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Abstract

The purpose of this paper is to analyze stable distributions and coalition structures in certain

economic situations. We consider the projective core as the most myopic core of the cores defined

for games with externalities. Although the core is often defined only for the grand coalition, we

define the projective core for each coalition structure and apply it to some economic models such

as the public goods game, the Cournot oligopoly, and the common pool resource game. Moreover,

we formulate the Bertrand oligopoly as a game with externalities. We argue that symmetry is a

common property of these models in terms of the partition function. We offer some general results

that hold for all symmetric games with externalities and discuss the implications of the economic

models. We also provide necessary and sufficient conditions for the projective core of the models

to be nonempty.

Keywords: Core; Externalities; Oligopoly; Public goods

JEL Classification: C71

1 Introduction

Most economic situations simultaneously include both competition and cooperation among the players.

A typical example is an oligopoly. The competitive aspects of an oligopoly have been analyzed as strategic

interactions in models such as the Cournot oligopoly and the Bertrand oligopoly, where the firms compete

on price or quantity to maximize their profits. In contrast, the cooperative aspect has been formulated

as a theory of coalition formation in the cooperative game theory. This approach is often used to find a

condition that prevents firms from forming a cartel. In addition to oligopoly, there are many economic

and political scenarios that contain both strategic interactions and cooperation such as splits and mergers

of political parties and the provision of public goods.

Noncooperative game theory mainly describes the strategic aspects, while cooperative game theory

focuses on surplus distributions and coalition formation. Although dividing a situation into the two

different models allows us to offer specialized analysis, it makes the situation in which both cooperation

and competition coexist difficult to formulate. Early attempts to address this problem are Thrall (1961)
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and Thrall and Lucas (1963). These scholars introduced partition function form games to describe the

competition among coalitions and cooperation within each coalition.

A partition function form game is also known as a game with externalities. The notion of externalities

indicates that the worth of a coalition may depend on a coalition structure of the other coalitions. In

the field of games with externalities, the stability of a coalition structure has been considered to be a

difficult problem. The difficulty mainly lies in the multiplicity of reactions to a deviation in players.

To see this, we consider a coalition structure, say P, that is a partition of a player set N , and some

players try to deviate from the coalition structure P by forming their own coalition S ⊆ N . Their

deviation effects the other players in the following two senses. One is the effect on the coalition structure.

Before the deviation, each member of S belongs to his/her own original affiliation in the partition P.

However, through the deviation, each member cancels his/her original membership and forms their own

new coalition. As a result, their deviation yields a new coalition structure Q. The other effect is a

change in the worth of coalitions. We now consider coalition T that has escaped from the structural

effect of S’s deviation mentioned above and consists of the same members in both partitions P and

Q. Even the worth of coalition T may change between the two partitions because of the externalities

across coalitions. Therefore, if externalities exist, even players who did not participate in the deviation

may have an incentive to react to the deviation by reorganizing their own coalition structure. We can

consider various formulations of reactions. Some payers may react to a deviation to protect their profit,

and others may threaten the deviating players with punishment to prevent them from deviation.

The traditional formulation was initially introduced by von Neumann and Morgenstern (1944) and

revisited by Hart and Kurz (1983). These scholars consider that for a deviation to occur in a coalition,

the remaining players will dismantle their coalitions, which will be separate into one-person coalitions.

Likewise, one can consider the reaction that the remaining players jointly form one large coalition.

Another plausible reaction is to reorganize coalitions to minimize the worth of the deviating players.

This idea was proposed and studied by Aumann (1967) and Hart and Kurz (1983). In the same manner,

Shenoy (1979) proposed maximizing the worth of the deviating players. Bloch and van den Nouweland

(2014) proposed a general function called an expectation formation rule that generalizes these reactions

and axiomatically characterizes them in a more general framework.*1

The reaction that we consider in this paper can be thought of as “no reaction”: the players other than

the deviating players do not reorganize their coalitions. We can consider this as the state just after the

deviation but before some players react. In this sense, we consider this type of reaction as the most

myopic reaction. This reaction was also proposed by Bloch and van den Nouweland (2014), who call

it a projection or a projective reaction. Considering its simplicity, one might intuitively conjecture that

the projective reaction should be easier to analyze than the other myopic reactions mentioned above.

However, the projective reaction has its unique difficulty: the projective coalition structure that results

*1 Chwe (1994), Xue (1997), Ray and Vohra (1997), and Diamantoudi and Xue (2003) developed the theory of far-

sightedness. They consider a sequence of reactions: a deviation causes a reaction, and the reaction causes another

reaction, and the sequence of reactions continues. Kóczy (2007) proposed a recursive form of farsightedness and

defined recursive optimism and pessimism. Abe (2018) showed that the farsighted stable set and a certain type of

myopic core coincide in some coalition structures in symmetric majority games.
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from a deviation depends on the original coalition structure from which the coalition deviates. For

instance, let N be the player set {1, 2, 3, 4, 5} and let P be a partition {{1, 2}, {3, 4, 5}}. If coalition

S = {2, 3} deviates from P, then the projective coalition structure that results from this deviation is

{{1}, {2, 3}, {4, 5}}. On the other hand, each of the myopic reactions mentioned above does not preserve

the structural feature of the original partition. For example, if the players in N \ S disintegrate into

singletons, the resulting coalition structure is {S}∪{{i}|i ∈ N \S}, which does not depend on the original

partition P. In other words, the myopic reactions, except for the projection, erase the information on

the original coalition structure and simplify the result of the deviation. Most preceding works assume

such myopic reactions, which motivates us to use the projective reaction. We formally elaborate on such

reactions in Section 6.

As stated in the beginning of this paper, our purpose is to analyze the stability of the distribution and

coalition structure in economic scenarios. Famous applications of the partition function form include

the Cournot oligopoly, the public goods game (Ray and Vohra, 1997; and Yi, 1997), and the common

pool resource game (Funaki and Yamato, 1999). The common property of these games is symmetry. In

the class of games with externalities, unlike games without externalities, the notion of symmetry can

be plural. In this paper, we employ the symmetry defined by de Clippel and Serrano (2008), which, as

we show in the following sections, admits a wider variety of games than the other plausible symmetry

concepts. Although the assumption of symmetry is restrictive for games without externalities, it is

used for various games describing economic situations in the presence of externalities. In this paper, in

addition to the famous applications above, we offer our stability analysis for other economic applications

such as Bertrand competition. Moreover, some general propositions that hold for every symmetric game

are also offered.

The rest of the paper is organized as follows. In Section 2, we define games with externalities and the

projective core. The class of symmetric games and its subclasses are also introduced. In Section 3, we

offer some general results that hold for all symmetric games. The public goods game is discussed in this

section. The class of the largest coalition games, which includes the Bertrand oligopoly, is analyzed in

Section 4. In Section 5, we consider the class of games with partition cardinality properties; this class

includes the Cournot oligopoly and the common pool resource game. In Section 6, we discuss other core

notions. We conclude this paper with some remarks in Section 7.

