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Abstract

We introduce a modi�cation of Sprumont [9]'s population monotonic allocation scheme
(PMAS), called monotonic core allocation path (MCAP) for assignment games, which is a
sequence of allocations along an order on the set of players satisfying that (1) each allocation
is in the core of the subgame of the corresponding players at that step, and (2) the payo�s
for each player are non-decreasing through the sequence. The notion of MCAP preserves
the population monotonicity of PMAS while avoids the di�culty that PMAS does not exist
in many market games. We show that a MCAP exists for every assignment game. The
terminals of MCAP form a re�nement of the core. We also show that the terminals of
MCAP coincide with the extreme core allocations in two subclasses of assignment games:
gloves games and B�ohm-Bawerk games. The strong connection of MCAP with extreme core
allocations suggests some con
ict between the stability of a coalition formation process and
the fairness of the resulting outcomes.
Keywords: Allocation path; Assignment game; Core; Population monotonicity

1. Introduction

Coalition formation process is an important issue in game theory and economics. Within the
framework of cooperative game theory which studies appropriate allocations among players
based on payo�s attainable via coalitions, a notion called the core provides a rudimentary yet
compelling approach: an allocation is in the core if there are no players who can reject the
allocation and attain higher payo�s by forming a coalition of themselves. A core allocation
makes a grand coalition preservable, while it does not show how the coalition is formed. Indeed,
if coalition formation is taken as a process arising from a small group and growing larger, a core
allocation may not be practical since it is not necessarily attainable in every smaller coalition.

A seminal attempt by Sprumont [9] tries to solve this problem by introducing a notion called
population monotonic allocation scheme (PMAS). A PMAS is a vector assigning each coalition
S an allocation xS such that (1) xS is attainable via S; and (2) for coalitions S; T with S � T;
the payo� xSi for each player i 2 S is at least as much as xTi : The second condition is called
population monotonicity in the literature of bargaining (Thomson [10], [11]). As Sprumont
[9] put it, his concern is to guarantee that once a coalition S has decided upon an allocation
attainable via S; \no player will ever be tempted to induce the formation of a coalition smaller
than S by using his bargaining skills or any other means." Since the allocation corresponding to
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the grand coalition in a PMAS is always in the core, from the viewpoint of coalition formation,
the existence of a PMAS guarantees a path leading to the grand coalition from any smaller one.

However, as Sprumont [9] himself pointed out, a critical drawback of PMAS is that it does
not always exist. Worse, many market games, where coalition formation is a natural concern
and the cores are non-empty, do not have any PMAS. A simple example is the 2�2 gloves game
(Shapley and Shubik [7]). Further, Sprumont [9] showed that every assignment game with at
least two sellers and two buyers also fails to have a PMAS.

This di�culty motivated us to modify the concept of PMAS by preserving its spirit of
population monotonicity while relaxing its requirements to guarantee the existence in market
games. In this paper, we introduce a concept called monotonic core allocation path (MCAP).
A MCAP is a vector of allocations along an order on the set of players which satis�es (1) each
allocation is in the core of the subgame corresponding to players at that step, and (2) the payo�
for each player is monotonically non-decreasing in the process. Here, the coalition formation
process can be thought as adding players one by one into the situation. In this context, the
spirit that no player will ever be tempted to induce the formation of a smaller coalition boils
down to the condition that no player would deviate at each step in the process. Further, the
existence of a MCAP also guarantees a path to the formation of the grand coalition.

We use an example to show the basic idea. Consider the following two-sided matching
situation with two buyers, 1; 2; and two sellers, 10; 20 :

10 20

1 1 3
2 2 5

The number in each box is the payo� attainable from the exchange between the corresponding
pair. Consider an order � = (1; 10; 2; 20): It can be seen that the following (x�k)4k=1 is a MCAP
on � :

x�1 = (0);

x�2 = (0; 1);

x�3 = (0; 1; 1);

x�4 = (0; 1; 2; 3):

where �k is the k-th segment of �; i.e, �1 = (1); �2 = (1; 10); etc. Each x�k (k = 1; :::; 4) is a
core allocation in the corresponding game. Player 1's payo� in the sequence is 0 � 0 � 0 � 0;
player 10 is 1� 1� 1; player 2 is 1� 2; and player 20 is 3; all are non-decreasing.

However, the existence of such a sequence should not be taken for granted. For example, we
cannot construct any MCAP on � if we start from a positive payo� of player 1: The reason is
that the occurrence of player 2 in �3; who can be seen as a substitute of player 1, would draw
player 1's payo� to 0 at x�3 :

This observation sheds doubt on the existence of a MCAP. Nevertheless, in this paper, we
will show that MCAP exists for every assignment game. Our proof is based on a notion called
tight graph introduced in Hammers et al. [3]. Given an assignment game and an extreme core
allocation, a tight graph can be de�ned on the set of players where two players are connected
if the sum of the payo�s they obtained in the allocation equals to the value attainable via their
cooperation. An edge in the tight graph is thick with respect to an optimal matching if the
two players are matched there and is thin if they are not. Based on a tight graph generated
from an extreme core allocation where thick and thin edges are determined with respect to an
optimal matching, we de�ne an order on the set of players and show that the sequence obtained
by expanding the extreme core allocation along the order is a MCAP.
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This result implies that for each extreme core allocation there is a MCAP converging to
it. Though the reverse does not hold in general, we show that it holds for two special cases of
assignment games, gloves games (Shapley and Shubik [7]) and B�ohm-Bawerk games (see Shapley
and Shubik [8]). It implies that not every core allocation can be approached by some MCAP.
Therefore, the set of terminals of MCAPs is a re�nement of the core.

