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Abstract

We axiomatize the set of affine combinations between the Shapley
value, the equal surplus division value, and the equal division value in
cooperative games with transferable utilities. The set is characterized by
efficiency, linearity, the balanced contributions property for equal contrib-
utors and outsiders, and the differential null player out property. The
balanced contributions property for equal contributors and outsiders re-
quires the balance of contributions between two players who contribute the
same amount to the grand coalition and whose singleton coalitions earn
the same worth. The differential null player out property requires that
an elimination of a null player affects the other players identically. These
two relational axioms are obtained by investigating Myerson’s (1980) bal-
anced contributions property and Derks and Haller’s (1999) null player
out property, respectively, from the perspective of a principle of Aristo-
tle’s distributive justice, whereby “equals should be treated equally”.

Keywords: Axiomatization, Balanced contribution, Null player out, Shapley
value, Equal surplus division value, Equal division value

JEL Classification: D63, C71

1 Introduction

The problems of distributing something among multiple agents have been dis-
cussed since early times. For instance, in Book V of Nicomachean Ethics, the
ancient Greek philosopher Aristotle noted that “if they are not equal, they will
not have what is equal, but this is the origin of quarrels and complaints—when
either equals have and are awarded unequal shares, or unequals equal shares”
(p.112 in Aristotle et al. 1980). A principle we observe here is that equals should
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be treated equally.1 This principle, often called equal treatment of equals, is
also emphasized in the modern literature2 on cooperative games with trans-
ferable utilities (TU games). The purpose of this study is to incorporate this
principle into existing relational3 axioms and provide new axiomatizations of
affine/convex combinations of values in TU games.

Among numerous values for TU games, the Shapley value (Shapley 1953),
the equal surplus division value (Driessen and Funaki 1991), and the equal divi-
sion value are basic ones. The Shapley value assigns each player the expectation
of his/her marginal contribution. The equal surplus division value allocates each
player the worth of his/her singleton coalition and an equal share of the remain-
der. The equal division value offers every player an equal share of the worth of
the grand coalition. These three values share several common properties such
as efficiency and linearity. A value is efficient if the worth of the grand coalition
is fully allocated among players. A value is linear if it is suitable for addition
or constant multiplication of games.

One of the properties that distinguish the Shapley value from the other two
values is the balanced contributions property introduced by Myerson (1980).
This property requires that for any pair of players i, j in a game, an effect of
a player i’s departure from a game on the other player j is equal to that of
j’s departure on i. Although the Shapley value is the only efficient value that
possesses this property, its weaker properties clarify the similarities between the
three values. For instance, the balanced cycle contributions property (Kamijo
and Kongo 2010) that requires the balance of the sum of effects of a player’s
departure on the next player between a cyclical order of players and its reverse
order is a common property of the three values. The balanced contributions
property for equal contributors (Yokote et al. 2017) that requires the same
condition as the balanced contributions property only for players who contribute
the same amount to the grand coalition is satisfied by both the Shapley value
and the equal division value, but not by the equal surplus division value.

Another property that distinguishes the Shapley value from the other two
values is the null player out property introduced by Derks and Haller (1999).
This property also considers the effects of a player’s departure from a game
on the others. Null players are those who contribute nothing to the worth of
coalitions; hence, we expect that the effect of a null player’s departure from a
game on each remaining player to be zero. This is the requirement of the null
player out property. This property is satisfied by the Shapley value, but not by
the equal surplus division value or the equal division value.

In light of these existing results, we characterize the set of affine combina-
tions between the Shapley value, the equal surplus division value, and the equal
division value. We introduce two relational axioms related to equal treatment
of equals: One is a property that further weakens the balanced contributions
property for equal contributors. The other is a weaker null player out property.
These two properties can be seen as intrinsic to the three basic values because
they characterize the affine combinations between the three values together with

1More precisely, here, we also observe another principle that unequals should be treated
unequally; the two principles together imply “The just, then, is a species of the proportionate”
(p.113 in Aristotle et al. 1980).

