⊇ Cβ(ϕ). We show that Cα(ϕ) ⊆ Cβ(ϕ). We prove that if P is not β-stable, then it is not

α-stable. In view of Proposition 3.2, let T ⊆ N be a coalition such that for any P ′ ∈ Π(N \ T ), there
exists Q ∈ Π(T ) such that ϕi(Q∪P ′) > ϕi(P) for every i ∈ T . Hence, for partition [N \T ] (∈ Π(N \T )),

*13 Note that for any i ∈ P̂T∗ \ T ∗ and any j ∈ P(i) ∩ T ∗, we have σP
i ̸= Q∗(j) because if this equality holds for some

i ∈ P̂T∗ \ T ∗ and j ∈ P(i) ∩ T ∗, then, in view of the definition of P̂T∗ , T ∗ ⊊ P(i) = σP
i = Q∗(j), which contradicts

the fact that Q∗ is a partition of T ∗.
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there exists Q∗ ∈ Π(T ) such that ϕi(Q∗∪ [N \T ]) > ϕi(P) for every i ∈ T . Since ϕ has weak nonnegative

externalities, for any P ′ ∈ Π(N \ T ) we have

ϕi(Q∗ ∪ P ′) ≥ ϕi(Q∗ ∪ [N \ T ]) > ϕi(P) for every i ∈ T.

Because of this pair (T,Q∗), partition P is not α-stable. If ϕ has weak nonpositive externalities, replacing

[N \ T ] by {N \ T} completes the poof.

Proof of Proposition 4.2

If a CS-game ϕ has nonnegative externalities, then Cγ(ϕ) ⊇ Cδ(ϕ). If a CS-game ϕ has nonpositive

externalities, then Cδ(ϕ) ⊇ Cγ(ϕ).

Proof. Let ϕ have nonnegative externalities. We prove that if P is not γ-stable, then it is not δ-

stable. Since P is not γ-stable, in view of Proposition 3.2, there are T ⊆ N and Q ∈ Π(T ) such that

ϕi(Q∪ [P̂T \ T ] ∪ (P \ PT )) > ϕi(P) for every i ∈ T . We focus on the subpartition [P̂T \ T ] ∪ (P \ PT ).

For any S ∈ P \ PT , there exists S′ ∈ P|N\T such that S ⊆ S′ because

P \ PT
(2.1)
= P|

N\P̂T

T⊆P̂T

⊆ P|N\T .

Moreover, [P̂T \ T ] is the finest partition of P̂T \ T . Hence, [P̂T \ T ] ∪ (P \ PT ) is finer than P|N\T . In

view of nonnegative externalities, we have ϕi(Q ∪ (P|N\T )) ≥ ϕi(Q ∪ [P̂T \ T ] ∪ (P \ PT )) > ϕi(P) for

any i ∈ T . Hence, P is not δ-stable.

If ϕ has nonpositive externalities, then we have ϕi(Q∪ [P̂T \T ]∪ (P \PT )) ≥ ϕi(Q∪ (P|N\T )) > ϕi(P)

for any i ∈ T in the same manner.

Proof of Proposition 5.5

Let P,P ′ ∈ Π(N) with P ̸= P ′. Partition Q is a δ-consistent partition from P to P ′ if and only if

Q ∈ ∆
P
(P ′), where

∆
P
(P ′) = {Q ∈ Π(N)| there exists R ⊆ LP(P ′) such that

Q = ZP(P ′) ∪R and P ′|N\Q̂ = P|N\Q̂}

Note that R can be empty.

Proof. We first show that a δ-consistent partition from P to P ′ is in ∆
P
(P ′). Let Q be a δ-consistent

partition from P to P ′. The equality P ′|N\Q̂ = P|N\Q̂ readily follows from P ′ = Q ∪ (P|N\Q̂). We

assume that ZP(P ′) ̸⊆ Q. Then there exists C ′ ∈ ZP(P ′) such that C ′ ̸∈ Q. By C ′ ∈ ZP(P ′), we

have C ′ ∈ P ′. The three facts C ′ ∈ P ′, C ′ ̸∈ Q, and P ′ = Q ∪ (P|N\Q̂) imply that C ′ ∈ P|N\Q̂.

Moreover, P ′ = Q∪ (P|N\Q̂) implies that P|N\Q̂ ⊆ P ′. Hence, in view of Lemma 5.1, P|N\Q̂ ⊆ LP(P ′).

Since C ′ ∈ P|N\Q̂, we obtain C ′ ∈ LP(P ′). This contradicts C ′ ∈ ZP(P ′) as LP(P ′) = P ′ \ ZP(P ′).