The strong relationship with extreme core allocations may be taken as a drawback of the
notion of MCAP since it implies that some players in such a path always attains his minimum
possible payo� in the core. However, we claim that this is a deep insight on social welfare theory
provided by MCAP, that is, a con
ict between the stability of a coalition formation process and
the fairness of the resulting outcomes. That a linear coalition formation process like MCAP
which guarantees the stability by satisfying population monotonicity may only lead to extreme
allocations suggests a general inconsistency between the social justice of procedure and outcome.
A further research in that direction is expected.

It is natural to wonder whether our results can be extended to general market games. Since
our proofs are based on the tight graph which relies on the special structure of the assignment
games, the possbility of generalization depends on whether we can construct a similar notion in
market games, which is still an open problem. Nevertheless, we believe that our results can be
preserved in general and anticipate further research in that direction.

In the literature of assignment games, orders on the set of players has long been employed
in characterizing and searching extreme core allocations (Hammers et al. [3], N�u~nez and Rafels
[4], Izquierdo et al. [5]). Our paper bene�ts from their results on tight graphs and zero-payo�
players in extreme core allocations. However, orders on the set of players in those researches are
basically auxiliaries in algorithms for generating a proper allocation, while in our paper, orders
themselves are the focus. We interpret an order as a process of adding players into the situation,
and investigate how to �nd the proper orders. Further, it can be shown that orders here for
generating MCAPs are independent from benchmarks orders in their paper, for example, those
which generates e�cient max-payo� vectors (Izquierdo et al. [5]).

The rest of this paper is organized as follows. Section 2 presents preliminaries about coop-
erative game theory and assignment games; also, we introduce the notion of MCAP. Section 3
shows our main result, the existence of MCAP in every assignment games. Section 4 provides
simpler ways to establish the existence of MCAP in gloves games and B�ohm-Bawerk games.

2. Preliminaries

We begin with a short introduction on notions and results in cooperative game theory and
assignment games. We also introduce the monotonic core allocation path.

A cooperative game with transferable utility (TU game) is a pair (P;w) where P is the �nite
set of players and w : 2P ! R, called the characteristic function, assigns each coalition S � P
a real number w(S) and satis�es that w(;) = 0: For each S � P; we use wS to denote the
restriction of w on S; that is, wS is the real-valued mapping from 2S such that for each T � S;
wS(T ) = w(T ):

An allocation of a TU game (P;w) is a vector x 2 RP : The core of (P;w), denoted by
C(P;w); is de�ned as

C(P;w) = fx 2 RP j
P
i2P

xi = w(P ) and
P
i2S
xi � w(S) for each S � Pg: (2.1)

Each x 2 C(P;w) is called a core allocation. The core is the set of allocations which cannot be
blocked by any coalition in P: The core of a TU game is not necessarily non-empty. Bondareva
[1] and Shapley [6] show that a TU game has a non-empty core if and only if it satis�es a
condition called balancedness. Allocation x 2 C(P;w) is called an extreme core allocation i� for
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each y; z 2 C(P;w); x = (1=2)y+(1=2)z implies that y = z = x:We use extfC(P;w)g to denote
the set of extreme core allocations of (P;w). Since the core is a bounded convex polyhedra,
extfC(P;w)g is a �nite set.

Assignment games, introduced by Shapley and Shubik [8], originate from two-sided matching
situations. A two-sided matching situation is a tuple (M;N; (aij)(i;j)2M�N ) where M and N
are two �nite disjoint sets and aij � 0 for each (i; j) 2 M � N: For each S � M and T � N;
a matching � between S and T is a subset of S � T such that for each (i; j); (i0; j0) 2 �; i = i0
if and only if j = j0: We use M(S; T ) to denote the set of matchings between S and T: Given
a two-sided matching situation (M;N; (aij)(i;j)2M�N ); we can induce a TU game (M [ N;w),
called the assignment game, satisfying that for each S �M and T � N;

w(S [ T ) = maxf
P

(i;j)2�
aij j� 2M(S; T )g: (2.2)

A matching � 2 M(S; T ) is said to be optimal i� �(i;j)2�aij = w(S [ T ): To di�erentiate
payo�s of players in the two groups M and N; we sometimes use (u; v) instead of x to denote
an allocation in an assignment game, where u 2 RM and v 2 RN :

Shapley and Shubik [8] show that the core of an assignment games is always non-empty. They
also show the relationship between core allocations and optimal matchings, which is summarized
in the following lemma. Here we follow the formulation of Hammers et al. [3].