2See also Moulin (2003).
3Thomson (2012) categorizes axioms into punctual and relational as follows: “... a rela-

tional axiom relates choices made across problems that are related in certain ways.”
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efficiency and linearity.
Our new weaker balanced contributions property requires the balance of con-

tributions only for those who contribute the same amount to the grand coalition
and those whose singleton coalitions yield the same worth. With respect to a
player’s deletion from a game, such players can be considered equivalent from
the two viewpoints of the remaining players and the player itself. Hence, we
treat the players equally following the balanced contributions property. Our
weaker null player out property requires the effect of a null player’s departure
from a game on each remaining player to be uniform, though not always zero.
To reiterate, with respect to a player’s deletion from a game, all of the remain-
ing players can be considered equivalent, and thus, we treat the players equally
with respect to the effects of the player deletion. In other words, two properties
trace back to a principle of Aristotle’s distributive justice, that “equals should
be treated equally”.

The remainder of the paper is structured as follows. Section 2 introduces
notation and definitions. Section 3 provides axioms. Section 4 presents our
results. Section 5 provides concluding remarks. Section 6 proves our results.

Related literature

The differences between the Shapley value, the equal surplus division value,
and the equal division value are explored in more detail through their axiomatic
characterizations. Considering the class of games on a fixed player set, van den
Brink (2007) and Casajus and Huettner (2014a) describe the differences between
the Shapley value, the equal surplus division value, and the equal division value
by differences between the null, dummifying, and nullifying players. van den
Brink (2009) explains the differences between the Shapley value and the equal
division value by differences between the pair of linearity and the null player
property and collusion neutrality. Casajus and Huettner (2014b) ascribe the
differences between the two values to the difference between axioms on mono-
tonicity. Considering the class of games on valuable player sets, Kamijo and
Kongo (2010, 2012) attribute the differences between the Shapley value and the
equal division value to differences between players whose deletion does not affect
the others’ payoffs. Béal et al. (2015) illustrate the difference between the equal
surplus division and the equal division value due to differences between players
whose deletion does not affect the others’ payoffs in the presence of a special
player.

To reconcile these differences, certain mixtures of the three values are also
introduced, and their properties are investigated. Considering the class of games
on a fixed player set, van den Brink et al. (2013) and Casajus and Huettner
(2013, 2014b) study convex combinations of the Shapley value and the equal
division value, often called egalitarian Shapley values (Joosten 1996). Ju et al.
(2007) examine convex combinations of the Shapley value and the equal surplus
division value, called consensus values. Ferrières (2016, 2017) and Kongo (2017)
study convex combinations of the equal surplus division value and the equal
division value. Yokote and Funaki (2017) investigate convex combinations of
the three values (for games with six or more players). Considering the class of
games on valuable player sets, van den Brink et al. (2013) examine egalitarian
Shapley values. van den Brink and Funaki (2009) and van den Brink et al.
(2016) study convex combinations of the equal surplus division value and the
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equal division value.

2 Preliminaries

Let | · | be a cardinality of a set. Let N ⊆ N, with |N | = n, be a finite set of
players. For any i ∈ N , we use i to represent a singleton coalition {i} ⊆ N . For
any N ⊆ N, a TU game is a pair (N, v), where v : 2N → R with v(∅) = 0. Let
Γ be a set of all TU games. For any (N, v) ∈ Γ and any i ∈ N , a subgame of
(N, v) on N \ i is a pair (N \ i, v|N\i), where for any S ⊆ N \ i, v|N\i(S) = v(S).
For simplicity, we use (N \ i, v) to represent (N \ i, v|N\i). For any N ⊆ N and
any S ⊆ N , the S-unanimity game is a pair (N,uS), where uS(T ) = 1 if
T ⊇ S and uS(T ) = 0 if T ̸⊇ S. Given (N, v) ∈ Γ, i ∈ N is a null player in
(N, v) if for any S ⊆ N \ i, v(S ∪ i) = v(S).

A value is a function from Γ to Rn. The following are three well-known
values on Γ.

• The Shapley value (Shapley 1953) Sh : Γ → Rn: for any (N, v) ∈ Γ and
any i ∈ N ,

Shi(N, v) =
∑
S∋i

(|S| − 1)!(n− |S|!)
n!

(v(S)− v(S \ i)).

• The equal surplus division value (Driessen and Funaki 1991) ESD :
Γ → Rn: for any (N, v) ∈ Γ and any i ∈ N ,

ESDi(N, v) =
v(N)−

∑
j∈N v(j)

n
+ v(i).