Hence, ZP(P ′) ⊆ Q. From LP(P ′) = P ′ \ ZP(P ′), it follows that R := Q \ ZP(P ′) ⊆ LP(P ′). Thus,

Q = ZP(P ′) ∪R.
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Now, we show that Q ∈ ∆
P
(P ′) is δ-consistent. In view of P ′|N\Q̂ = P|N\Q̂, we have Q ∪ (P|N\Q̂) =

Q∪ (P ′|N\Q̂). Since ZP(P ′)∪R ⊆ P ′, we have Q = ZP(P ′)∪R ⊆ P ′. Hence, we have Q∪ (P ′|N\Q̂) =

Q∪ (P ′ \ Q) = P ′. Thus, we obtain Q∪ (P|N\Q̂) = P ′.

Proof of Proposition 5.6

For any P and P ′ ∈ Π(N) with P ̸= P ′, P ′ \ ΛP(P ′) is a minimal δ-consistent partition.

Proof. We fix P and P ′ ∈ Π(N) with P ̸= P ′ through the proof. For simplicity, omitting P and P ′, we

write Λ, Z, and L instead of ΛP (P ′), ZP (P ′), and LP (P ′). Define RP
P′ := P ′ \ (Λ ∪ Z). Similarly, we

write R instead of RP
P′ . The proof consists of two parts. The first part shows P ′ \ Λ is a δ-consistent

partition. In the second part, we prove P ′ \ Λ is minimal.

Part 1: P ′ \ Λ ∈ ∆
P
(P ′). First we have Λ ⊆ L because in view of (5.2), for any T ∈ Λ, there exists

S ∈ P such that λ(S) = T ⊆ S. Since Z = P ′ \ L, we have Λ ∩Z = ∅. Hence, R, Λ, and Z are disjoint,

and
P ′ = R∪ Λ ∪ Z. (A.9)

We have

R = P ′ \ (Λ ∪ Z) = (P ′ \ Λ) ∪ (P ′ \ Z)

= (P ′ \ Λ) ∪ L ⊆ L. (A.10)

It readily follows from (A.9) that
P ′ \ Λ = R∪Z. (A.11)

Now, let Q := R∪Z(= P ′ \Λ). In view of the definition of ∆
P
(P ′), since we have (A.10) and (A.11),

it suffices to show P ′|N\Q̂ = P|N\Q̂. Note that by Q = Z ∪R ⊆ P ′, we have

P ′|N\Q̂
(2.1)
= P ′ \ (Z ∪R)

(A.9)
= Λ. (A.12)

We first show that P ′|N\Q̂ ⊆ P|N\Q̂. Let T ∈ P ′|N\Q̂, namely, T ∈ Λ. By (5.2), there exists a coalition

S ∈ P such that T ⊆ S. For this coalition S ∈ P, we have

T ⊆ (N \ Q̂) ∩ S,

because T ⊆ S and T ∈ P ′|N\Q̂, which implies T ⊆ N \ Q̂. Now assume that there exists a player i

in ((N \ Q̂) ∩ S) \ T . Since i ∈ S and S ∈ P, we have P(i) = S. Since i ∈ N \ Q̂ = N \ (Ẑ ∪ R),

we have i ∈ Λ̂, which implies that P ′(i) ∈ Λ since Λ ⊆ P ′. Since P ′(i) ∈ Λ and P(i) = S, we obtain

P(i) = P ′(i). However, the facts T ∈ P ′ and i ̸∈ T imply P ′(i) ∩ T = ∅. By ∅ ̸= T ⊆ S = P(i), we have

T ⊆ P(i) \ P ′(i), which contradicts P(i) = P ′(i). Hence, we obtain

T = (N \ Q̂) ∩ S. (A.13)

Since S ∈ P and P|N\Q̂ = {(N \ Q̂)∩C|C ∈ P, (N \ Q̂)∩C ̸= ∅}, setting C := S, from (A.13) it follows

that T ∈ P|N\Q̂.
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We now prove P ′|N\Q̂ ⊇ P|N\Q̂. Let T ∈ P|N\Q̂. We have T ⊆ N \ Q̂ (A.9)
= Λ̂. Assume that there

exist T1, T2 ∈ Λ such that T1 ̸= T2, T1 ∩ T ̸= ∅, and T2 ∩ T ̸= ∅. From T1 ∈ Λ, it follows that there

exists S1 ∈ P such that λ(S1) = T1 ⊆ S1. Similarly, there exists S2 ∈ P such that λ(S2) = T2 ⊆ S2. If

S1 = S2, then T1 = λ(S1) = λ(S2) = T2, which contradicts T1 ̸= T2. If S1 ̸= S2, then let i1 ∈ T1 ∩ T

and i2 ∈ T2 ∩ T . Since i1 ∈ S1 ∈ P and i1 ∈ T ∈ P, we have S1 = P(i1) = T . In the same manner,