Lemma 2.1 (Core allocations and optimal matchings). Consider a two-sided matching
situation (M;N; (aij)(i;j)2M�N ), the corresponding assignment game (M[N;w), and an optimal
matching � 2 M(M;N). Then x 2 RM�N is a core allocation if and only if the following four
conditions are satis�ed:

(i) xi + xj = aij for all (i; j) 2 �;
(ii) xi + xj � aij for all i 2M; j 2 N; and (i; j) =2 �;
(iii) xk = 0 for all unmatched players k;

(iv) xk � 0 for all matched players k:
Consider the following question: given an assignment game (M [ N;w) and an order � =

(i1; :::; ijM[N j) on players, if we add players one by one into the situation along �; is there
a corresponding sequence of allocations satisfying that (1) each allocation is in the core of
the corresponding subgame, and (2) the payo�s for each player are non-decreasing in such a
sequence? To answer this question, we will introduce a concept called monotonic core allocation
path.

An order on M [ N is a bijection � : f1; :::; jM [ N jg ! M [ N: Here jM [ N j is the
cardinality of M [N: As we did in the previous paragraph, sometimes we write an order � as
(i1; :::; ijM[N j) where i1 = �(1); i2 = �(2); etc. For each k = 1; :::; jM [N j; we use �k to denote
the restriction of � on f1; :::; kg; i.e., �k = (i1; :::; ik); also, we use R(�k) to denote the range of
�k; i.e., R(�k) = fi1; :::; ikg: It is clear that R(�k) � R(�k+1) for each k = 1; :::; jM [ N j � 1:
For each �k; we use x

�k to denote a vector in RR(�k); i.e., x�k = (x�k�(1); :::; x
�k
�(k)):

De�nition 2.1 (Monotonic core allocation path). Consider an assignment game (M[N;w)
and an order � = (i1; :::; ijM[N j) on M [N: A monotonic core allocation path (MCAP) over �
is a sequence (x�k)

jM[N j
k=1 satisfying the following two conditions:

M1. For each k = 1; :::; jM [N j; x�k is a core allocation of the game (R(�k); wR(�k));
M2. For each k = 1; :::; jM [N j � 1; and i 2 R(�k); x�ki � x�k+1i :

M1 means that the x�k is a sequence of core allocations of the corresponding subgames of
(M [N;w): M2 means that each player's payo� is non-decreasing in the sequence.
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3. Existence of a Monotonic Core Allocation Path

In this section, we show our main theorem about the existence of MCAP.

Theorem 3.1 (Existence of a MCAP). Every assignment game has a MCAP.

Our proof is based on a notion called tight map introduced in Hammers et al. [3]. Con-
sider an assignment game (M [ N;w) and an optimal matching � 2 M(M;N). Given a core
allocation (u; v) 2 RM[N ; we de�ne a tight graph Gw(u; v) = (V;E) where V = M [ N and
E = ffi; jg : i 2 M; j 2 N; and ui + vj = aijg: In Gw(u; v); all edges corresponding to �
are called thick edges and the other edges are called thin edges. Hammers et al. [3] show the
following result.

Lemma 3.1 (Tight graphs and extreme core allocations). Let (M [N;w) be an assign-
ment game and � be an optimal matching between M and N . An allocation (u; v) belongs to
extfC(M [N;w)g if and only if each component of Gw(u; v) contains at least one player with
payo� equal to zero.

Recall that a component of a graph is a maximal connected subgraph of the graph.1 We call
a player who receives payo� 0 in (u; v) a zero-payo� player (ZPP) in (u; v): A direct implication
of Lemma 3.1 is that each (u; v) 2 extfC(M [N;w)g has at least one ZPP.

We have the following statement.

Lemma 3.2 (A ZPP-rooted tree on a component). Consider an allocation (u; v) 2
extfC(M [ N;w)g and the tight graph Gw(u; v) = (V;E): Let (V 0; E0) be a component of
Gw(u; v) and i� a ZPP in (V 0; E0): Then we can construct a tree (V 0; T ) satisfying the following
conditions:

T1. (V 0; T ) is a subgraph of (V 0; E0) contains every point in V 0;

T2. (V 0; T ) contains every thick edge in (V 0; E0);

T3. i� is the root of (V 0; T ).