2 Preliminaries

Let N = {1, ..., n} be the set of players. A coalition S is a subset of N . Let |S| denote the number

of players in S. For any coalition S ⊆ N , a partition of S is given by {T1, ..., Th}, where 1 ≤ h ≤ |S|,
Ti ∩ Tj = ∅ for i, j = 1, ..., h (i ̸= j), Ti ̸= ∅ for i = 1, ..., h and

∪h
i=1 Ti = S. We typically use P,Q

to denote a partition. Let |P| denote the number of coalitions in P. For any i ∈ N , P(i) denotes the

coalition in P that contains player i. For any coalition S ⊆ N , let Π(S) be the set of all partitions of S.

For any S ⊆ N , let P|S be the projection of P on S, formally P|S = {S ∩ C|C ∈ P, S ∩ C ̸= ∅}. Hence,

P|S is a partition of S. For example, if P = {{1, 2}, {3, 4, 5}} and S = {2, 3, 4}, then P|S = {{2}, {3, 4}}.
For any partition P, [|S|]S∈P represents a multiset of cardinalities that admits multiple instances for
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each element. For example, if P = {{1, 2}, {3, 4}, {5}}, then [|S|]S∈P = {2, 2, 1}.
We define an embedded coalition of N by (S,P) satisfying ∅ ̸= S ⊆ N , P ∈ Π(N), and S ∈ P. The set

of all embedded coalitions of N is given by

EC(N) = {(S,P) | ∅ ̸= S ⊆ N, P ∈ Π(N), and S ∈ P}.

A game with externalities is a pair (N, v) in which a partition function v assigns a real number to each

embedded coalition, namely, v : EC(N) → R. By convention, we define v(∅,P) = 0 for all P ∈ Π(N). We

sometimes call a game with externalities simply a game. Let GN be the set of all games with externalities

whose player set is N .

We now introduce the notion of a projective core. In the literature on cooperative game theory, the

formation of the grand coalition is often implicitly assumed, and the core is defined for the grand coalition.

In this paper, we define the grand coalition for each partition.*2 Let v ∈ GN . For each P ∈ Π(N), let

F (v,P) be the set of feasible allocations for partition P, formally F (v,P) = {x ∈ RN |
∑
j∈S xj ≤

v(S,P) for any S ∈ P}. We similarly define the set of efficient allocations for P: X(v,P) = {x ∈
RN |

∑
j∈S xj = v(S,P) for any S ∈ P}. The projective core for P is defined as follows:

Cproj(v,P) =

x ∈ X(v,P)|
∑
j∈S

xj ≥ v(S, {S} ∪ P|N\S) for any S ⊆ N

 .

We say that a partition has a nonempty projective core if the projective core for P is nonempty.*3

As described in Section 1, the projective core can be thought of as the most myopic core in the sense

of reaction to a deviating coalition. The partition resulting from the deviation of coalition S is given as

the combination of coalition S and the projection of P on the remaining players N \ S, namely P|N\S .

Therefore, the resulting partition {S} ∪ P|N\S depends on S and the original partition P.

Now, we introduce three classes of games.

• Let σ : N → N be a permutation. We define σ(S) = {σ(i)|i ∈ S}, and similarly, σ(P) = {σ(S)|S ∈
P}. A game v is symmetric if for any σ, v(S,P) = v(σ(S), σ(P)). A symmetric game can be also

defined as follows: for any (S,P) and (T,Q) in EC(N), if |S| = |T | and [|S′|]S′∈P = [|T ′|]T ′∈Q,

then v(S,P) = v(T,Q). Let GSN be the set of symmetric games.*4

• A game v satisfies partition cardinality property (a PCP game) if for any (S,P) and (T,Q),

if |P| = |Q|, then v(S,P) = v(T,Q). Let GPCPN be the set of PCP games. In a PCP game, v no

*2 Greenberg (1994), Kóczy (2007, 2009), and Kóczy and Lauwers (2004) consider a solution as a pair of payoff distri-

butions and a partition. Our definition also fits this context.
*3 We define the core by inequalities, while one may use domination: for any partition P ∈ Π(N) and any allocation

x ∈ X(v,P), we say that (y,Q) dominates x if there exists an S ⊆ N such that (i) yj > xj for any j ∈ S, (ii)

Q = {S}∪P|N\S , and (iii) y ∈ X(v,Q). The core for P is the set of allocations x in X(v,P) that are not dominated

by any such (y,Q). Similar to the traditional core for a game without externalities, the inequality core becomes a

subset of the dominance core.
*4 We say that a game satisfies strong symmetry if for any (S,P) and (T,Q),

|S| = |T | and |P| = |Q| ⇒ v(S,P) = v(T,Q).

Note that the class of strong symmetry games GSS
N is different from that of symmetry games: GSS

N ⊆ GS
N .
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longer depends on S. The number of coalitions in P determines the worth of the coalitions in P
that is the same for all the coalitions in P.

• A game is called the largest coalition game if there exists a function f such that for any

(S,P) ∈ EC(N) \ (N, {N}),

v(S,P) =

{
f(|S|, [|S′|]S′∈P) ≥ 0 if |S| ≥ |S′| for every S′ ∈ P,
0 ; otherwise,

v(N, {N}) > 0.

In the largest coalition game, for each partition P, the largest coalition in P obtains the worth

f(|S|, [|S′|])S′∈P). Each coalition that is not the largest in P obtains zero. If some coalitions are

equal in the sense of cardinality, each of them obtains the same worth f(|S|, [|S′|]S′∈P). Let GLCN
be the set of largest coalition games.

We have GPCPN ⊆ GSN and GLCN ⊆ GSN . Note that each game in the intersection GPCPN ∩GLCN is described

as follows: v(N, {N}) > 0 and v(S,P) = 0 for any (S,P) ∈ EC(N) \ (N, {N}).
In the absence of externalities, the class of symmetric games might be thought of as a small class, while

in the presence of externalities, this class contains a wide variety of games. In this paper, we consider a

public goods game in the application of a symmetric game. As for the class of largest coalition games,

we consider Bertrand competition and a simple example of common goods competition. Moreover, the

common pool resource game analyzed by Funaki and Yamato (1999) and the Cournot oligopoly belong

to the class of PCP games.

3 Symmetric games

We begin with the basic property of a projection.

Lemma 3.1. Let P ∈ Π(N) and S∗ ∈ P. Let σS
∗
satisfy σ(i) = i for any i ∈ N \ S∗. For any S ⊆ N ,

{σS
∗
(S)} ∪ P|N\σS∗ (S) = σS

∗
({S} ∪ P|N\S).

