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Abstract

We develop a series of small in�nitary epistemic logics to study deductive inference in-
volving intra/inter-personal beliefs/knowledge such as common knowledge, common beliefs,
and in�nite regress of beliefs. Speci�cally, propositional epistemic logics GL(L�) are pre-
sented for ordinal � up to a given �o (�o � !) so that GL(L0) is �nitary KDn with n agents
and GL(L�) (� � 1) allows conjunctions of certain countably in�nite formulae. GL(L�) is
small in that the language is countable and can be constructive. The set of formulae L� is
increasing up to � = ! but stops at !:We present Kripke-completeness for GL(L�) for each
� � !; which is proved using the Rasiowa-Sikorski lemma and Tanaka-Ono lemma. GL(L�)
has a su¢ cient expressive power to discuss intra/inter-personal beliefs with in�nite lengths.
As applications, we discuss the explicit de�nabilities of Axioms T (truthfulness), 4 (positive
introspection), 5 (negative introspection), and of common knowledge in GL(L�): Also, we
discuss the rationalizability concept in game theory in our framework. We evaluate where
these discussions are done in the series GL(L�); � � !.
Key Words: In�nitary Epistemic Logic, Completeness, Rasiowa-Sikorski Lemma, Tanaka-
Ono Lemma, Common knowledge, Explicit De�nability, Game Theory, Rationalizability

1 Introduction

We develop a series of in�nitary epistemic logics to study deductive inference involving intra/inter-
personal beliefs/knowledge in social situations. In these situations, people�s beliefs may include
in�nitary components such as common knowledge, common beliefs, and in�nite regress of be-
liefs. To approach such situations, we extend the �nitary epistemic logic KDn with n agents to
in�nitary logics, illustrated as

KDn = GL(L0)� GL(L1)� � � �� GL(L!): (1)

Each logic GL(L�) is �small� in that the set of formulae is countable and can be constructive.
These logics are formulated in a Hilbert-style, and each is complete with respect to Kripke
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semantics. This implies that the logics in (1) are connected by the conservative extension relation
�; and the series can be used in various manners to evaluate in�nitary concepts. Our approach
o¤ers a new framework, alternative to the existing literatures on related issues on in�nitary
epistemic concepts, with applications to evaluations of epistemic axioms and of decision-making
processes in game theory.

First, we compare our approach with two literatures on in�nitary epistemic concepts: the
in�nitary logic literature since Karp [19] (for epistemic logics, Kaneko-Nagashima [20], Tanaka-
Ono [33], Tanaka [32], Heifetz [12]), and the �xed-point logic literature (for epistemic logics,
Fagin et al. [8], Meyer-van der Hoek [25], and for �-calculus, Enqvist, et al. [7], Jäger, et al.
[16], and Jäger-Studer [17]). Both approaches have some merits and demerits; to discuss such
merits and demerits, we note that the in�nitary epistemic concepts we consider in applications
are typically constructed by iterated substitution of the belief operators.

The in�nitary logic approach is capable of discussing various in�nitary concepts in an explicit
and uni�ed manner. However, the languages are very large (at least continuum) in terms of sets
of formulae. A large language is not only unnecessary but also sometimes imposes an obstacle
for a precise study of targeted in�nitary concepts. The �xed-point logic approach has a merit
to be speci�c to targeted in�nitary concepts, but has the inconvenience that targeted concepts
are indirectly expressed by a �xed-point argument. In contrast to these approaches, ours allows
for explicit and uni�ed treatments of targeted concepts and enables us to evaluate, as in (1),
how large (i.e., in�nitarily small) a given targeted concept requires. The key to our approach is
a syntactical concept of germinal forms, upon which we build a series of languages, as explained
below.

Our base logic is a �nitary KDn with language L0 (the set of formula); the agents have
classical logical abilities and contradiction-free beliefs, described by the belief operators Bi(�)
for agents 1; :::; n. We extend the �nitary language L0 by adding conjunctions of certain in�nite
sequences of formulae in L0. Speci�cally, we take a countable number of in�nite sequences
hC�(p) : � � 0i = hC0(p); C1(p); :::i from L0; which we call germinal forms. A typical example
is common knowledge. The germinal form for it is given as hC�(p) : � � 0i = hB�N (p) : � � 0i;

C0(p) = p; C1(p) = ^i2NBi(p); :::; C�+1(p) = ^i2NBiC�(p); ::: (2)