• The equal division value ED : Γ → Rn: for any (N, v) ∈ Γ and any
i ∈ N ,

EDi(N, v) =
v(N)

n
.

3 Axioms

An axiom is a property on values. Let φ be a value of games. All of the
above-mentioned three values satisfy the following two basic axioms.

Efficiency (E): For any (N, v) ∈ Γ,
∑

i∈N φi(N, v) = v(N).

Linearity (L): For any (N, v), (N,w) ∈ Γ, and any λ ∈ R, φ(N, v + λw) =
φ(N, v) + λφ(N,w), where for any S ⊆ N , (v + λw)(S) = v(S) + λw(S).

Among the above three values, only the Shapley value satisfies the following
property.

Balanced contributions (BC, Myerson 1980): For any (N, v) ∈ Γ, any
i ∈ N and any j ∈ N \ i, it holds that φi(N, v)−φi(N \ j, v) = φj(N, v)−
φj(N \ i, v).
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We introduce a weaker property than BC, satisfied by not only the Shapley value
but also the equal division value. Let i, j ∈ N with v(N \ i) = v(N \ j). Each
such player contributes the same amount to the worth of the grand coalition;
hence, we call them equal contributors. Yokote et al. (2017) introduce a
property weaker than BC by requiring the balance of contributions only for
pairs of equal contributors.4

Balanced contributions of equal contributors (BC−, Yokote et al. 2017):
For any (N, v) ∈ Γ and any i, j ∈ N such that v(N \ i) = v(N \ j), it holds
that φi(N, v)− φi(N \ j, v) = φj(N, v)− φj(N \ i, v).

We introduce a much weaker property than BC−, satisfied by all of the above-
mentioned three values. Let i, j ∈ N with v(i) = v(j). Each such player can
obtain the same worth by only himself/herself if he/she leaves the game; thus, we
call them equal outsiders. We say that i, j ∈ N are equal contributors and
outsiders if they are both equal contributors and equal outsiders, i.e., v(N\i) =
v(N \ j) and v(i) = v(j). The much weaker property than BC− is defined by
requiring the balance of contributions only for pairs of equal contributors and
outsiders.

Balanced contributions for equal contributors & outsiders (BC−−): For
any (N, v) ∈ Γ, any i ∈ N and any j ∈ N \ i such that v(N \ i) = v(N \ j)
and v(i) = v(j), it holds that φi(N, v)− φi(N \ j, v) = φj(N, v)− φj(N \
i, v).

Again, among the above three values, only the Shapley value possesses the
following axiom.

Null player out (NPO, Derks and Haller 1999): For any (N, v) ∈ Γ, any
null player i ∈ N in (N, v), and any j ∈ N \ i, φj(N, v) = φj(N \ i, v).

We introduce a weaker property than NPO, satisfied by all of the above-
mentioned three values. In the following weaker axiom, we require that the
effect of a null player’s departure on any remaining player not necessarily be
zero but be common to all others.5

Differential null player out (NPO−): For any (N, v) ∈ Γ, any null player
k ∈ N in (N, v), any i ∈ N \ k, and any j ∈ N \ {i, k}, it holds that
φi(N, v)− φi(N \ k, v) = φj(N, v)− φj(N \ k, v).6

As mentioned in the Introduction, the basic idea behind BC−− and NPO−

can be traced back to Aristotle’s distributive justice: equals should be treated
equally. To apply this principle to TU games, we should clarify two questions:
(i) What players are equal? (ii) What does “being treated equally” mean? In
BC−−, (i) two players are considered to be equal if deleting either identically

4Weaker balanced contributions properties requiring the same condition as BC only on
specific players are also studied by Calvo and Santos (2006), Lorenzo-Freire et al. (2007),
Lorenzo-Freire (2016), and Yokote and Kongo (2017).

5The corresponding conditions on the class of games on a fixed player set are examined
by Ferrières (2016, 2017) and Kongo (2017) under the name of nullified equal loss or equal
effect of a player’s nullification on others. Their properties focus on the effect of a player’s
nullification (i.e., a player becoming a null player) on others, instead of that of a null player’s
departure because the player set is fixed.

6This axiom is also known as weak null player out in van den Brink and Funaki (2009).