Such a tree is called a ZPP-rooted tight tree on (V 0; E0):

Proof. This statement holds directly from Hammers et al. [3]'s result that each component
contains a tight tree, i.e., a tree containing every thick edges with respect to an optimal matching
�. Since a tree is a connected acyclic graph, we can specify i� to be its root. �

Fix (u; v) 2 extfC(M [N;w)g and Gw(u; v) = (V;E):Without loss of generality, we assume
that (V;E) is connected, i.e., (V;E) is a component of itself. Let i� be a ZPP of (u; v); and
(V; T ) be a ZPP-rooted tight tree on (V;E) with i� as its root. A tree-order associated to (V; T )
and i� is de�ned on V as follows: for each i; j 2 V; i � j i� i is on the path from i� to j: Since a
rooted tree is an aborescence, � is well de�ned. We use < to denote the asymmetric part of � :
For each i 2 V; we de�ne die = fj 2 V jj � ig and bic = fj 2 V jj � ig: An immediate successor
(predecessor) of i is a minimal element in bicnfig (a maximal element in dienfig). The set of
immediate successors (predecessors) of i is denoted by bic� (die�). For each i 2 V; we de�ne
bic�+ = fj 2 bic�jfi; jg is a thick edgeg and bic�� = fj 2 bic�jfi; jg is a thin edgeg: It is clear
that bic� = bic�+ [ bic��:

We now de�ne an order � on V (i.e., M [N) as follows. First, let �(1) = i�: Suppose that
�(k) is de�ned for some k = 1; :::; jM [N j � 1: �(k + 1) is de�ned as follows: when b�(k)c 6= ;;
we let

�(k + 1) =

�
any i 2 b�(k)c�� if b�(k)c�� 6= ;;
any i 2 b�(k)c�+ if b�(k)c�� = ; and b�(k)c�+ 6= ;:

(3.1)

If b�(k)c = ;; we de�ne �(k + 1) to be some i 2 V nR(�k) satisfying the following conditions:
D1. die� � R(�k);

1For a detailed introduction of concepts in graph theory, see, for example, Diestel [2].
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D2. die� is a maximal element in the set fjjj 2 R(�k) and bjc� * R(�k)g:
D2 requires that �(k+ 1) to be an immediate successor of a maximal branching point in R(�k)
whose o�springs are not all contained in R(�k): In this manner, we de�ne an order � on V: Order
� can be regarded as a sequence of linear orders, that is, for each i 2 V; there is a segment in �
containing i which is linearly ordered in (V; T ). It can be seen that the maximal linear segment
is always ended with a leaf in (V; T ); 2 and each i 2 V has only one such leaf, called the leaf of
i in (V; T ) with respect to �:

We use the following example to show how the de�nition works.

Example 3.1. Consider the following two-sided matching situation:

10 20 30

1 6 2 1
2 9 8 3
3 7 5 2

The allocation (u; v) = (0; 3; 1; 6; 5; 1) is in the core and � = f(1; 10); (2; 20); (3; 30)g is an optimal
matching. The tight graph Gw(u; v) is depicted on the left-hand side of Figure 3.1. On the
right-hand side we give two ZPP-rooted trees (V; T ) and (V; T 0) with player 1 as the root.

Figure 3.1. Gw(u; v) and two ZPP-rooted trees

Both trees lead to the order � = (1; 30; 3; 10; 2; 20): Note that though (V; T 0) contains two branches,
by (3.1) we �rst have to exhaust 1� 30� 3 since f1; 30g is thin and f1; 10g is thick. Nevertheless,
in general, a tree may allow several orders. For example, suppose there are three branches from
i� where two are thin and one is thick. By (3.1) we can exhaust either thin edge �rst.

Consider � and (V; T 0): The order � is composed of two linear orders in (V; T 0); that is,
(1; 30; 3) and (10; 2; 20): For players in the �rst group, their leaf in (V; T 0) with respect to � is 3;
for the second group it is 20:

We have the following statement.

Lemma 3.3 (Extreme core allocations, ZPP-rooted tight tree orders, and MCAP)
Consider x = (u; v) 2 extfC(M [ N;w)g; an optimal matching �, and an order � generated
from a ZPP-rooted tight tree on Gw(u; v). For each k = 1; :::; jM [ N j; let x�k = (xi)i2R(�k):

Then (x�k)
jM[N j
k=1 is a MCAP.

To prove Lemma 3.3, we need to show that for each k = 1; :::; jM [N j; there is an optimal
matching in the game (R(�k); wR(�k)) which \supports" x

�k : Consider Example 3.1 again. Allo-
cation x�2 is supported by the matching f(1; 30)g; x�3 by f(1); (3; 30)g (i.e., player 1 is matched

2Recall that a leaf in a tree is a vertex which has no successor.
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with nobody and player 3 is matched with 30), x�4 by f(1; 10); (3; 30)g; x�5 by f(1); (3; 30); (10; 2)g;
and x�6 by f(1; 10); (2; 20); (3; 30)g: A player may change partners in the process and, sometimes
even though her partner in the \�nal" matching appears, they may not always be matched
together. In our proof, we will provide the general law which determines the optimal matching
supporting x�k at each step k:

Proof of Lemma 3.3. Let (V; T ) be a ZPP-rooted tight tree on Gw(u; v) with ZPP i� as its
root from which � is generated. For each i 2 V; let T (i) be the set of all edges connecting i
and i�; T (i)+ be the set of all thick edges in T (i); and T (i)� be the set of all thin edges in
T (i): It is clear that edges in T (i) can also be ordered by the tree order from (V; T ): For each
` = 1; :::; jT (i)j; we use e` to denote the `-th edge in T (i):