The conjunction B!N (p) := ^hB�N (p) : � � 0i is the common knowledge of p; meaning that p
holds, all agents believe p; all agents believe all believe p; and so on. This is not in L0; and we
extend L0 to L1 to have B!N (A) as a targeted formula:

The next layer L2 is obtained from L1 by adding the in�nite conjunctions ^hC�(A) : � �
0i for A 2 L1; e.g., B!N (B

!
N (A)); roughly speaking, each formula in L2 includes in�nitary

conjunctions nested at most twice. Assuming that the set of germinal forms are unchanged, we
de�ne L0;L1; :::;L�; ::: up to some ordinal �o � ! := f0; 1; :::g. We show that this extension
stops at L! = [�<!L� = L!+1 = ::: = L�o : The language L� is kept countable for all � � !.
Also, we show that the ordinal depth of each formula in L! is less than !2.

In�nitary concepts such as common knowledge are typically constructed by iteration of
substitutions. Our formulation of a germinal form is rich enough to capture these in�nitary
concepts. In our approach, however, germinal forms are more generally de�ned even to allow
nonconstructive sequences hC�(p) : � � 0i. This implies that our theory is quite �exible and
could go beyond our current applications.

The proof systems in the series (1) are uniform; they share the same logical axiom schemata
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and inference rules only with the restriction to each L�:1 The Kripke semantics is de�ned also
in a uniform manner over �: Each GL(L�) is proved to be sound and complete with respect
to Kripke semantics. It follows from this result that GL(L�+1) is a conservative extension of
GL(L�); i.e., for any formula A 2 L�, A is provable in GL(L�) if and only if it is provable in
GL(L�+1). In (1), the double arrow � describes the conservative extension relation.2

To prove Kripke-completeness, we adopt the Q-�lter method developed in Tanaka-Ono [33].
Q-�lters play the corresponding role to that of maximal consistent sets of formulae in the stan-
dard construction of a canonical model. The Q-�lter method is crucial, since GL(L�) deals
with both particular in�nitary conjunctions and modality. To treat these aspects, our proof
relies upon two lemmas, the Rasiowa-Sikorski lemma and Tanaka-Ono lemma; the countabil-
ity of the language L� is crucial in applications of these lemmas. Although we use various
algebraic concepts, our model theory is Kripke semantics, but not algebraic semantics. Our
completeness theorem can be modi�ed to systems including additional epistemic axioms, Ax-
ioms T (truthfulness �Bi(A) � A), 4 (positive introspection �Bi(A) � BiBi(A)), and/or 5
(negative introspection �:Bi(A) � Bi(:Bi(A))).

We deliberately choose the base logic KDn = GL(L0). In the literature of epistemic
logic, all, some, or none of Axioms T, 4, and 5 for Bi(�) are adopted depending upon pur-
poses/environments. Axioms 4 and 5 include in�nitary aspects, though they are expressed in
a �nitary way. In our approach, we can study these axioms in terms of explicit de�nability in
GL(L�) in the series in (1), that is, we ask whether there is a formula in GL(L�) such that it
is an extension of Bi(�) and satis�es each of T, 4, and 5. For T, it is a¢ rmatively answered in
all �; for 4, we need � = !; and for 5, the answer is entirely negative: Also, we consider faithful
embedding of the logics added T and/or 4 in GL(L�). Axiom D is included as a basic axiom in
our framework, since it is crucial in proving (20) for playability in Section 5.

We also consider the faithful embedding of the common knowledge logic, denoted CK(LC);
which is the �xed-point extension of KDn; to GL(L�). As a whole, CK(LC) is faithfully embed-
ded into GL(L!): Logic CK(LC) is also a fragment of modal �-calculus (Alberucci [1]). In this
context, we show that a comparison between the rank function given in Alberucci, et al. [2] and
our ordinal depth for L! coincide.

Although CK(LC) can be regarded as being in the intersection of our approach and modal
�-calculus; these two approaches di¤er from each other not only in that the former is in�nitary
while the latter is �nitary, but also in that the di¤erences are substantive. We make a small
summary of comparisons between our approach and modal �-calculus in the end of Section 4.3.

Using our framework, we study a decision making process in game theory, called �ratio-
nalizability�(cf., Osborne-Rubinstein [27]). In this theory, an agent �rationalizes�his possible
decision by looking for a prediction about his opponent�s decision, assuming that the opponent
uses the same criterion. This leads to an in�nite regress of such rationalization. We show that
the full discourse from a consideration of decision-making to the stage of playing a �nal decision
can be given in logic GL(L2). Thus, our framework allows for explication of game theoretic
decision making with a clear-cut notion of depths of in�nitary reasoning.