5



affects the deleted player itself and the entirety of the remaining players, and (ii)
the effects of a player’s deletion on the other should be balanced between two
equal players. In NPO−, (i) all players except a deleted player are considered
to be equal, and (ii) the effects of a player’s deletion on the others should be
the same.

4 Results

4.1 Primary result

The following is our primary result that characterizes the class of all affine
combinations of Sh,ESD, and ED by four axioms.

Theorem 1. On the class of games on valuable player sets, a value φ satisfies
E, L, BC−−, and NPO− if and only if there exist α, β, γ ∈ R with α+β+γ = 1
and the value φ represented as follows: for any (N, v) ∈ Γ,

φ(N, v) = αSh(N, v) + βESD(N, v) + γED(N, v). (1)

4.2 Independence of axioms in Theorem 1

4.2.1 Without E

The value φ1
i (N, v) = 0 for any i ∈ N and any (N, v) ∈ Γ satisfies L, BC−−,

and NPO−, but not E.

4.2.2 Without L

The value φ2
i (N, v) =

{
v(i)∑

k∈N v(k)v(N) if
∑

k∈N v(k) ̸= 0

EDi(N, v) otherwise
for any i ∈ N and

any (N, v) ∈ Γ satisfies E, BC−−, and NPO−, but not L.

4.2.3 Without BC−−

The value φ3
i (N, v) =

v(N)−
∑

k∈N (v(k)+v(N\k))
n + v(i) + v(N \ i) for any i ∈ N

and any (N, v) ∈ Γ satisfies E, L, and NPO−, but not BC−−.

4.2.4 Without NPO−

The value φ4(N, v) =

{
ESD(N, v) if n = 3

ED(N, v) otherwise
for any (N, v) ∈ Γ satisfies E,

L, and BC−−, but not NPO−.

5 Concluding remarks

Theorem 1 characterizes a large class of solutions in the sense that parame-
ters α, β, and γ have 2 degrees of freedom (i.e., they can be obtained from
a 2-dimensional plane). Introducing additional axioms narrows down possible
parameters, whereby we can axiomatize a restricted class of solutions. We ex-
emplify three such axiomatizations.
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Desirability, D For any (N, v) ∈ Γ and i, j ∈ N such that v(S ∪ i) − v(S) ≥
v(S ∪ j)− v(S) for all S ⊆ N\{i, j}, it holds that φi(N, v) ≥ φj(N, v).

Positivity, P For any (N, v) ∈ Γ and i ∈ N such that (N, v) is monotonic,7 it
holds that φi(N, v) ≥ 0.

Self duality, SD For any (N, v) ∈ Γ, it holds that φ(N, v) = φ(N, vd), where
for any S ⊆ N with S ̸= ∅, vd(S) = v(N)− v(N\S).

Covariance, COV For any (N, v) ∈ Γ, any α ∈ R and any (βi)i∈N ∈ Rn, it
holds that φ(N,αv + β) = αφ(N, v) + β, where for any S ⊆ N , (αv +
β)(S) = αv(S) +

∑
i∈S βi.

Positivity for zero-worth player, PZ For any (N, v) ∈ Γ such that v(i) = 0
for all i ∈ N and v(N) ≥ 0, it holds that φi(N, v) ≥ 0 for all i ∈ N .

Note that P and PZ are independent.

Theorem 2. On the class of games on valuable player sets, a value φ satisfies
E, L, BC−−, NPO−, D, P and SD if and only if there exist α ∈ [0, 1] and
the value φ represented as follows: for any (N, v) ∈ Γ,

φ(N, v) = αSh(N, v) + (1− α)ED(N, v).

Theorem 3. On the class of games on valuable player sets, a value φ satisfies
E, L, BC−−, NPO−, D, P and COV if and only if there exist α ∈ [0, 1] and
the value φ represented as follows: for any (N, v) ∈ Γ,

φ(N, v) = αSh(N, v) + (1− α)ESD(N, v).

Theorem 4. On the class of games on valuable player sets, a value φ satisfies
E, L, BC−−, NPO−, D, P and PZ if and only if there exist α ∈ [0, 1] and the
value φ represented as follows: for any (N, v) ∈ Γ,

φ(N, v) = αESD(N, v) + (1− α)ED(N, v).