S2 = P(i2) = T . However, this contradicts S1 ̸= S2. Hence, one or no T ′ ∈ Λ satisfies T ′ ∩ T ̸= ∅. If

there is no such T ′, it readily contradicts T ⊆ Λ̂. Hence, exactly one T ′ ∈ Λ satisfies T ′ ∩ T ̸= ∅. In

view of T ⊆ Λ̂, T ⊆ T ′ follows. Since T ′ ∈ Λ, there exists S′ ∈ P such that T ′ ⊆ S′. Since T ∈ P and

T ′∩T ̸= ∅, we have S′ = T and T ′ ⊆ T . Hence, T ′ = T . By T ′ ∈ Λ, T ∈ Λ. In view of (A.12), we obtain

T ∈ P ′|N\Q̂.

Thus, P ′|N\Q̂ = P|N\Q̂ holds. Together with (A.10) and (A.11), we obtain P ′ \ Λ ∈ ∆
P
(P ′).

Part 2: Minimality. Consider C ∈ P ′ \ Λ. Note that Λ ⊊ P ′ because if Λ = P ′, P = P ′, which

contradicts P ̸= P ′. Now, define

Q′ := (P ′ \ Λ) \ {C} = P ′ \ (Λ ∪ {C}). (A.14)

Our purpose is to show that P ′|
N\Q̂′ ̸= P|

N\Q̂′ . We have P ′|
N\Q̂′

(2.1)
= P ′ \ Q′ (A.14)

= Λ ∪ {C}. Since

N \ Q̂′ (A.14)
= Λ̂ ∪ C, we have P|

N\Q̂′ = P|Λ̂∪C . Hence, our purpose is equivalent to

Λ ∪ {C} ̸= P|Λ̂∪C .

Now, since C ̸∈ Λ, C ∈ P ′ and (A.9), we have C ∈ Z or C ∈ R. If C ∈ Z, then there is no S ∈ P
such that C ⊆ S. Assume that Λ ∪ {C} = P|Λ̂∪C . Since C ∈ P|Λ̂∪C , there exists S ∈ P such that

S ∩ (Λ̂ ∪ C) = C, which implies that, in view of C ̸∈ Λ, C ⊆ S. This is a contradiction. Hence,

Λ ∪ {C} ̸= P|Λ̂∪C . If C ∈ R, then C ∈ L since R ⊆ L. Hence, there exists S ∈ P such that C ⊆ S.

We now consider λ(S). In view of (5.2), λ(S) satisfies λ(S) ∈ P ′ and λ(S) ⊆ S. Since C ̸∈ Λ and

λ(S) ∈ Λ, we have λ(S) ∩ C = ∅. Since C ⊆ S and λ(S) ⊆ S, we have (λ(S) ∪ C) ⊆ S. Moreover,

λ(S) ∪ C = (Λ̂ ∪ C) ∩ S. By setting C ′ := S below, we have

(λ(S) ∪ C) ∈ {(Λ̂ ∪ C) ∩ C ′|C ′ ∈ P, (Λ̂ ∪ C) ∩ C ′ ̸= ∅} = P|Λ̂∪C .

However, partition P ′ (more specifically, its subpartition Λ ∪ {C}) contains disjoint coalitions λ(S) and
C separately. Thus, Λ ∪ {C} ̸= P|Λ̂∪C .

Proof of Proposition 5.8

For any P ∈ Π(N), P is δ-stable if and only if for any P ′ ∈ Π(N) \ {P} and any Q ∈ ∆P(P ′), there

exists i ∈ Q̂ such that ϕi(P) ≥ ϕi(P ′).

Proof. If-part: Suppose that P is not δ-stable. There exist S ⊆ N and Q ∈ Π(S) such that for any

i ∈ S, ϕi(Q∪ (P|N\S)) > ϕi(P). Set P ′ := Q∪ (P|N\S). In view of Proposition 5.5, Q ∈ ∆
P
(P ′). Hence,

for the given P ′ = Q∪ (P|N\S) and Q ∈ ∆
P
(P ′), we have ϕi(P ′) > ϕi(P) for any i ∈ S = Q̂. In view of

27



Remark 5.7, there exists Q∗ ∈ ∆P(P ′) such that Q∗ ⊆ Q, Q∗ ∪ (P|
N\Q̂∗) = P ′, and ϕi(P ′) > ϕi(P) for

any i ∈ Q̂∗.