Lemma 3.1 shows that the projective partition resulting from the rearranged coalition coincides with

the partition that is rearranged after the deviation. Now, we define the equal division of an arbitrary

partition: for any game v ∈ GN , EDi(v,P) := v(P(i),P)
|P(i)| for every i ∈ N .

The following proposition is an extension of the necessary and sufficient condition for the core of

symmetric games without externalities to be nonempty.

Proposition 3.2. Let v be a symmetric game. Let P ∈ Π(N). Then,

Cproj(v,P) ̸= ∅ ⇐⇒ ED(v,P) ∈ Cproj(v,P)

The statement above is equivalent to the following statement: for any S ⊆ N ,
∑
j∈S

v(P(j),P)
|P(j)| ≥

v(S, {S} ∪ P|N\S). Proposition 3.2 is a generalization in the following two senses. The first is regarding

the scope of coalition structures. For a game without externalities, the core and its nonemptiness

condition are provided for the grand coalition, whereas Proposition 3.2 is a condition for each partition.
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The second is regarding the multiplicity of cores. For games without externalities, the core is uniquely

defined. However, in the presence of externalities, multiple reactions are studied because of the deviations,

as introduced in Section 1. Multiplicity yields multiple definitions of the core. The pessimistic core, the

optimistic core, the disintegrating core, and the merging core are well-known core concepts.*5 It is

relatively straightforward to analyze these core concepts because they do not depend on the partition

from which a coalition deviates. In contrast, the projective core inherits the feature of projective reaction

and, unlike the cores above, depends on the partition for which the projective core is defined.

The following proposition is useful for finding a partition with an empty projective core and will play

an important role in analyzing the economic applications.

Proposition 3.3. Let v be a symmetric game. Let P ∈ Π(N). If there exist coalitions S, S′ ∈ P such

that |S| > |S′| and v(S,P)
|S| > v(S′,P)

|S′| , then Cproj(v,P) = ∅.

Proposition 3.3 is a necessary condition for a partition to have a nonempty core. This condition shows

that a partition that contains different sized coalitions must obey a more restrictive condition to have a

nonempty projective core. For example, if P = {{1}, {2, 3}} and v({1},P) = 1, then v({2, 3},P) must

be less than or equal to 2 for P to have a nonempty projective core.

The intuition behind this result lies in the relationship between a deviation and symmetric partitions.

For example, we consider a partition {{1, 2, 3, 4}, {5, 6}}. For this partition, there exists a four-person

coalition that contains {5, 6}, e.g., {3, 4, 5, 6}. After such a coalition deviates, its resulting partition,

namely {{3, 4, 5, 6}, {1, 2}}, must be symmetric to the initial partition {{1, 2, 3, 4}, {5, 6}}. Similarly,

some four-person coalitions exist and deviate from the resulting partition {{3, 4, 5, 6}, {1, 2}}, which

leads to another symmetric partition that may be the first partition. In general, for any coalition that

contains different sized coalitions, there exists a coalition for which the deviation yields a partition that is

symmetric to the original partition. Therefore, some cycles of deviations can be found among symmetric

partitions. Such cycles make the projective cores empty for a group of symmetric partitions.

These general conditions become more informative in some specific subclasses. We first analyze the

class of public goods games.

3.1 Public goods games

Some models of public goods games are provided by Ray and Vohra (1997) and Yi (1997). In this

paper, we introduce a slight variation and analyze its projective core.

Consider partition P ∈ Π(N). In the partition, each coalition produces public goods. For each

coalition, the members choose the optimal amount of public goods for them and equally share the

corresponding cost. Each member enjoys the same benefit from consuming the public goods and obtains

I(|S|) ≥ 0 as the final payoff, which is calculated as benefit - cost.*6 The benefit of the public goods

*5 In Hafalir (2007), the disintegrating core is called the s-core (singleton-core) and the merging core is called the m-core.

These concepts are elaborated in Section 6.
*6 Formally, every player i ∈ N is endowed with one unit of a private good. For each coalition S ∈ P, every member

i ∈ S contributes xi ≤ 1. Let y be the level of public goods and ȳ be its maximal level. We use c(y) to denote the

cost of producing y public goods. Every member of S enjoys the same benefit b(y) from consuming the public goods
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produced by coalition S may spill over from S to other coalitions in P. We use E(|S|) ≥ 0 to denote

the external benefit that each player in N \ S derives from S. Therefore, the members of coalition S

also receive some external benefit from other coalitions in P. For example, if we assume that a member

of coalition S receives 50% of the benefits of the public goods produced by another coalition T , then,

in addition to their own public goods I(|S|), a member of S enjoys E(|T |) := I(|T |)/2 from T as an

external benefit. We refer to I(|S|) as an internal effect on each player in S and E(|S|) as an external

effect of S on each player in N \ S.
Formally, I is a function given by I : {0, ..., n} → R+, and similarly, E : {0, ..., n} → R+. We assume

that I(0) = E(0) = 0. We define ∆I(k) = I(k) − I(k − 1) and ∆E(k) = E(k) − E(k − 1) for any

k = 1, ..., n and assume that a marginal internal effect is larger than a marginal external effect:

∆I(k) > ∆E(k)

for any k = 1, ..., n. This assumption indicates that a change in the size of a coalition effects the members

more than the nonmembers. For any P ∈ Π(N) and any S ∈ P, we define

v(S,P) = |S| · I(|S|) +
∑

T∈P\{S}

|S| · E(|T |).

If one considers a model with purely local public goods (or a model without spillovers), then E(k) = 0

for any k = 1, ..., n.

Lemma 3.4. Let v be a public goods game and let P ∈ Π(N). If there exist coalitions S, S′ ∈ P such

that |S| > |S′|, then Cproj(v,P) = ∅.

The proof is straightforward in view of Proposition 3.3. This lemma implies that for a partition

to have a nonempty projective core, every coalition in the partition must have the same cardinality.

Moreover, note that Lemma 3.4 does not depend on I(·) and E(·): the emptiness is valid for any form of

internal/external effect functions. What condition guarantees the nonemptiness of the projective core?

To determine this, we now focus on convex I(·). The following proposition shows that the convexity gives

the grand coalition a nonempty projective core and gives the other partitions empty projective cores.

Proposition 3.5. If ∆I(k) ≤ ∆I(k + 1) for every k = 1, ..., n − 1, then Cproj(v, {N}) ̸= ∅ and

Cproj(v,P) = ∅ for any P ∈ Π(N) \ {N}.

Note that spillover effect E is not conditioned in this proposition: E does not influence the nonempti-

ness of the core under the above condition of I. In the presence of a spillover, each member of every

coalition benefits from their own public goods and the spillovers from other coalitions. Therefore, one

might consider that a partition consisting of multiple coalitions can also be seen as a stable coalition

structure. However, Proposition 3.5 shows that the grand coalition, in which there is no such spillover

from another coalition, is the only stable coalition structure. This result occurs because of the convexity

of I. In view of ∆I(k) > ∆E(k), the internal effect surpasses the external effect, and the convexity

and equally shares the cost c(y). We set I(|S|) := max0≤y≤ȳ b(y)− c(y)
|S| .
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of I benefits a larger coalition, which provides players with a larger incentive to cooperate and jointly

produce public goods rather than enjoying the public goods as free riders.