Theorems 2, 3, and 4 axiomatize the egalitarian Shapley values, the consen-
sus values, and convex combinations of ESD and ED, respectively. We remark
that ESD, ED, and Sh violate SD, COV, and PZ, respectively. Hence, Theo-
rems 2, 3, and 4 can be proven by combining our Theorem 1 and Theorem 2 of
Radzik and Driessen (2013).

6 Proofs

In several mathematical expressions in the following proofs, we use the follow-
ing abbreviations: L3 stands for Lemma 3, and IH stands for the induction
hypothesis.

7A game (N, v) is monotonic if v(S) ≥ v(T ) for all S, T ⊆ N such that S ⊇ T .
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6.1 Preparation for the proof of Theorem 1

First, we discuss certain notation and two axioms used by the proof. Given
(N, v) ∈ Γ, i ∈ N and j ∈ N \i are symmetric in (N, v) if for any S ⊆ N \{i, j},
v(S ∪ i) = v(S ∪ j).

Symmetry (S): For any (N, v) ∈ Γ, if i ∈ N and j ∈ N \ i are symmetric in
(N, v), then φi(N, v) = φj(N, v).

Anonymity (A): For any (N, v) ∈ Γ and any π : N → N, φi(N, v) =
φπ(i)(π(N), πv), where πv(S) = v(π−1(S)) for any S ⊆ π(N).

Note that each of the Shapley value, the equal surplus division value, and the
equal division value satisfies the above two axioms.

Let N ⊆ N with |N | ≥ 3 and T ⊆ N with 3 ≤ |T | ≤ n − 1. We define
(N,wT ) ∈ Γ by

wT = uT +
∑
k∈T

∑
ℓ∈N\T

1

2|T | − n
u{k,ℓ}.

Lemma 1. For any i ∈ N , wT (i) = 0.

Proof. This immediately follows from the fact that |T | ≥ 3.

Lemma 2. For any i ∈ N , wT (N \ i) = (|T |−1)(n−|T |)
2|T |−n .

Proof. Let i ∈ N . If i ∈ T ,

wT (N\i) = uT (N\i)+
∑

ℓ∈N\T

1

2|T | − n
u{i,ℓ}(N\i)+

∑
k∈T\i

∑
ℓ∈N\T

1

2|T | − n
u{k,ℓ}(N\i)

= 0 +
∑

ℓ∈N\T

1

2|T | − n
· 0 +

∑
k∈T\i

∑
ℓ∈N\T

1

2|T | − n
· 1 =

(|T | − 1)(n− |T |)
2|T | − n

.

If i ̸∈ T ,

wT (N\i) = uT (N\i)+
∑
k∈T

1

2|T | − n
u{k,i}(N\i)+

∑
k∈T

∑
ℓ∈(N\T )\i

1

2|T | − n
u{k,ℓ}(N\i)

= 1 +
∑
k∈T

1

2|T | − n
· 0 +

∑
k∈T

∑
ℓ∈(N\T )\i

1

2|T | − n
· 1

= 1 +
|T |(n− |T | − 1)

2|T | − n
=

2|T | − n+ n|T | − |T |2 − |T |
2|T | − n

=
(|T | − 1)(n− |T |)

2|T | − n
.

Lemma 3. Let φ satisfy E and BC−−. Let t ∈ N with t ≥ 2. If φ satisfies A
on the class of games with t−1 players, then φ satisfies S on the class of games
with t players.

Proof. Let (N, v) ∈ Γ with n = t. Let i, j be symmetric players in (N, v). Then,

φi(N, v)− φj(N, v)
BC−−

= φi(N \ j, v)− φj(N \ i, v) = 0,

where the second equality follows from A on the class of games with t − 1
players.
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6.2 Proof of Theorem 1

First, we show the “if” part. It is clear that Sh,ESD, and ED satisfy E, L,
BC−−, and NPO−. Hence, for any α, β, γ ∈ R with α+ β + γ = 1, φ satisfies
them.

Below, we consider the “only if” part. If n = 1, E completes the proof.
If n = 2, let {i, j} ⊆ N. Set γ = 2φj({i, j}, ui). Let α,β be arbitrary real

numbers such that α+ β = 1− γ. Set ϕα,β,γ = αSh+ βESD + γED. Then,

φj({i, j}, ui) =
γ

2
= ϕα,β,γ

j ({i.j}, ui).