Based on �; we de�ne an order �� on the set of leafs in (V; T ) as follows: for leafs j; j0 2 V;
j �� j0 i� ��1(j) < ��1(j0):

Now we show that for each k = 1; :::; jM [ N j; there is an optimal matching in the game
(R(�k); wR(�k)) which supports x

�k : It is straightforward that f(i�)g supports x�1 : Let k 2
f1; :::; jM [ N j � 1g, i = �(k + 1); and j be the leaf of i in (V; T ) with respect to �: Consider
the following two sets of edges:

A(i) := ([j0��jT+(j0))nT+(i): (3.2)

B(i) :=

�
fe1; e3; :::; ejV (i)j�1g if jT (i)j is odd,
fe2; e4; :::; ejV (i)j�1g if jT (i)j is even. (3.3)

Let S(i) = f(i0)ji0 2 R(�(k + 1)) and i0 does not belong to any edge in A(i) [ B(i)g: It can be
seen that A(i)[B(i)[S(i) is an optimal matching in (R(�k+1); wR(�k+1)) which supports x�k+1 :
To see this, we only need to show that for each i0 2 R(�k+1); i0 2 S(i) only if it is a ZPP in
x�k+1 : Suppose i0 is not a ZPP. We discuss the following two cases:

Case 1. Player i0 does not belong to any edge in T (i): Since i0 is not a ZPP, by Lemma 2.1, i0 is
matched to some player i00 in �: Recall the de�nition of a ZPP-rooted tight tree which requires
that each thick edge should be contained in (V; T ): If i0 does not belong to any edge in T (i);
neither does i00: Therefore, fi0; i00g 2 A(i) and that is the only edge associated with i0 in A(i).
Case 2. Player i0 belongs to some edge in T (i): By (3.3) the only player which may not be
matched (when T (i) is even) is i�: Since i� is a ZPP, i0 6= i�; and consequently i is matched with
some player in B(i) (not necessarily his partner in �).

Here we have shown that A(i) [ B(i) [ S(i) is an optimal matching in (R(�k+1); wR(�k+1))
which supports x�k : Therefore, x�k is a core allocation in (R(�k+1); wR(�k+1)): �
Proof of Theorem 3.1. Consider x = (u; v) 2 extfC(M [ N;w)g; an optimal matching �,
a ZPP-rooted tight tree Gw(u; v): Let ((V 1; E1); :::; (V L; EL)) be a sequence of components in
Gw(u; v): By Lemma 3.1, for each ` = 1; :::; L; there is some ZPP i` 2 V `: Then we can de�ne
a ZPP-rooted tight tree (V `; T `) on (V `; E`) with i` as its root for each `; based on which an
order �` on V ` can be de�ned. Let � = (�1; :::; �L): Since each component is independent from

others, it follows from Lemma 3.3 that (x�k)
jM[N j
k=1 is a MCAP. �

From the proof of Lemma 3.3 we have the following corollary.

Corollary 3.1 (Extreme core allocations and MCAP) For each x = (u; v) 2 extfC(M [
N;w)g there is an order � on M [N such that (x�k)

jM[N j
k=1 is a MCAP.

We can de�ne a re�nement of the core by MCAP as follows. An allocation x 2 C(M [N;w)
is called a MCAP core allocation i� there is some MCAP (x�k)

jM[N j
k=1 such that x = x�jM[Nj :

Corollary 3.1 implies that each extreme core allocation is a MCAP core allocation. Its converse
is not true. Consider the example in Section 1. The allocation x which assigns 0:5 to player
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1 and 10 respectively, 2 to player 2, and 3 to player 20 is in the core but not an extreme core
allocation according to Lemma 3.1. Consider � = (2; 20; 1; 10) and (x�k)4k=1 as follows:

x�1 = (0);

x�2 = (2; 3);

x�3 = (2; 3; 0);

x�4 = (2; 3; 0:5; 0:5):

It can be seen that (x�k)4k=1 is a MCAP. Here we have shown that x (= x
�4) is a MCAP core

allocation but not an extreme core allocation.
It is then natural to wonder whether every core allocation can be approached by some MCAP.

In Section 4 we will show that this conjecture is not true. There, we will characterize MCAP
allocations in a subclass of assignment games.

4. MCAP in Gloves Games and B�ohm-Bawerk Games

In Section 3, we have established the existence of MCAP in every assignment game. This section
shows that the existence result can be shown in simpler ways for two special cases of assignment
games: gloves games and B�ohm-Bawerk games. Especially, in Subsection 4.1 we will show that
some core allocation cannot be approached by any MCAP.