Only-if-part: Let P be δ-stable. If there exist P ′ ∈ Π(N) \ {P} and Q ∈ ∆P(P ′) such that ϕi(P ′) >

ϕi(P) for any i ∈ Q̂, then P ′ = Q∪(P|N\S) follows from Proposition 5.5. Hence, ϕi(Q∪(P|N\S)) > ϕi(P)

for any i ∈ Q̂. This Q contradicts the fact that P is δ-stable.

Proof of Proposition 5.10

Let P,P ′ ∈ Π(N) with P ̸= P ′. Partition Q is a γ-consistent partition from P to P ′ if and only if

Q ∈ Γ
P
(P ′), where

Γ
P
(P ′) = {Q ∈ Π(N)| there exists R ⊆ LP(P ′) such that

Q = ZP(P ′) ∪R and P ′|N\Q̂ = (P \ PQ̂) ∪ [P̂Q̂ \ Q̂]}.

Note that R can be empty.

Proof. We first show that a γ-consistent partition from P to P ′ is in Γ
P
(P ′). Let Q be a γ-consistent

partition from P to P ′. The equality P ′|N\Q̂ = (P \ PQ̂) ∪ [P̂Q̂ \ Q̂] follows from the definition of a

γ-consistent partition: P ′ = Q ∪ (P \ PQ̂) ∪ [P̂Q̂ \ Q̂]. We assume that ZP(P ′) ̸⊆ Q. Then there exists

C ′ ∈ ZP(P ′) such that C ′ ̸∈ Q. By C ′ ∈ ZP(P ′), we have C ′ ∈ P ′. The three facts C ′ ∈ P ′, C ′ ̸∈ Q,

and P ′ = Q ∪ (P \ PQ̂) ∪ [P̂Q̂ \ Q̂] imply that C ′ ∈ (P \ PQ̂) ∪ [P̂Q̂ \ Q̂]. If C ′ ∈ [P̂Q̂ \ Q̂], then C ′

is one-person coalition. Hence, C ′ ∈ LP(P ′). If C ′ ∈ (P \ PQ̂), then C ′ ∈ P. Hence, C ′ ∈ LP(P ′).

However, in any case, this contradicts C ′ ∈ ZP(P ′). Hence, ZP(P ′) ⊆ Q. From LP(P ′) = P ′ \ ZP(P ′),

it follows that R := Q \ ZP(P ′) ⊆ LP(P ′). Thus, Q = ZP(P ′) ∪R.

Now, we show that Q ∈ Γ
P
(P ′) is γ-consistent. We have the following two facts (i) P ′|N\Q̂ = (P\PQ̂)∪

[P̂Q̂\Q̂] and (ii)Q ⊆ P ′. Hence, we obtainQ∪(P\PQ̂)∪[P̂Q̂\Q̂]
(i)
= Q∪(P ′|N\Q̂)

(ii)
= Q∪(P ′\Q) = P ′.

Proof of Proposition 5.11

For any P and P ′ ∈ Π(N) with P ̸= P ′, P ′ \ KP(P ′) is a minimal γ-consistent partition.

Proof. We fix P and P ′ ∈ Π(N) with P ̸= P ′ through the proof. Omitting P and P ′, we write K, Z,

and L. Define RP
P′ := P ′ \ (K ∪ Z). Similarly, we write R instead of RP

P′ . The approach of the proof is

similar to that of Proposition 5.6: the proof consists of two parts.

Part 1: P ′ \ K ∈ Γ
P
(P ′). For any T ∈ K, the following (i) or (ii) holds:

(i) there exists S ∈ P such that T = S,

(ii) |T | = 1 and there exist S ∈ P and T ′ ⊊ S such that [T ′] ⊆ P ′, T ∈ [T ′], and no T ′ with T ⊊ T ′ ⊊ S

satisfies [T ′] ⊆ P ′.

For every T ∈ K, if (i) holds, T ∈ L readily follows. If (ii) holds, then |T | = 1 and, hence, T ∈ L. Hence,

K ⊆ L. Since, Z = P ′ \ L, we have Z ∩ K = ∅. Hence, R,K, and Z are disjoint, and

P ′ = R∪K ∪ Z. (A.15)
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In the same manner with (A.11) of δ-stability, we have

R ⊆ L. (A.16)

In view of (A.15),
P ′ \ K = R∪Z. (A.17)

Now, let Q := R∪Z(= P ′ \K). In view of the definition of Γ
P
(P ′) and (A.16) and (A.17), it suffices to

show P ′|N\Q̂ = (P \ PQ̂) ∪ [P̂Q̂ \ Q̂].

We first show that P ′|N\Q̂ ⊆ (P \ PQ̂) ∪ [P̂Q̂ \ Q̂]. Since Q = R ∪ Z ⊆ P ′, we have P ′|N\Q̂
(2.1)
=

P ′ \ Q = K. Let T ∈ P ′|N\Q̂, namely T ∈ K.