By E, φi({i, j}, ui) = ϕα,β,γ
i ({i.j}, ui). Hence, it follows that

φ({i, j}, ui) = ϕα,β,γ({i.j}, ui). (2)

Next, we consider a game ({i.j}, uj). Now,

φi({i.j}, ui) + φi({i.j}, uj)
L
= φi({i.j}, ui + uj)

L3,E
= 1,

and hence,

φi({i, j}, uj) = 1− φi({i, j}, ui)
(2)
= 1− ϕα,β,γ

i ({i.j}, ui) = ϕα,β,γ
i ({i.j}, uj).

By E,
φ({i, j}, uj) = ϕα,β,γ({i.j}, uj). (3)

By Lemma 3,
φ({i, j}, u{i,j}) = ϕα,β,γ({i, j}, u{i,j}). (4)

By (2)-(4) and L, we obtain that φ({i, j}, v) = ϕα,β,γ({i, j}, v) for all v.
Let k ∈ N \ {i, j}. Consider ({i, j, k}, uj). Set φ({i, j, k}, uj) = (x, y, z). By

NPO−, there exist d, d′ ∈ R such that

φ({j, k}, uj) = (y + d, z + d), and φi({i, j}, uj) = (x+ d′, y + d′).

By BC−− applied to i and k in ({i, j, k}, uj),

x− z = x+ d′ − (z + d) ⇐⇒ d = d′.

Hence, φj({i, j}, uj) = φj({j, k}, uj). By the fact that φj({i, j}, uj) = ϕα,β,γ
j ({i, j}, uj),

it holds that ϕα,β,γ
j ({j, k}, uj) = ϕα,β,γ

j ({i, j}, uj) = φj({j, k}, uj). By E,

ϕα,β,γ({j, k}, uj) = φ({j, k}, uj). (5)

Next, we consider ({j, k}, uk). Now,

φk({j.k}, uk) + φk({j.k}, uj)
L
= φk({j.k}, uk + uj)

L3,E
= 1,

and hence,

φk({j, k}, uk) = 1− φk({j, k}, uj)
(5)
= 1− ϕα,β,γ

k ({j.k}, uj) = ϕα,β,γ
k ({j.k}, uk).

By E,
φ({j, k}, uk) = ϕα,β,γ({j.k}, uk). (6)
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By Lemma 3,
φ({j, k}, u{j,k}) = ϕα,β,γ({j, k}, u{j,k}). (7)

By (5)-(7) and L, we obtain that φ({j, k}, v) = ϕα,β,γ({j, k}, v) for all v.
Starting from the fact that φ = ϕα.β,γ on the class of games defined for

{i, j}, we derive that φ = ϕα.β,γ on the class of games defined for {j, k}. By
repeating this argument, we obtain that φ = ϕα.β,γ for all 2-person games.

If n = 3, let {i, j, k} ⊆ N. Set β = 3φk({i, j, k}, u{i,j}) − γ, α = 1 − β − γ,

and ϕα,β,γ = αSh+ βESD + γED. By L,

φ({i, j, k}, u{i,j}) + φ({i, j, k}, u{i,k}) = φ({i, j, k}, u{i,j} + u{i,k}). (8)

By Lemma 3,

φj({i, j, k}, u{i,j} + u{i,k}) = φk({i, j, k}, u{i,j} + u{i,k}). (9)

By E and Lemma 3, there exist a, b ∈ R such that

φ({i, j, k}, u{i,j}) = (a, a, 1− 2a), and (10)

φ({i, j, k}, u{i,k}) = (b, 1− 2b, b). (11)

By (8) and (9),

φj({i, j, k}, u{i,j})+φj({i, j, k}, u{i,k}) = φk({i, j, k}, u{i,j})+φk({i, j, k}, u{i,k}).

By (10) and (11),

1 + a− 2b = 1− 2a+ b ⇐⇒ a = b. (12)

Then,

φk({i, j, k}, u{i,j})
(10)
= 1− 2a

(12)
= 1− 2b

(11)
= φj({i, j, k}, u{i,k}). (13)

Similarly, we obtain

φk({i, j, k}, u{i,j}) = φi({i, j, k}, u{j,k}). (14)

By (13) and (14),

ϕα,β,γ
k ({i, j, k}, u{i,j}) =

β + γ

3
= φk({i, j, k}, u{i,j})

(13)
= φj({i, j, k}, u{i,k})

(14)
= φi({i, j, k}, u{j,k}).