4.1. MCAP in gloves games

Gloves games, introduced in Shapley and Shubik [7], are the simplest assignment games. A gloves
game is a pair (L[R;w) where L = fl1; :::; ljLjg and R = fr1; :::; rjRjg are interpreted as the sets
of right-hand and left-hand gloves respectively. Since each pair of gloves has the same value which
can be normalized to be 1 and a single glove is worthless, the value of each coalition in L[R is the
number of pairs it contains. Formally, for each S � L[R; w(S) = minfjS\Lj; jS\Rjg:Without
loss of generality, we assume that jLj � jRj: Consider the following allocation x 2 RL[R : for
each i 2 L [R;

xi =

�
1 if i 2 L;
0 if i 2 R: (4.1)

It is clear that x 2 C(L [ R;w): Consider an order � = (r1; l1; r2; l2; :::; rjLj; ljLj; rjL+1j; :::; rjRj);
that is, starting from a player in R; players in R and L occur alternatively until the set L is

exhausted, and then only players in R until it is also exhausted. It can be seen that (x�k)
jL[Rj
k=1

is a MCAP.
Actually, � is an order generated from a special ZPP-tight tree. Under the core allocation

x de�ned in (4.1), every (l; r) 2 L � R is an edge in the tight tree Gw(x). Given an optimal

matching � = f(lk; rk)gjLjk=1 [ f(rk)g
jRj
k=jLj+1; each (l; r) 2 L � R is a thick edge if and only if

l = lk and r = rk for some k = 1; :::; jLj: Consider the tree (L [ R; T ) with l1 as its root such
that T = f(lk; rk)gjLjk=1 [ f(rk; lk+1)g

jLj�1
k=1 [ f(rk)gjRjk=jLj+1: It can be seen that (L [ R; T ) is a

ZPP-rooted tight tree and � is an order generated from it.
We can see from gloves games that some core allocation cannot be approached by any MCAP.

For example, consider the gloves game with two left-hand gloves and two right-hand ones. The
allocation y = (1=2; 1=2; 1=2; 1=2) is in the core. However, there is no MCAP (x�k)4k=1 satisfying
that x�4 = y: Indeed, for each order �, �3 contains two gloves for one side and a single glove for
the other side. Hence, the only core allocation for (R(�3); wR(�3)) gives the single glove holder
payo� 1 and 0 to the others, which implies that the payo�s for the single glove holder strictly
decreases from x�3 to x�4 : In this sense, the set of terminals of MCAPs is a re�nement of the
core.
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By generalizing the above argument, we have the following statement which characterizes
MCAP core allocations in gloves games.

Proposition 4.1 (Characterizing MCAP core allocations in gloves games) Let (L [
R;w) be a gloves game with maxfjLj; jRjg � 2: An allocation x is a MCAP core allocation if
and only if it is an extreme core allocation.

Though there is a straightforward proof, we omit it here since this statement is a direct
implication of Proposition 4.2.

4.2. MCAP in B�ohm-Bawerk Games

B�ohm-Bawerk games, which arise from B�ohm-Bawerk's study on horse markets (see Shapley and
Shubik [8]), generalize the gloves games and form a special case of assignment games. A B�ohm-
Bawerk horse market (BB market) is a tuple (M;N; fhigi2M ; fcjgj2N ); where M = f1; :::;mg
is the set of buyers, N = f10; :::; n0g the set of sellers, hi is the evaluation of buyer i about
a horse and cj is that of seller j about his horse. Without loss of generality, we assume that
hi � hi+1 for each i = 1; :::;m and cj � cj+1 for each j = 10; :::; n0: From a BB market
(M;N; fhigi2M ; fcjgj2N ), we de�ne a TU game (M [N;w), called the B�ohm-Bawerk game (BB
game), satisfying that for each S �M and T � N;

w(S [ T ) = maxf�(i;j)2�(hi � cj) : � 2M(S; T )g: (4.2)

We will give a simple and intuitive order on M [N and show that there is a MCAP on it.
Let q = maxfijhi � ci0g: We discuss the following two cases:
Case 1. minfhq; c(q+1)0g = hq: Then q is called the marginal buyer. De�ne an allocation x as
follows: for each i 2M \N;

xi =

�
maxfhi � hq; 0g if i 2M;
maxfhq � ci; 0g if i 2 N:

It is clear that x 2 extfC(M [ N;w)g (and buyer q gets zero-payo�), which is supported by
the optimal matching � = f(i; i0)ji = 1; :::; qg [ f(i)ji > qg [ f(i0)ji > qg: Consider an order
� = (q; (q�1)0; (q�1); :::; 10; 1; q0; :::) where after q0 it can be any order on the remaining players.
For each k = 1; :::; jM [N j; let x�k be the restriction of x on R(�k). We can see that (x�k)jM[N j

k=1

is a MCAP. Indeed, for each k; x�k is supported by the following matching:

(i) f(q); ((q � 1)0; (q � 1)); :::; ((q � k�1
2 )

0; (q � k�1
2 ))g if k � 2q � 1 and k is odd;

(ii) f((q � 1)0; (q � 1)); :::; ((q � k�2
2 )

0; (q � k�2
2 )); (q; (q �

k
2 ))g if k � 2q � 1 and k is even;

(iii) f(q0; q); :::(1; 10); :::g if k � 2q; where after (1; 10) is the sequence of single players until the
k-th one in �:

The optimal matchings supporting each x�k is illustrated in Figure 4.1.
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Figure 4.1. The matchings supporting a MCAP in a BB game

Here q = 4: The numbers in the circles are the order of matchings in �: We start from ZPP
buyer 4: At �rst buyer 4 matches with seller 30; then the matching partner of 30; i.e, buyer 3;
comes and matches with 30: Then buyer 4 matched with seller 20; and similarly the matching
partner of 20; i.e., buyer 2, comes and matches with 20; etc. Finally all players smaller than 4 are
matched. Then comes seller 40 who matches with buyer 4: After that, those unmatched players
come with any order.