If I is concave, namely, ∆I(k) ≥ ∆I(k + 1) for every k = 1, ..., n − 1, and ∆I(1) ≤ ∆E(1), then the

partition of the player set into singletons has a nonempty projective core in a way that is similar to

Proposition 3.5. Given the results above, one may consider that if there is k∗ such that I(k) is convex

for 1 ≤ k ≤ k∗ − 1 and is concave for k∗ ≤ k ≤ n − 1, then a partition P satisfying k∗ = |S| for every

S ∈ P has a nonempty projective core. However, this conjecture is not true. For example, let n = 10

and P = {S1, S2} with S1 = {1, ..., 5} and S2 = {6, ..., 10}. Consider T = {2, ..., 8}. We suppose that

I(k) = k for k = 1, ..., 5, I(k) = 5 + 3k/7 for k = 6, ..., 10, and E(k) = k/2 for every k = 1, ..., 10. Then,

EDi(v,P) = I(5) + E(5) = 7.5, while v(T, {T} ∪ P|N\T ) = I(7) + E(1) + E(2) = 9.5. Hence, coalition

T has an incentive to deviate from P, and the projective core for the partition P is empty.

4 Largest coalition games

In this section, we consider the class of largest coalition games defined in Section 2. The main purpose of

this section is to introduce and analyze the Bertrand oligopoly in partition function form. As preparation,

we begin with a general result that is similar to Lemma 3.4.

Corollary 4.1. Let v be a large coalition game and P ∈ Π(N). If there exist coalitions S, S′ ∈ P such

that |S| > |S′|, then Cproj(v,P) = ∅.

Although the resulting appearance is the same as Lemma 3.4, the reasoning behind Corollary 4.1 is

different from that of Lemma 3.4. In a large coalition game, the second largest coalition in a partition

obtains zero. Therefore, the second condition of Proposition 3.3, namely, v(S,P)
|S| > v(S′,P)

|S′| , always holds

for the largest coalition S and another coalition S′ as long as v(S,P) is positive. If partition P satisfies

v(S,P) = 0 for all S ∈ P, then the partition (even if it contains some coalitions with different sizes)

does not violate Proposition 3.3. However, all players have an incentive to deviate by forming N and

obtain v(N, {N}) > 0. Hence, the projective core for partitions satisfying v(S,P) = 0 for all S ∈ P is

also empty.

The class of largest coalition games is suitable for describing competition among coalitions. We offer

the following simple example.

Example 4.2 (Common goods competition). Consider that some identical and divisible goods are to

be distributed. Let x > 0 be the amount of the goods. For any P ∈ Π(N), the largest coalition in P
wins all x goods. If some coalitions are equal in the sense of size, they equally share x. Therefore, every

common goods competition game is a largest coalition game.

In this game, the projective core is empty for all partitions including the grand coalition. To see

this, given Corollary 4.1, we focus on partition P, which consists of coalitions of the same size. Let

P = {S1, ..., Sm}, with |S1| = ... = |Sm|.
We first consider P ̸= {N}. Let T ⊆ N be |T | = |S1| + 1. Then, T is the largest coalition in
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{T} ∪ P|N\T . Hence, v(T, {T} ∪ P|N\T ) = x, and we have∑
j∈T

EDj(v,P) = |T |x
n
< x = v(T, {T} ∪ P|N\T ).

Thus, in view of Proposition 3.2, Cproj(v,P) = ∅.
We now consider P = {N}. For every i ∈ N , we have∑

j∈N\{i}

EDj(v, {N}) = (n− 1)
x

n
< x = v(N \ {i}, {{i}, N \ {i}}).

Hence, similarly, Cproj(v, {N}) = ∅.

This example shows that the projective core can be empty even for such a simple setting. However,

some economic games have a nonempty projective core. We now analyze the Bertrand oligopoly. This

is the first formulation of Bertrand competition in partition function form.

4.1 Bertrand oligopoly with size-dependent cost functions

Let c be a cost function. Coalition S produces one unit of identical goods with cost c(|S|): the cost

function assigns a real number to each natural number 1, ..., n. We assume that as a coalition becomes

larger, the cost monotonically decreases: c(k) > c(k + 1) for any k = 1, ..., n − 1. We assume c(n) ≥ 0.

The demand function is given by q(p), where p is a price. We assume that q′(p) ≤ 0 and q(p) ≥ 0 for

any p ≥ 0.

Given partition P, coalitions in P simultaneously determine the price of the good. The coalition that

offers the lowest price, say p∗, obtains all the demand at that price, q(p∗). Since the cost function depends

on the size of the coalition, the largest unique coalition obtains all the demand q(p∗). If some coalitions

tie, they receive zero profit, as indicated by the typical Bertrand oligopoly. Let S be the largest unique

coalition in P, and let S′ be the second largest coalition in P. As a result of the Nash equilibrium,

coalition S chooses a price so as to maximize its profit:

max
p≤c(|S′|)

q(p)(p− c(|S|)).

The largest coalition S must choose p ≤ c(|S′|) to win the price competition and p > c(|S|) to obtain

positive profit. We assume that a coalition withdraws from the competition if its profit is zero.*7 We

consider the profit above as the worth of coalition S in P:

v(S,P) =

{
maxp≤c(|S′|) q(p)(p− c(|S|)) if |S| > |T | for every T ∈ P \ {S},
0 otherwise.

(4.1)

If P = {N}, the grand coalition N obtains the monopoly profit, where the monopoly price p∗ solves

q′(p∗) · (p∗ − c(n)) + q(p∗) = 0. Let π∗ denote monopoly profit. We assume that π∗ > 0. Note that

every Bertrand oligopoly with size-dependent cost functions is a large coalition game. We first obtain

the following result.

*7 Therefore, if the maximizing price p satisfies p = c(|S′|), the profit of the largest coalition S is q(p)(p − c(|S|)) =

q(c(|S′|))(c(|S′|)− c(|S|)) and that of the second largest coalition S′ is zero.

9



Proposition 4.3. For any P ∈ Π(N) \ {N}, Cproj(v,P) = ∅.

In addition to partitions containing different sized coalitions, some partitions consisting of the same

size coalitions also lack projective cores. Therefore, we restrict our attention to the grand coalition to

find a nonempty projective core. We first define h(n) as follows:

h(n) =

{
n+1
2 if n is odd,

n
2 + 1 if n is even.