If (i) holds, T ∈ P follows. Assume that T ∈ PQ̂. Since PQ̂ = {C ∈ P|Q̂∩C ̸= ∅}, we have T ∩Q̂ ̸= ∅.
However, since T ∈ P ′|N\Q̂, we have T ⊆ N \ Q̂, which implies that T ∩ Q̂ = ∅. This is a contradiction.

Hence, T ̸∈ PQ̂. From T ∈ P, it follows that T ∈ P \ PQ̂.

If (ii) holds, |T | = 1 follows. Let t be the player in the one-person coalition T . Since T ∈ P ′|N\Q̂, we

have T ⊆ N \ Q̂ and t ̸∈ Q̂. Assume that t ̸∈ P̂Q̂. Since P̂Q̂ = ∪C∈P:C∩Q̸̂=∅C, we have P(t) ∩ Q̂ = ∅.
Now in view of (ii), the coalition S satisfies t ∈ S ∈ P. Hence, we set S := P(t), and the condition

(ii) implies that there exists coalition T ′ ⊊ P(t). Let i ∈ P(t) \ T ′. Note that the coalition T ′ satisfies

[T ′] ⊆ P ′, {t} ∈ [T ′] (i.e., t ∈ T ′), and no T ′′ with T ′ ⊊ T ′′ ⊊ P(t) satisfies [T ′′] ⊆ P ′ because of (ii).

Now, consider coalition P ′(i). If |P ′(i)| = 1, then set T ∗ := T ′∪{i}. The coalition T ∗ satisfies [T ∗] ⊆ P ′

and T ′ ⊊ T ∗ ⊊ P(t). However, this readily contradicts the constraint that no T ′′ with T ′ ⊊ T ′′ ⊊ P(t)

satisfies [T ′′] ⊆ P ′. If |P ′(i)| ≥ 2, then we have P ′(i) ∈ K, because if P ′(i) ̸∈ K then P ′(i) ∈ Q and

i ∈ Q̂, while the facts i ∈ P(t) and P(t) ∩ Q̂ = ∅ imply i ̸∈ Q̂, a contradiction. Since |P ′(i)| ≥ 2 and

P ′(i) ∈ K, condition (i) implies P ′(i) = P(i). From i ∈ P(t), it follows that P(i) = P(t). However, since

t ∈ T ′ and [T ′] ⊆ P ′, we have P ′(t) = {t}, which means t ̸∈ P ′(i). Hence, it holds that t ∈ P(t) \ P ′(i)

and P(t) ̸= P ′(i). Given that P(i) = P(t), this contradicts P ′(i) = P(i).

We now show that P ′|N\Q̂ ⊇ (P \ PQ̂) ∪ [P̂Q̂ \ Q̂]. Let T ∈ (P \PQ̂)∪ [P̂Q̂ \ Q̂]. If T ∈ [P̂Q̂ \ Q̂], then

T ⊆ N \ Q̂. Similarly, if T ∈ (P \ PQ̂), then T ⊆ N \ Q̂ follows from Q̂ ⊆ P̂Q̂. Hence,

T ⊆ N \ Q̂ = K̂. (A.18)

Note that this does not mean T ∈ K. Now, we show T ∈ P ′. Assume T ̸∈ P ′. One of the following two

disjoint statements holds:

(a) there exist i1, i2 ∈ T such that i1 ̸= i2 and P ′(i1) ̸= P ′(i2),

(b) there exists i ∈ N \ T such that for any j ∈ T , P ′(i) = P ′(j).

If T ∈ [P̂Q̂ \ Q̂], T is a one-person coalition. Write {j} = T . Clearly (a) does not hold. Hence (b)

holds. By (b), since i ̸= j, we have |P ′(j)| ≥ 2. Since T
(A.18)

⊆ K̂, j ∈ K̂. Hence, K ⊆ P ′ implies P ′(j) ∈ K.

From |P ′(j)| ≥ 2, P ′(j) ∈ K, and condition (i), it follows that P ′(j) = P(j). Since j ∈ P̂Q̂ \ Q̂ ⊆ P̂Q̂

and P̂Q̂ = ∪C∈P:C∩Q̸̂=∅C, we have P(j) ∩ Q̂ ̸= ∅. Hence, P ′(j) ∩ Q̂ ̸= ∅, which implies P ′(j) ̸⊆ K̂. This

contradicts P ′(j) ∈ K.

29



If T ∈ (P \ PQ̂), then T ∈ P. If (a) holds, i1 ∈ T
(A.18)

⊆ K̂. Hence, in view of K ⊆ P ′, P ′(i1) ∈ K.