Case 2. minfhq; c(q+1)0g = c(q+1)0 : This is similar to Case 1. Now (q + 1)0 is the marginal seller.
De�ne an allocation x as follows: for each i 2M \N;

xi =

�
maxfhi � c(q+1)0 ; 0g if i 2M;
maxfc(q+1)0 � ci; 0g if i 2 N:

It is clear that x is the unique core allocation (and seller (q + 1)0 gets zero-payo�) which is
supported by the optimal matching � = f(i; i0)ji = 1; :::; qg [ f(i)ji > qg [ f(i0)ji > qg: Consider
an order � = ((q + 1)0; q; q0; :::; 1; 10; :::) where after 10 it can be any order on the remaining
players. For each k = 1; :::; jM [N j; let x�k be the restriction of x on R(�k). We can see that
(x�k)

jM[N j
k=1 is a MCAP. Indeed, for each k; x�k is supported by

(i) f((q + 1)0); (q0; q); :::; ((q � k�3
2 )

0; (q � k�3
2 ))g if k � 2q + 1 and k is odd;

3

(ii) f(q0; q); :::; ((q � k�4
2 )

0; (q � k�4
2 )); ((q + 1)

0; (q � k�2
2 ))g if k � 2q + 1 and k is even;

(iii) f(q0; q); :::(1; 10); :::g if k � 2q + 2; where after (1; 10) is the sequence of single players until
the k-th one in �:

This is an analog of Case 1: as illustrated in Figure 4.1, the marginal player, which is a ZPP,
is matched to each seller (buyer) before him, then gives his position to the seller's (buyer's)
partner, and moves on to the next seller (buyer). The intuition behind this construction is
exhibited in our proof of Lemma 3.3 (and therefore Theorem 3.1).

The following statement characterizes MCAP core allocations in BB games.

Proposition 4.2 (Characterizing MCAP core allocations in BB games) Let (M [N;w)
be a BB game with maxfjM j; jN jg � 2: An allocation x is a MCAP core allocation if and only
if it is an extreme core allocation.

3When k = 1 we manipulate that the matching is f((q + 1)0)g:
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As Proposition 4.1, the if part of Proposition 4.2 follows from Corollary 3.1. To show the
only-if part, we have to make it clear what is an extreme core allocation in a BB game.

Consider a BB game (M [ N;w) with maxfjM j; jN jg � 2: Let q = maxfijhi � ci0g: We
de�ne marginal players in the following four cases:

Case 1. When minfhq; c(q+1)0g = hq and maxfcq0 ; hq+1g = cq0 ; we call buyer q and seller q0 the
marginal players;

Case 2. When minfhq; c(q+1)0g = c(q+1)0 and maxfcq0 ; hq+1g = cq0 ; we call sellers q0 and (q + 1)0
the marginal players;

Case 3. When minfhq; c(q+1)0g = hq and maxfcq0 ; hq+1g = hq+1; we call buyers q and q + 1 the
marginal players;

Case 4. When minfhq; c(q+1)0g = c(q+1)0 and maxfcq0 ; hq+1g = hq+1; we call buyer q + 1 and
seller (q + 1)0 the marginal players.

When buyer q + 1 or seller (q + 1)0 does not exist, we manipulate maxfcq0 ; hq+1g = cq0 or
minfhq; c(q+1)0g = hq; respectively. Given a BB game (M [ N;w) and the original BB horse
market (M;N; fhigi2M ; fcjgj2N ); each stable matching is supported by an equilibrium market
price p 2 R in the market, and the scale of p is determined by the two marginal players.

We have the following statement.

Lemma 4.1 (Core allocations in BB games) Let (M [N;w) be a BB game. An allocation
x 2 C(M [N;w) is an extreme core allocation if and only at least one marginal player gets zero
payo�.

Proof. Let q = maxfijhi � ci0g: Then buyers 1; :::; q and sellers 10; :::; q0 are matched players.
We only show it for Cases 1 and 4; Cases 2 and 3 can be proved in a similar manner.

(If) For Case 1, it can be seen that in the tight graph Gw(x); all matched players are
connected, and consequently belong to the same component (V;E). Since each marginal player
in Case 1 is connected, that a marginal player gets zero payo� implies that some player in (V;E)
gets zero payo�. Further, since every unmatched player gets zero payo� in x; it follows from
Lemma 3.1 that x is an extreme core allocation.