For notational simplicity, we simply write h instead of h(n). Now, for cost function c and demand

function q, we define dc,q as follows: for any s = 1, ..., n,

dc,q(s) = max
p≤c(n−s)

q(p)(p− c(s)). (4.2)

Proposition 4.4. The projective core for the grand coalition Cproj(v, {N}) is nonempty if and only if

for every s = h, ..., n− 1,
dc,q(s)

s
≤ π∗

n
.

Proposition 4.4 is a necessary and sufficient condition for the projective core to be nonempty, which

shows that we do not have to check dc,q(s) for s = 1, ..., h − 1. This result contributes to the literature

on oligopolies in partition function form in three ways.

• One is the generality of the cost function and the demand function. Most preceding works employ

a linear demand function and constant marginal costs, while the proposition holds for general

demand and cost functions.

• Another novelty is that we formally show that the partitions other than the grand coalition are

not stable in terms of the core. The formation of the grand coalition has been often assumed in

this context. Proposition 4.3 offers the reasons for this implicit assumption.

• As elaborated in the next section, in a Cournot oligopoly, the projective core of the grand coalition

is empty even under the linear setting, and it is also empty for the other partitions. Our result

shows that the core can be nonempty for some demand functions and cost functions.

Below, as instances of the third issue discussed above, we offer two numerical examples. In the former

example, we show that the grand coalition can have a nonempty core with a simple (linear) demand

function and a (linear) cost function. The latter example describes an empty projective core.

Example 4.5. Let N = {1, 2, 3, 4, 5}. Consider q(p) = max{12− p, 0} for p ∈ R+ and c(s) = 6 − s for

s = 1, ..., 5. Note that h = 3. The monopoly profit v(N, {N}) = π∗ is given by

π∗ = max
p≥0

q(p)(p− c(5)) = max
p≥0

(12− p)(p− 1) = 30.25.

As Proposition 4.4 shows, it suffices to check dc,q(3) and dc,q(4). We have

dc,q(3) = max
p≤c(2)

q(p)(p− c(3)) = max
p≤4

(12− p)(p− 3) = 8

dc,q(4) = max
p≤c(1)

q(p)(p− c(4)) = max
p≤5

(12− p)(p− 2) = 21.

10



Hence, we have 8/3 = 2.666... < 6.05 = 30.25/5 for dc,q(3) and 21/4 = 5.25 < 6.05 = 30.25/5 for dc,q(4),

and the projective core for the grand coalition is nonempty. The projective cores for the other partitions

are empty, as Proposition 4.3 describes.

Example 4.6. We now consider another (decreasing) cost function with c(5) = 1, c(3) = 2, and c(2) = 7.

We use the same demand function q(p) = max{12− p, 0} for p ∈ R+. The monopoly profit is the same,

π∗ = 30.25. For dc,q(3), we have

dc,q(3) = max
p≤c(2)

q(p)(p− c(3)) = max
p≤7

(12− p)(p− 2) = 25

Hence, we have 25/3 = 8.333... > 6.05 = 30.25/5 for dc,q(3). The necessary and sufficient condition

is violated, and the projective core for the grand coalition is empty. Therefore, in this example, every

partition has an empty projective core.

5 Games with partition cardinality properties

Although each PCP game seems more restrictive than the other symmetric games, this class contains

two economic applications: the Cournot oligopoly proposed by Ray and Vohra (1997) and Yi (1997) and

the common pool resource game introduced by Funaki and Yamato (1999).*8 The rich results of these

two games can be ascribed to the simplification of the partition function. A PCP game v ∈ GPCPN is

represented by function f such that for any (S,P) ∈ EC(N),

f(|P|) = v(S,P).

In other words, the worth of an embedded coalition only depends on the cardinality of the partition. In

this section, we use f instead of v to denote a PCP game.

As we have already seen in the previous sections, the projective core often becomes empty for partitions

other than the grand coalition because of Proposition 3.3 and its corollaries. Moreover, in some specific

instances, the projective core is empty even for the grand coalition. However, in the class of PCP games,

the projective core can be nonempty for all partitions. Below, we offer a necessary and sufficient condition

for a partition to have a nonempty projective core.

We define PCP game f and partition P ∈ Π(N). For every k ≥ 0, we define

gf,P(k) =

{
(|P| − k + 1)f(|P|) k ≤ |P|,

1
|Smax(P)|f(|P|) k > |P|,

where Smax(P) is one of the largest coalitions in P: |Smax(P)| ≥ |S′| for every S′ ∈ P.

Proposition 5.1. Let f be a PCP game and set P ∈ Π(N). Assume f(|P|) ≥ 0. Then,

Cproj(f,P) ̸= ∅ ⇐⇒ f(k) ≤ gf,P(k) for every k = 1, ..., |P |+ 1.

*8 Abe and Funaki (2017) also analyze some myopic core notions (see Section 6) of common pool resource games, where

the cores are defined for the grand coalition.
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Game f can be thought of as a function with one variable, and so is gf,P . The proposition states that

the projective core is nonempty if and only if gfP is located above f for each k. Moreover, we can derive

some implications from Proposition 5.1.

• If f(k) is nondecreasing in k, partition {{i}|i ∈ N} is the only partition that has a nonempty

projective core. If f(k) is nonincreasing in k, the nonemptiness of the core is more complicated.

The following two games are the PCP games with nonicreasing f .

– The common pool resource game has a nonincreasing f . Moreover, this game satisfies k·f(k) >
k′ ·f(k′) if k < k′. In view of this inequality, Proposition 5.1 is not satisfied for each partition,

which implies that every common pool resource game with n ≥ 3 has an empty projective

core for every partition.

– The Cournot oligopoly is another example. This game is explicitly given as f(k) = 1
(k+1)2 ,

which immediately violates the necessary and sufficient condition and causes there to be an

empty projective core for every partition.

• The observations above show that if f is constant, the partition consisting of singletons {{i}|i ∈ N}
is the only partition that has a nonempty projective core. Moreover, if f is partially constant and

increases at some k∗, a partition whose cardinality is k∗ may have a nonempty projective core.

For example, let f(k) = c for k ≤ k∗ and f(k) = d for k > k∗ (c ̸= d). If some partition P satisfies

|P| = k∗ and c · 1
|Smax(P)| ≥ d, then this partition P has a nonempty projective core.

• In regards to any single-peaked function, according to our proposition it readily follows that the

left side of the peak (namely, the coarse partitions or the partitions for which worth is increasing)

lacks a projective core. Similarly, for any single-dipped function, the right side of the dip (namely,

the finer partitions) lacks a projective core, except for the partition {{i}|i ∈ N}.

Moreover, the following result follows for “adjacent” partitions.

Corollary 5.2. For any partitions P,Q ∈ Π(N) with |P|+1 = |Q|. If Cproj(f,P) ̸= ∅ and Cproj(f,Q) ̸=
∅, then |Smax(P)| = 2 and f(|P|) = 2f(|Q|).