By the fact that ϕα,β,γ
j ({i, j, k}, u{i,k}) = ϕα,β,γ

i ({i, j, k}, u{j,k}) =
β+γ
3 , it holds

that ϕα,β,γ
j ({i, j, k}, u{i,k}) = φj({i, j, k}, u{i,k}) and ϕα,β,γ

i ({i, j, k}, u{j,k}) =
φi({i, j, k}, u{j,k}). By E and Lemma 3,

ϕα,β,γ({i, j, k}, uT ) = φ({i, j, k}, uT ) for all T ⊆ {i, j, k} with |T | = 2. (15)

Next, let ℓ ∈ N\{i, j, k} and consider ({i, j, ℓ}, u{i,j}). Set φ({i, j, k, ℓ}, u{i,j}) =
(w, x, y, z). By NPO−, there exist d, d′ ∈ R such that

φ({i, j, k}, u{i,j}) = (w+d, x+d, y+d) and φ({i, j, ℓ}, u{i,j}) = (w+d′, x+d′, z+d′).
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By BC−− applied to k, ℓ in ({i, j, k, ℓ}, ui,j),

y − z = y + d− (z + d′) ⇐⇒ d = d′.

Hence, φi({i, j, ℓ}, u{i,j}) = φi({i, j, k}, u{i,j}) = ϕα,β,γ
i ({i, j, k}, u{i,j}) = ϕα,β,γ

i ({i, j, ℓ}, u{i,j}),

and φj({i, j, ℓ}, u{i,j}) = φj({i, j, k}, u{i,j}) = ϕα,β,γ
j ({i, j, k}, u{i,j}) = ϕα,β,γ

j ({i, j, ℓ}, u{i,j}).
By E,

φ({i, j, ℓ}, u{i,j}) = ϕα,β,γ({i, j, ℓ}, u{i,j}). (16)

Next, consider φ({i, j, ℓ}, u{i,ℓ}). By Lemma 3,

φj({i, j, ℓ}, u{i,j} + u{i,ℓ}) = φℓ({i, j, ℓ}, u{i,j} + u{i,ℓ}). (17)

By E and Lemma 3, there exist a, b ∈ R such that

φ({i, j, ℓ}, u{i,j}) = (a, a, 1− 2a), and (18)

φ({i, j, ℓ}, u{i,ℓ}) = (b, 1− 2b, b). (19)

By L

φ({i, j, ℓ}, u{i,j}) + φ({i, j, ℓ}, u{i,ℓ}) = φ({i, j, ℓ}, u{i,j} + u{i,ℓ}). (20)

By (17) and (20),

φj({i, j, ℓ}, u{i,j})+φj({i, j, ℓ}, u{i,ℓ}) = φℓ({i, j, ℓ}, u{i,j})+φℓ({i, j, ℓ}, u{i,ℓ}).

By (18) and (19),

1 + a− 2b = 1− 2a+ b ⇐⇒ a = b. (21)

Then,

φℓ({i, j, ℓ}, u{i,j})
(18)
= 1− 2a

(21)
= 1− 2b

(19)
= φj({i, j, ℓ}, u{i,ℓ}). (22)

Similarly, we obtain

φℓ({i, j, ℓ}, u{i,j}) = φi({i, j, ℓ}, u{j,ℓ}). (23)

By (22) and (23),

ϕα,β,γ
ℓ ({i, j, ℓ}, u{i,j})

(16)
= φℓ({i, j, ℓ}, u{i,j})

(22)
= φj({i, j, ℓ}, u{i,ℓ})

(23)
= φi({i, j, ℓ}, u{j,ℓ}).