For P ′(i1) ∈ K, if (i) holds, then P ′(i1) = P(i1). Since i1 ∈ T ∈ P, P(i1) = T . Hence, P ′(i1) = T . In

view of (a), P ′(i1) ̸= P ′(i2) implies P ′(i1) ∩ P ′(i2) = ∅. Hence, T ∩ P ′(i2) = ∅. However, both T and

P ′(i2) contain i2, a contradiction. Thus, for P ′(i1) ∈ K, (ii) holds. In the same manner, (ii) also holds

for P ′(i2) ∈ K. Hence, we have |P ′(i1)| = |P ′(i2)| = 1, and there exist S ∈ P and T ′ ⊊ S such that

[T ′] ⊆ P ′, [T ′] = κ(S), i1 ∈ T ′, and i2 ∈ T ′.*14 Let j ∈ S \T ′. Since i1 ∈ T ∈ P and i1 ∈ S ∈ P, we have

S = T . Hence, j ∈ S \ T ′ = T \ T ′ ⊆ T
(A.18)

⊆ K̂, which implies P ′(j) ∈ K. Now, assume that (i) holds

for P ′(j) ∈ K. We have P(j) = P ′(j). Since |P ′(i1)| = 1, we have j ̸∈ P ′(i1), equivalently, i1 ̸∈ P ′(j).

By i1 ∈ T , T ̸= P ′(j). By j ∈ T ∈ P, P(j) = T . Hence, P(j) ̸= P ′(j). This is a contradiction. Thus,

(ii) holds for P ′(j) ∈ K. We have {j} = P ′(j), and by (ii) there exists T ′′ ⊊ T (= S = P(j)) such that

[T ′′] ⊆ P ′, j ∈ T ′′, and [T ′′] = κ(T ). By S = T , we have [T ′′] = κ(T ) = κ(S) = [T ′]. However, this

contradicts j ̸∈ T ′ and j ∈ T ′′.

If (b) holds, there exists i ∈ N \ T such that for any j ∈ T , P ′(i) = P ′(j). Fix j ∈ T
(A.18)

⊆ K̂. We

have P ′(j) ∈ K. Hence, P ′(i) ∈ K, and P ′(i) contains both i and j: |P ′(i)| ≥ 2. Condition (i) implies

P ′(i) = P(i). Hence, P ′(j) = P(i) follows. We have j ∈ P ′(j) = P(i), equivalently, P(i) = P(j). By

j ∈ T ∈ P, we have T = P(j); by i ∈ N \ T , we have P(i) ̸= T . This is a contradiction.

Thus, P ′|N\Q̂ = (P\PQ̂)∪[P̂Q̂\Q̂] holds. Together with (A.16) and (A.17), we obtain P ′\K ∈ Γ
P
(P ′).

Part 2: Minimality. Let C ∈ P ′ \ K and

Q′ := (P ′ \ K) \ {C} = P ′ \ (K ∪ {C}). (A.19)

Below, we show that P ′|N\Q̂′ ̸= (P \PQ̂′)∪ [P̂Q̂′ \ Q̂′]. First, we have P ′|N\Q̂′
(2.1)
= P ′ \Q′ (A.19)

= K∪{C}.
Since C ̸∈ K, there is no S ∈ P such that S = C, which means C ̸∈ P. Hence, we obtain C ̸∈ (P \ PQ̂′).

Next, we prove C ̸∈ [P̂Q̂′ \ Q̂′]. Assume that C ∈ [P̂Q̂′ \ Q̂′]. Then |C| = 1. As C is a one-person

coalition, some S ∈ P satisfies C ⊆ S. We consider the following two cases: |S| = 1 and |S| ≥ 2. If

|S| = 1, then C = S. However, C ̸∈ K implies that there is no such S, a contradiction. If |S| ≥ 2, then

for the S ∈ P, there exists T ′ ⊊ S such that C ∈ [T ′] and [T ′] ⊆ P ′, e.g., T ′ := C. However, C ̸∈ K
implies that there is no such T ′, a contradiction. Thus, P ′|N\Q̂′ = K∪{C} ̸= (P \PQ̂′)∪ [P̂Q̂′ \ Q̂′].

Proof of Proposition 5.12

For any P ∈ Π(N), P is γ-stable if and only if for any P ′ ∈ Π(N) \ {P} and any Q ∈ ΓP(P ′), there

exists i ∈ Q̂ such that ϕi(P) ≥ ϕi(P ′).

Proof. This proof is the same as Proposition 5.8. Given Proposition 5.10, replacing P ′ = Q ∪ (P|N\S)

in the proof of Proposition 5.8 by P ′ = Q∪ [P̂S \ S] ∪ (P|
N\P̂S

) completes the proof.