We call the partitions P,Q ∈ Π(N), satisfying |P| + 1 = |Q| adjacent partitions (in the sense of

cardinality). This corollary indicates that the adjacent partitions seldom have nonempty projective

cores simultaneously. For example, consider partition Q. Assume that the core for Q is nonempty.

Then, we have to find partition P, which consists of only two-person coalitions and one-person coalitions

and satisfies |P| + 1 = |Q|. Furthermore, the worth of partition P, f(|P|), must be exactly equal to

2f(|Q|). In most games, such a partition P does not exist, which shows how difficult it can be for two

adjacent partitions to simultaneously have nonempty projective cores.

6 Other core concepts

This paper analyzes the projective core of symmetric games in the presence of externalities. We

examine the projective core of each partition because the projective partition resulting from a deviating

coalition depends on the feature of the original partition from which the coalition deviates. This property
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means that unlike the cores based on other forms of reactions, the projective core cannot be reduced

to games without externalities, i.e., coalition function form games. To show this, we provide a short

introduction on expectation formation rules.

The concept of the expectation formation rule was introduced by Bloch and van den Nouweland (2014).

Fix player set N . An expectation formation rule is a function given by ψ(S, v,P) ∈ Π(N) satisfying

S ∈ ψ(S, v,P): it assigns a partition of N containing S to each (S, v,P) ∈ 2N \ {∅} × GN ×Π(N). Note

that the input is not an embedded coalition: S is not necessarily in P. We formally define the reactions

mentioned in Section 1 and the projective reaction as expectation formation rules.

The pessimistic expectation: ψ(S, v,P) = arg min
P′:S∈P′∈Π(N)

v(S,P ′).

The optimistic expectation: ψ(S, v,P) = arg max
P′:S∈P′∈Π(N)

v(S,P ′).

The disintegrating expectation: ψ(S, v,P) = {S} ∪ {{i}|i ∈ N \ S}.
The merging expectation: ψ(S, v,P) = {S,N \ S}.
The projective expectation: ψ(S, v,P) = {S} ∪ P|N\S .

It can be seen that the pessimistic, optimistic, disintegrating, and merging expectations are independent

from input P. Because of this independence, each of these four rules is represented by ψ(s, v) and reduces

a partition function v to a coalition function vψ as follows:

vψ(S) := v(S, ψ(S, v)) for all S ⊆ N.

The core also follows this simplification and satisfies

C(vψ) = Cψ(v),

where Cψ(v) = {x ∈ RN |
∑
j∈S xj ≥ v(S, ψ(S, v))∀S ⊆ N,

∑
j∈N xj = v(N, {N}}. Below, by simplifying

the models studied in this paper, we can provide them in coalition function form. In particular, we focus

on the pessimistic game vpes and the optimistic game vopt because the optimistic (pessimistic) core is

the smallest (largest) core of all types of cores for games with externalities. Therefore, it holds that

Copt(v,P) ⊆ Cproj(v,P) ⊆ Cpes(v,P) for any v ∈ GN and P ∈ Π(N).

• The PCP games: If game f is nondecreasing, the pessimistic game is very simple: vpes(S) = f(2)

for any S ⊊ N and vpes(N) = f(1). The optimistic game is vopt(S) = f(n − s + 1) for any

S ⊆ N . The intuition behind this is regarding nonnegative externalities. A game is said to have

nonnegative externalities if v(S, {T1∪T2}∪P ′) ≥ v(S, {T1, T2}∪P ′) for any P ′ ∈ Π(N \ (T1∪T2))
and S ∈ P ′, which means that a merger of two coalitions provides the other coalitions with a

“good” effect. If f is nonincreasing, then the game has nonpositive externalities and the formulas

are simply swapped between vpes and vopt.

• The Bertrand oligopoly: The pessimistic game is generally given as follows: for any S ⊆ N ,

vpes(S) =

{
maxp≤c(n−s) q(p)(p− c(s)) if s ≥ h,
0 if s ≤ h− 1.

Note that the Bertrand oligopoly has nonpositive externalities, which means that the more rival

firms grow larger, the less our firm earns. Hence, the pessimistic deviating players anticipate that

13



all the rival firms will merge with each other and form a large firm. In contrast, if deviating players

have an optimistic expectation, they expect that the other firms will separate into singletons.

Therefore, the optimistic game is given by

vopt(S) =

{
maxp≤c(1) q(p)(p− c(s)) if s ≥ 2,
0 if s = 1.

• The public goods game: Our public goods game is defined with general functions I and E. In

particular, function E determines the externalities. If E is superadditive, namely E(k + k′) ≥
E(k)+E(k′) for any k, k′ = 0, ..., n with k+k′ ≤ n, then the game obtains nonnegative externalities.

The pessimistic game is simply defined as

vpes(S) = s · I(s) + s(n− s) · E(1),

while the optimistic game is

vopt(S) = s · I(s) + s · E(n− s).

In the case with subadditive E, these formulas are swapped.

Even after reducing to a game without externalities, our core is defined over all coalition structures.

Therefore, even if the traditional core, which is only defined for the grand coalition, is empty, some

core allocations may exist for other coalition structures. Our results for the projective core are useful

to “detect” such core allocations. Since the pessimistic core is a superset of the projective core, if the

projective core is nonempty, then the pessimistic core is also nonempty. Similarly, if a partition has an

empty projective core, there is no optimistic core allocation in the partition.

7 Concluding remarks

7.1 Value concepts

In addition to the core concepts discussed in this paper, many value concepts are also proposed for

games with externalities. Myerson (1977), Bolger (1989), Macho-Stadler et al. (2007), Albizuri et al.

(2005), and de Clippel and Serrano (2008) defined these value concepts. Each of concept can be seen

as a generalization of the Shapley value to games with externalities and hence satisfies efficiency for the

grand coalition. Therefore, each value concept distributes the surplus of the grand coalition and is not

defined for other coalition structures. This does not match the core concept studied in this paper. A

general question arises: How can we define a value concept for each coalition structure? One possible

approach is adopting a value concept for games with coalition structures (henceforth, a CS-value and a

CS-game). Since a CS-game is a pair of games without externalities and a partition, we may need to use

an expectation function as mentioned in the previous section to reduce games with externalities. Fixing a

game (without externalities), we apply a CS-value to every coalition. As a result, every partition has one

allocation. Considering that each core allocation satisfies coalition efficiency, namely,
∑
j∈S xj = v(S,P)

for every S ∈ P, the allocation derived from a CS-value should also satisfy coalition efficiency. We can

use, for example, the Aumann-Drèze value, the Casajus value, the Wiese value, and the nucleolus to
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achieve coalition efficiency.*9 This application allows us to argue which value lies in our core. Given

that a symmetric game has an advantage of general coincidence between the equal division ED(v,P)

and each of the value concepts, replacing ED(v,P) with each value concept yields another expression of

the condition that the core will be nonempty in a symmetric game (Proposition 3.2).