For Case 4, without loss of generality, suppose that xq+1 = 0; i.e., the buyer q + 1 (a
marginal player) gets zero payo�. As in Case 1, still all matched players are connected in the
tight graph Gw(x); further, now buyer q + 1 is also connected to those matched players since
xq+1+xq0 = hq+1�cq0 : Therefore, xq+1 = 0 means that in the component containing all matched
players, there is a player gets zero payo�. Since every unmatched player gets zero payo� in x;
it follows from Lemma 3.1 that x is an extreme core allocation.

(Only-if) For Case 1, suppose that each marginal player, i.e., buyer q and seller q0; gets
a positive payo� in x: It can be seen that all matched players form a component in Gw(x):
However, since xq > 0 and xq0 > 0; it follows that every macthed player gets a positive payo�.
By Lemma 3.1, it follows that x =2 extfC(M [N;w)g: For Case 4, the statement holds since at
least one maginal player is unmatched. �
Proof of Proposition 4.2. We show the only-if part. By Lemma 4.1, it is equivalent to
show that for in each MCAP core allocation, at least one marginal player gets zero payo�. Let
(M [ N;w) be a BB game with maxfjM j; jN jg � 2 and � be an optimal matching. We start
from the case that each player is matched. It follows that jM j = jN j = m (� 2) and each buyer
i is matched to seller i0 in �: Here, what we have to show is that buyer m or seller m0 gets zero
payo� in each MCAP core allocation.

Consider an order � and a MCAP (x�k)
jM[N j
k=1 : It is clear that the price supporting the

matchings does not change at each k whenever R(�k) \M 6= ; and R(�k) \ N 6= ;; otherwise
some player's payo�s would decrease, which is a contradiction. Consider the two marginal
players, buyer m and seller m0:Without loss of generality, we assume that the m appears before
m0 in �: Now we show that x�km = 0 for each k with m 2 R(�k):
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Let k� = minfkjm 2 R(�k) and R(�k) \ N 6= ;g: It is clear that k� � 2: What we have
to show is that x

�k�
m = 0: Since, as we have shown, the price supporting the matchings does

not change through the MCAP, x
�k�
m = 0 implies that x�km = 0 for each k with m 2 R(�k): We

discuss the following two cases:

Case 1. R(�k��1) \N = ;: Here are two subcases:
Subcase 1. R(�k��1)nfmg = ;; i.e., there is no other buyer in R(�k��1):4 Suppose that

x
�k�
m > 0: Let k�� = minfkj(R(�k) \M)nfmg 6= ;g and fig = R(�k��)nR(�k���1); i.e., i is the
�rst buyer who occurs after m in �: Since the price is the same at k� and k��; x�k��m = x

�k�
m > 0;

that is, m is matched to some j0 2 N at k��: Since m is a marginal buyer, hi � hm; it follows
that i and j0 can deviate from the matching because the cooperation between them can acheive
payo�s x

�k��
m =2 for i and x

�k��
j0 + (x

�k��
m =2) for j0; which strictly improve their original payo�s 0

and x
�k��
j0 : This is a contradiction. Hence x

�k�
m = 0:

Subcase 2. R(�k��1)nfmg 6= ;; i.e., there is some other buyer i 2 M in R(�k��1): Let
R(�k�) \ N = fj0g; i.e., j0 is the �rst seller entering the situation by �: We also suppose that
x
�k�
m > 0; i.e., m is matched to j0: Since m is a marginal buyer, hi � hm; by a similar argument
as in Subcase 1, i and j0 can deviate from the matching, a contradiction. Hence x

�k�
m = 0:

Case 2. m =2 R(�k��1): Here still we have two subcases. Subcase 1 is that R(�k��1) \M = ;:
By a similar argument as in Sebcase 1 of Case 1, it can be seen that x

�k�
m = 0: Here we only

discuss Subcase 2: R(�k��1)\M 6= ;:; i.e., there is some seller(s) and buyer(s) other than m in
R(�k��1): Suppose that x

�k�
m > 0; i.e., m is matched to some j0 2 N at k�: It is impossible that

some other buyer i is unmatched at k�; otherwise i can deviate together with the seller matched
to m. On the other hand, since m0 =2 R(�k�) and jM j = jN j; there must still be some buyer
who are not contained in R(�k�): It is clear that the �rst buyer appearing after m can deviate
toether with m's partner, which is a contradiction. Hence x

�k�
m = 0:

General cases can be shown in a similar manner. It can be seen that non-marginal unmatched
players do not a�ect the situation. Hence in each MCAP core allocation at least one marginal
player gets zero payo�. Then the statement holds by Lemma 4.1. �

Propositions 4.2 (and 4.1) imply that MCAP core allocations coincide with the extreme core
allocations in BB games. Nevertheless, as we have shown in the end of Section 3, this statement
does not hold for assignment games. Characterizing MCAP core allocations in assignment games
is still an open problem.
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