*14 If i1 ̸∈ T ′ or i2 ̸∈ T ′ holds, say i1 ̸∈ T ′, then the fact that (ii) holds for P ′(i1) ∈ K implies that there exist S̃ ∈ P
and T̃ ′ ⊊ S̃ such that [T̃ ′] ⊆ P ′, [T̃ ′] = κ(S̃), and i1 ∈ T̃ ′. However, if S̃ ̸= S, then the fact that i1, i2 ∈ T ∈ P
contradicts that i1 ∈ S̃ ∈ P and i2 ∈ S ∈ P. Hence, S̃ = S. If T̃ ′ ̸= T ′ (T̃ ′, T ′ ⊊ S), then κ(S) has two different

values [T̃ ′] and [T̃ ], a contradiction.
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Proof of Proposition 6.1

For any n, no coalition structure is δ-stable.

Proof. Let P ∈ Π(N) \ [N ]. Since P ̸= [N ], there exists a coalition S ∈ P such that |S| ≥ 2. Fix such

a coalition S ∈ P and a player i ∈ S. Set P ′ := {S \ {i}, {i}} ∪ (P \ {S}). Let k := |P|. For simplicity,

we write s = |S|. We have |P ′| = k + 1. Hence,

ϕi(P) =
1

(k + 1)2 · s
, ϕi(P ′) =

1

(k + 2)2

We have

ϕi(P ′)− ϕi(P) > 0 ⇐⇒ s >
(k + 2)2

(k + 1)2
.

For k ≥ 2, it holds that s ≥ 2 > (k+2)2

(k+1)2 . For k = 1, since n ≥ 3, we have s = n ≥ 3 > 9
4 = (k+2)2

(k+1)2 . Hence,

player i has an incentive to deviate from P, and P is not δ-stable.

Proof of Proposition 6.2

For any n, partition {N} is γ-stable.

Proof. First, for any P ′ ∈ Π(N), we have∑
j∈N

ϕj({N}) ≥
∑
j∈N

ϕj(P ′), (A.20)

because
∑

j∈N ϕj({N}) = 1
4 ≥ |P′|

(|P′|+1)2 =
∑

j∈N ϕj(P ′) holds for any 1 ≤ |P ′| ≤ n. Hence, for each

n-person deviation, some player does not have an incentive to participate.

Now, let S ⊊ N and Q ∈ Π(S). Let P ′ := Q ∪ [N \ S]. Assume that ϕi(P ′) > ϕi({N}) for

every i ∈ S. Then, it follows that ϕj({N}) ≥ ϕj(P ′) for any j ∈ N \ S because of (A.20) and the

fact that ϕj(P ′) = ϕj′(P ′) for any j, j′ ∈ N \ S. Fix i ∈ S and j ∈ N \ S. Since |P ′(j)| = 1 and

|P ′(i)| ≥ 1, we have ϕi(P ′) ≤ ϕj(P ′). Hence, we obtain ϕj({N}) ≥ ϕj(P ′) ≥ ϕi(P ′) > ϕi({N}), while
ϕi({N}) = 1

4n = ϕj({N}). This is a contradiction.

Proof of Proposition 6.3

Let i ∈ N . Partition {N \ {i}, {i}} is γ-stable if and only if n = 6, 8.

Proof. Fix h ∈ N and P := {N \ {h}, {h}}. Let S ⊊ N \ {h} and Q ∈ Π(S). Note that |S| ≤ n− 2. Let

P ′ := Q∪ [N \ S]. Partition P (P ′) is the partition from (to) which players in S deviate. For simplicity,

we write s = |S| and q = |Q|. For any j ∈ N \ {h}, we have ϕj(P) = 1
9(n−1) . For any j ∈ (N \ {h}) \ S,

ϕj(P ′) = 1
(q+n−s+1)2 . Moreover,

∑
j∈N\{h} ϕj(P) = 1

9 , and
∑

j∈N\{h} ϕj(P ′) = q+n−s−1
(q+n−s+1)2 . Note that

q + n− s ≥ 3.
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Step 1: Now, in general, for any natural number m, we have 1
9 ≥ m−1

(m+1)2 ⇐⇒ m ≥ 5. Hence, if

q + n− s ≥ 5, then ∑
j∈N\{h}

ϕj(P) ≥
∑

j∈N\{h}

ϕj(P ′). (A.21)

In the same manner with Proposition 6.2, assume that ϕi(P ′) > ϕi(P) for every i ∈ S. It follows that

ϕj(P) ≥ ϕj(P ′) for any j ∈ (N \ {h}) \ S because of (A.21) and the fact that ϕj(P ′) = ϕj′(P ′) for any

j, j′ ∈ (N \ {h}) \ S. Fix i ∈ S and j ∈ (N \ {h}) \ S. Since |P ′(j)| = 1 and |P ′(i)| ≥ 1, we have

ϕi(P ′) ≤ ϕj(P ′). Hence, we obtain ϕj(P) ≥ ϕj(P ′) ≥ ϕi(P ′) > ϕi(P), while ϕi(P) = 1
9(n−1) = ϕj(P).