7.2 Other symmetry definitions

In this paper, we define a symmetric game as a game v satisfying v(S,P) = v(σ(S), σ(P)) for

any permutation σ. In addition, we also define strong symmetry (SS): for any (S,P) and (T,Q),

|S| = |T | and |P| = |Q| ⇒ v(S,P) = v(T,Q). In view of the definition of strong symmetry, one

can immediately define two weaker variations, say coalition symmetry and partition symmetry, as fol-

lows. A game v satisfies coalition symmetry (CS) if for any (S,P) and (T,Q), |S| = |T | and P =

Q ⇒ v(S,P) = v(T,Q). A game v satisfies partition symmetry (PS) if for any (S,P) and (T,Q),

S = T and |P| = |Q| ⇒ v(S,P) = v(T,Q). From the definitions above, it readily follows that

• SS ⇒ Symmetry ⇒ CS,

• SS ⇒ PS.

Note that symmetry does not imply PS since another equivalent definition of symmetry is given as

|S| = |T | and [|S′|]S′∈P = [|T ′|]T ′∈Q ⇒ v(S,P) = v(T,Q). CS requires P to completely coincide with Q,

which simply means that two coalitions with the same size have the same worth in a partition. However,

as described in the proofs, this is not sufficient for the proofs of the propositions in Section 3 to hold.

Appendix

Proof of Lemma 3.1

Proof. First, we have

σS
∗
({S} ∪ P|N\S) = {σS

∗
(S)} ∪ σS

∗
(P|N\S) (A.1)

We focus on σS
∗
(P|N\S). Then, we have

σS
∗
(P|N\S) = σS

∗
({(N \ S) ∩ C|C ∈ P})

= {σS
∗
((N \ S) ∩ C)|C ∈ P}

= {σS
∗
(N \ S) ∩ σS

∗
(C)|C ∈ P}

= {(N \ σS
∗
(S)) ∩ σS

∗
(C)|C ∈ P}

S∗∈P
= {(N \ σS

∗
(S)) ∩ C|C ∈ P}

= P|N\σS∗ (S).

Hence, (A.1) is equal to {σS∗
(S)} ∪ P|N\σS∗ (S).

*9 See Casajus (2009) for detailed definitions.
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Proof of Proposition 3.2

Proof. ⇐ is clear. Below, we show ⇒. Let P = {S1, ..., S|P|}. For every S ∈ P, let σS satisfy σS(i) = i

for every i ∈ N \S, i.e., σS denotes a permutation only for the members in S. Let x ∈ Cproj(v,P). From

the definition of Cproj, it follows that∑
j∈S

xj ≥ v(S, {S} ∪ P|N\S) for any S ⊆ N, (A.2)

∑
j∈S

xj = v(S,P) for any S ∈ P. (A.3)

For any σ, we define σxi := xσ(i) for any i ∈ N . Then, for any S ⊆ N , we have∑
j∈S

σS1xj =
∑
j∈S

xσS1 (j)

=
∑

j∈σS1 (S)

xj

(A.2)

≥ v(σS1(S), {σS1(S)} ∪ P|N\σS1 (S))

Lma3.1
= v(σS1(S), σS1({S} ∪ P|N\S))

v∈GS
N= v(S, {S} ∪ P|N\S).

Similarly, for every S ∈ P, ∑
j∈S

σS1xj
(A.3),Lma3.1,v∈GS

N= v(S,P).

Hence, σS1x ∈ Cproj(v,P). This holds for every permutation σS1 . Note that there are |S1|! permutations

that arrange the members in S1. We denote the set of the |S1|! permutations by AS1 . We define

y := 1
|S1|!

∑
σS1∈AS1 σ

S1x. For any player i ∈ S1, we have

yi =
1

|S1|!
∑

σS1∈AS1

σS1xi

=
1

|S1|!
(|S1| − 1)!

∑
j∈S1

xj


(A.3)
=

1

|S1|!
(|S1| − 1)!v(S1,P)

=
v(S1,P)

|S1|
.

Hence, allocation y is given as

yi :=

{
v(S1,P)

|S1| for every i ∈ S1,

xi for every i ∈ N \ S1,
for every i ∈ N

and, in view of the convexity of the core, belongs to Cproj(v,P), namely, with slightly abusing the

notation, y = (EDS1 , xS2 , ..., xS|P|) ∈ Cproj(v,P). We repeat this process for each S2, ..., S|P| and obtain

ED(v,P) ∈ Cproj(v,P).
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Proof of Proposition 3.3

Proof. In view of Proposition 3.2, we show that ED(v,P) ̸∈ Cproj(v,P). Let S and S′ in P satisfy

|S| > |S′|, (A.4)

v(S,P)

|S|
>
v(S′,P)

|S′|
. (A.5)

In view of (A.4), there exists a coalition T ⊆ N such that

|T | = |S|, (A.6)

T = S′ ∪R for some ∅ ̸= R ⊊ S. (A.7)

We have

|S \ T | (A.7)= |S \ (S′ ∪R)|
= |S \R|
= |S| − |R|

(A.7)
= |S| − (|T | − |S′|)

(A.6)
= |S′|. (A.8)

We have

v(T, {T} ∪ P|N\T )
(A.7)
= v(T, {T, S \ T} ∪ P|N\(T∪S)})

v∈GS
N ,(A.6),(A.8)= v(S, {S, S′} ∪ P|N\(S∪S′))

= v(S,P). (A.9)

Hence, we obtain ∑
j∈T

EDj(v,P)
(A.7)
= |R|v(S,P)

|S|
+ |S′|v(S

′,P)

|S′|

(A.5)
< |R|v(S,P)

|S|
+ |S′|v(S,P)

|S|
(A.7)
= |T |v(S,P)

|S|
(A.6),(A.9)

= |T |
v(T, {T} ∪ P|N\T )

|T |
= v(T, {T} ∪ P|N\T ).

Thus, ED(v,P) ̸∈ Cproj(v,P).

Proof of Lemma 3.4

Proof. Let S, S′ ∈ P with |S| > |S′|. We have

v(S,P)

|S|
= I(|S|) +

∑
T∈P\{S}

E(|T |) and v(S′,P)

|S′|
= I(|S′|) +

∑
T∈P\{S′}

E(|T |).
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Hence

v(S,P)

|S|
− v(S′,P)

|S′|
= I(|S|)− I(|S′|)− [E(|S|)− E(|S′|)]

=

|S|∑
k=|S′|+1

∆I(k)−
|S|∑

k=|S′|+1

∆E(k)

> 0.

Proposition 3.3 completes the proof.