By the fact that ϕα,β,γ
ℓ ({i, j, ℓ}, u{i,j}) = ϕα,β,γ

j ({i, j, ℓ}, u{i,ℓ}) = ϕα,β,γ
i ({i, j, ℓ}, u{j,ℓ}),

we obtain ϕα,β,γ
j ({i, j, ℓ}, u{i,ℓ}) = φj({i, j, ℓ}, u{i,ℓ}), and ϕα,β,γ

i ({i, j, ℓ}, u{j,ℓ}) =
φi({i, j, ℓ}, u{j,ℓ}). By E and Lemma 3,

ϕα,β,γ({i, j, ℓ}, uT ) = φ({i, j, ℓ}, uT ) for all T ⊆ {i, j, ℓ} with |T | = 2. (24)

Starting from the fact that φ = ϕα.β,γ on the class of T -unanimity games
with |T | = 2 defined for {i, j, k}, we derive that φ = ϕα.β,γ on the class of T -
unanimity games with |T | = 2 defined for {i, j, ℓ}. By repeating this argument,

11



we obtain that φ = ϕα.β,γ for all T -unanimity games with |T | = 2 defined for
any N ⊆ N with |N | = 3. In other words, by (15) and (24),

ϕα,β,γ(N, uT ) = φ(N,uT ) for all N ⊆ N with n = 3 and any T ⊆ N with |T | = 2.
(25)

Next, let N ⊆ N with n = 3 and i ∈ N . Set N = {i, j, k}. Now,

φi(N, ui)− φj(N,ui)
NPO−

= φi(N \ k, ui)− φj(N \ k, ui)

IH
= ϕα,β,γ

i (N \ k, ui)− ϕα,β,γ
j (N \ k, ui) = ϕα,β,γ

i (N,ui)− ϕα,β,γ
j (N, ui).

Similarly, φi(N,ui)− φk(N,ui) = ϕα,β,γ
i (N, ui)− ϕα,β,γ

k (N,ui). Together with
E, φ(N, ui) = ϕα,β,γ(N, ui). As N and i are arbitrarily chosen, we obtain

ϕα,β,γ(N, ui) = φ(N, ui) for any N ⊆ N with n = 3 and i ∈ N. (26)

By E and Lemma 3,

ϕα,β,γ(N, uN ) = φ(N,uN ) for any N ⊆ N with n = 3. (27)

By (25)-(27) and L, ϕα,β,γ(N, v) = φ(N, v) for any N ⊆ N and for any v.
Lastly, if n ≥ 4, let t ≥ 3. Suppose that ϕα,β,γ(N, v) = φ(N, v) for all N ⊆ N

with n = t and all v. We prove that ϕα,β,γ(N, v) = φ(N, v) for all N ⊆ N with
n = t+ 1 and all v.

Let N ⊆ N with n = t+ 1 and T ⊆ N with 3 ≤ |T | ≤ n− 1. By Lemmas 1
and 2, wT (i) = wT (j) and wT (N \ i) = wT (N \ j) for any i, j ∈ N , By BC−−

applied to two arbitrarily chosen players, together with E,

ϕα,β,γ(N,wT ) = φ(N,wT ) for any N ⊆ N with n = t+1 and any T ⊆ N with 3 ≤ |T | ≤ n−1.
(28)

Let N ⊆ N with n = t+ 1 and T ⊆ N with |T | ≤ 2. Let i, j ∈ N . If i, j ∈ T

or i, j ̸∈ T , by Lemma 3, φi(N, uT )−φj(N, uT ) = ϕα,β,γ
i (N, uT )−ϕα,β,γ

j (N,uT ).
Otherwise, by n ≥ 4, there exists k ̸∈ T with k ∈ N \ {i, j} and

φi(N, uT )− φj(N,uT )
NPO−

= φi(N \ k, uT )− φj(N \ k, uT )

IH
= ϕα,β,γ

i (N \ k, uT )− ϕα,β,γ
j (N \ k, uT ) = ϕα,β,γ

i (N, uT )− ϕα,β,γ
j (N, uT ).

Hence, for any i, j ∈ N , φi(N,uT )−φj(N,uT ) = ϕα,β,γ
i (N,uT )−ϕα,β,γ

j (N,uT ).
By E,

φ(N, uT ) = ϕα,β,γ(N,uT ) for any N ⊆ N with n = t+1 and any T ⊆ N with |T | ≤ 2.
(29)

By E and Lemma 3,

φ(N, uN ) = ϕα,β,γ(N, uN ) for any N ⊆ N with n = t+ 1. (30)

As the set {uT : |T | ≤ 2} ∪ {wT : 3 ≤ |T | ≤ n − 1} ∪ {uN} forms a basis,
(28)-(30) and L complete the proof.
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