This is a contradiction. Thus, if q + n − s ≥ 5, ϕi(P ′) ≤ ϕi(P) for some i ∈ S. In other words, no

S ⊊ N \ {h} has an incentive to deviate from P as long as q + n− s ≥ 5.

Step 2: If q + n− s = 3, it follows from s ≤ n− 2 that q = 1 and s = n− 2. For any i ∈ S,

ϕi(P)− ϕi(P ′) =
1

9(n− 1)
− 1

16(n− 2)
≥ 0 ⇐⇒ n ≥ 4.

Hence, if n = 3, coalition S with |S| = 1 and Q = {S} deviates from P. For n = 3, P is not γ-stable.

For n ≥ 4, such S has no incentive to deviate from P.

Step 3: If q + n− s = 4, one of (q = 2 and s = n− 2) or (q = 1 and s = n− 3) holds. For the former

case, let T be the larger coalition in Q: t = |T | ≥ n−2
2 . In the same manner as Step 2, for any i ∈ T , we

have

ϕi(P)− ϕi(P ′) =
1

9(n− 1)
− 1

25t
≥ 0 ⇐⇒ t ≥ 9

25
(n− 1).

In words, if t ≥ 9
25 (n− 1), the coalition T has no incentive to deviate from P. For any n ≥ 3 and every

natural number t ≥ n−2
2 , it holds that t ≥ 9

25 (n− 1).

For the latter case, for any i ∈ S, we have

ϕi(P)− ϕi(P ′) =
1

9(n− 1)
− 1

25(n− 3)
≥ 0 ⇐⇒ n ≥ 5.

Hence, if n = 3 or 4, P is not γ-stable. For n ≥ 5, such S, namely s = n − 3 and Q = {S}, has no

incentive to deviate from P. This completes Step 3.

In view of Steps 1-3, if n ≥ 5 then no coalition S ⊊ N \ {h} and its partition Q ∈ Π(S) have an

incentive to deviate from P = {N \ {h}, {h}}. Note that ϕh(P) = 1
9 ≥ ϕj(P ′′) for any j ∈ N and

P ′′ ∈ Π(N). Hence, player h does not participate in any deviation.

Now, let S = N \ {h}. For any Q ∈ Π(S), we have∑
j∈N\{h}

ϕj(P)−
∑

j∈N\{h}

ϕj(P ′) =
1

9
− q

(q + 1 + 1)2
≥ 0 ⇐⇒ q ≥ 4.

Hence, for players in S = N \ {h} to deviate from P, their partition Q must satisfy q = 2 or 3. If q = 2,

then let T be the larger coalition in Q, namely t ≥ n−1
2 . For any i ∈ T ,

ϕi(P)− ϕi(P ′) =
1

9(n− 1)
− 1

16t
≥ 0 ⇐⇒ t ≥ 9

16
(n− 1).
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Hence, if T satisfies t < 9
16 (n − 1), then the T has an incentive to deviate. For n = 3, 5, 7, 9, and more

than 9, there exists natural number t satisfying n−1
2 ≤ t < 9

16 (n − 1). Hence, for these n, partition

P = {N \ {h}, {h}} is not γ-stable. For n = 4, it is not γ-stable because of Step 3.

Below, we show that P is γ-stable for n = 6, 8. By the discussion above, the remaining case is

S = N \ {h} and q = 3. For n = 8, since n − 1 = 7, Q can be < 5, 1, 1 >, < 4, 2, 1 >, or < 3, 2, 2 >,

where < x, y, z > is an integer partition of 7. For example, < 5, 1, 1 > means one five-person coalition

and two one-person coalitions. We focus on the largest coalition for each partition: 5,4,3. We have

ϕi(P ′) = 1
125 (=

1
5·(4+1)2 ) for the five-person coalition in P ′; 1

100 for the four-person coalition; and
1
75 for the three-person coalition. Since ϕi(P) = 1

9(n−1) = 1
63 > max{ 1

125 ,
1

100 ,
1
75} for n = 8, no

partition Q deviates. Similarly, for n = 6 (n − 1 = 5), consider < 3, 1, 1 > and < 2, 2, 1 >. We have

ϕi(P) = 1
45 > max{ 1

75 ,
1
50}. Thus, partition P = {N \ {h}, {h}} is γ-stable for n = 6, 8.
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