Proof of Proposition 3.5

Proof. We first show that Cproj(v,P) = ∅ for any P ∈ Π(N) \ {N}. In view of Lemma 3.4, consider

P ̸= {N} satisfying k∗ := |S′| for every S′ ∈ P. We have EDi(v,P) = I(k∗) + (|P| − 1)E(k∗) for every

i ∈ N . Consider S ⊆ N with |S| = k∗ + 1. We have

v(S, {S,P|N\S})−
∑
j∈S

EDj(v,P)

= s[I(k∗ + 1) + E(k∗ − 1) + (|P| − 2)E(k∗)]− s[I(k∗) + (|P| − 1)E(k∗)]

= s[I(k∗ + 1)− I(k∗)− (E(k∗)− E(k∗ − 1))]

= s[∆I(k∗ + 1)−∆E(k∗)]

> s[∆I(k∗ + 1)−∆I(k∗)]

≥ 0.

Hence, ED(v,P) ̸∈ Cproj(v,P). From Proposition 3.2, Cproj(v,P) = ∅ follows.

Now, we show that Cproj(v, {N}) ̸= ∅. For any i ∈ N , EDi(v, {N}) = I(n). For any S ⊆ N ,

v(S, {S,N \ S}) = s[I(s) + E(n− s)]. Hence, for any S ⊆ N , we have∑
j∈S

EDj(v,P)− v(S, {S,N \ S}) = s[I(n)− I(s)− E(n− s)]

= s[I(n)− I(s)− (E(n− s)− 0)]

= s

[
n∑

k=s+1

∆I(k)−
n−s∑
k=1

∆E(k)

]

≥ s

[
n−s∑
k=1

∆I(k)−
n−s∑
k=1

∆E(k)

]
> 0,

which implies Cproj(v, {N}) ̸= ∅.

Proof of Proposition 4.3

Proof. In view of Corollary 4.1, if a partition contains some coalitions whose sizes are mutually different,

then the projective core for the partition is empty. Hence, consider P satisfying |S| = |S′| for any

S, S′ ∈ P. This implies c(|S|) = c(|S′|) for any S, S′ ∈ P. Hence, each coalition obtains profit zero in P,
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which implies that all coalitions have an incentive to form the grand coalition and share the monopoly

profit π∗ > 0.

Proof of Proposition 4.4

Proof. If-part: From (4.1), it follows that for any coalition S with |S| =: s, we have

v(S, {S,N \ S}) =
{

maxp≤c(n−s) q(p)(p− c(s)) for h ≤ s ≤ n− 1,
0 for 1 ≤ s ≤ h− 1.

(A.10)

Hence, for any S ⊆ N with h ≤ s ≤ n− 1, we obtain∑
j∈S

EDj(v,N) = s
π∗

n
≥ dc,q(s)

(4.2)(A.10)
= v(S, {S,N \ S}).

For any S ⊆ N with 1 ≤ s ≤ h− 1, we have∑
j∈S

EDj(v,N) = s
π∗

n
≥ 0

(A.10)
= v(S, {S,N \ S}).

Thus, ED(v,N) ∈ Cproj(v, {N}).
Only-if-part: From Proposition 3.2, it follows that ED(v,N) ∈ Cproj(v, {N}). We have

v(S, {S,N \ S}) ≤ |S|π
∗

n

for every S ⊆ N . Hence, in view of (4.2) and (A.10), for every s = h, ..., n− 1,

dc,q(s) ≤ s
π∗

n
.

Proof of Proposition 5.1

We fix a PCP game f and a partition P ∈ Π(N). For convenience, we offer the definition of gf,P again:

gf,P(k) =

{
(|P| − k + 1)f(|P|) k ≤ |P|,

1
|Smax(P)|f(|P|) k > |P|. (A.11)

Proof. ⇐: Assume that Cproj(v,P) = ∅. Since f(|P|) ≥ 0, X+(v,P) := {x ∈ X(v,P)|xj ≥ 0 for any j ∈
N} is not empty. Let x ∈ X+(v,P). As the projective core for P is empty, there exists a coalition S ⊆ N

such that ∑
j∈S

xj < v(S, {S} ∪ P|N\S) = f(k), (A.12)

where k = |{S,P|N\S}|. For the coalition S, define T S = {T ∈ P|T ∈ P|S}. Note that

|T S | = |P| − k + 1. (A.13)
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If |T S | ≥ 1, then k
(A.13)

≤ |P|. We have∑
j∈S

xj
x∈X(v,P)

= |T S |f(|P|) +
∑

j∈S\(∪T∈T ST )

xj

xj≥0

≥ |T S |f(|P|)
(A.13)
= (|P| − k + 1)f(|P|).

Hence, from (A.12), it follows that

f(k) > (|P| − k + 1)f(|P|).

However, in view of (A.11), for any k ≤ |P|, f(k) ≤ gf,P(k) implies that f(k) ≤ (|P| − k + 1)f(|P|).
This is a contradiction.

Next, if |T S | = 0, then k = |P|+ 1. Since for any x ∈ X+(v,P) there exists S ⊆ N satisfying (A.12),

such a coalition S also exists for the equal division ED(f,P) ∈ X+(v,P), i.e., EDj(f,P) = f(|P|)
|P(j)| for

every j ∈ N . Note that EDj(f,P) ≥ 0 for every j ∈ N as f(|P|) ≥ 0. Hence, there exists a player i ∈ S

such that

EDi(f,P) ≤
∑
j∈S

EDj(f,P)
(A.12)
< f(k).

Moreover,

EDi(f,P) =
f(|P|)
|P(i)|

≥ f(|P|)
|Smax(P)|

.

Hence, we have f(|P|)
|Smax(P)| < f(k). However, in view of (A.11), for any k > |P|, f(k) ≤ gf,P(k) implies

that f(k) ≤ f(|P|)
|Smax(P)| . This is a contradiction.

⇒: We show that if there exists k ∈ {1, ..., |P| + 1} such that f(k) > gf,P(k), then Cproj(v,P) = ∅.

Assume x ∈ Cproj(v,P). If k ≤ |P|, we have f(k)
(A.11)
> (|P|− k+1)f(|P|) x∈X(v,P)

=
∑|P|−k+1
a=1

∑
j∈Sa

xj ,

where S1, ..., S|P|−k+1 are arbitrary |P| − k + 1 coalitions in P. Hence, |P| − k + 1 coalitions in P have

an incentive to jointly deviate by merging and obtain f(k) in total after the deviation. If k > |P|, then
(A.11) implies f(k) > 1

|Smax(P)|f(|P|). Moreover, there exists i ∈ Smax(P) such that xi < f(k), because

otherwise for any j ∈ Smax(P) we have xj ≥ f(k), which implies
∑
j∈Smax(P) xj ≥ |Smax(P)|f(k) and∑

j∈Smax(P) xj
x∈X(v,P)

= f(|P|): a contradiction. Hence, there exists i ∈ Smax(P) such that xi < f(k),

and the player i has an incentive to deviate.
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