The paper format is as follows: Section 2 gives the de�nition of the sets of formulae. Section 3
formulates the system GL(L�) and the Kripke semantics, and states the completeness result.

1Below KDn; a hierarchy of logics of shallow epistemic depths is developed in Kaneko-Suzuki [22]. Each system
is a fragment of KDn with a �nite epistemic structure; and continues to KDn:

2These lemmas require the set of permissible in�nitary conjunctions to be countable
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In Sections 4 and 5, we give discussions on applications of our framework and the completeness
result to the de�nability problems of various epistemic concepts, and also on an application to
the rationalizability concept in game theory. A proof of Kripke-completeness is given in Section
6. Section 7 concludes the paper.

2 Small In�nitary Languages L�

We �x an ordinal �o with �o � ! = f0; 1; :::g. We de�ne the class of in�nitary languages
fL� : � � �og: For each �; L� is constructed from [�<�L� in an inductive manner, and we will
show that L� becomes constant after � = !: We also evaluate the depths of formulae in L�,
and show that the depth of the entire set L! is !2: In the end of this section, we make brief
comparisons with the set of formulae in the literatures of in�nitary logics. We stipulate that
Greek letters �; �; 
 are ordinals up to �o; but Greek � runs over the natural numbers 0; 1; :::

We adopt the following list of primitive symbols:

propositional variables: p0;p1; :::; logical connectives: : (not); � (implies); ^ (and);

unary belief operators: B1(�); :::; Bn(�) (1 � n < !); parentheses: ( ; ); brackets: h ; i:

The conjunction symbol ^ is applied to a �nite set of formulae and some in�nite sequences of
formulae. An in�nitary conjunction is written as ^hC� : � � 0i and will be speci�ed below.
We denote P0 = fp0;p1; :::g; and the set of agents (the subscripts for the beliefs operators) by
N = f1; :::; ng: We may abbreviate the parentheses (; ) and use di¤erent brackets when they
cause no confusions.

Let � be an ordinal with � � �o: Let F� be a given set of formulae with F0 = ;; which is
the source of in�nitary conjunctions and is speci�ed below. We de�ne the set L� for � � 0 by a
double induction. Speci�cally, when � = 0; P0 = fp0;p1; :::g; and when � > 0; P� = [�<�L�;
provided that the set of formulae L� is already de�ned for all � < �: We de�ne the set L� for
each � � 0 by the following three steps:

I�0: all formulae in P� [ F� belong to L�;

I�1 (�nitary extension): if A;B are formulae in L�, so are (A � B); (:A); Bi(A) (i 2 N);
and if � is a nonempty �nite set of formulae in L�; then (^�) is a formula in L�;

I�2 (in�nitary extension): if ^hC� : � � 0i;^hD� : � � 0i 2 L� and A 2 L�, then
(i) ^hA � C� : � � 0i 2 L�;
(ii) ^hBi(C�) : � � 0i 2 L� for all i 2 N ;
(iii) ^ h^fC� ; D�g : � � 0i 2 L�:

When � = 0; step I�2 is vacuous since F0 = ;; thus, L0 is the set of all �nitary formulae.

In I�1; the conjunction symbol ^ is applied to �nite sets of formulae. We write A^B;A^B^C
for ^fA;Bg and ^fA;B;Cg; etc., and A � B for (A � B)^(B � A). I�1 and I�2 are interactive
since formulae generated by I�2 may be used in I�1; and vice versa:

The set F� is determined by a given set of germinal forms speci�ed as follows. A sequence
hC� : � � 0i is called a germinal form i¤ C� 2 L0 for all � � 0 and a �nite number of
propositional variables occur in hC� : � � 0i: Let p1; :::; pm be the propositional variables
occurring in hC� : � � 0i. We often denote each C� in hC� : � � 0i by C�(p1; :::; pm); though
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some of them may not be included in C� : Let A1; :::; Am be formulae in P� = [�<�L�; which are
called germs. By substituting At for each occurrence of pt in hC�(p1; :::; pm) : � � 0i; we obtain
the sequence hC�(A1; :::; Am) : � � 0i: We say that � = hC�(A1; :::; Am) : � � 0i is generated
by a germinal form hC�(p1; :::; pm) : � � 0i and germs A1; :::; Am in P�: This generation is
illustrated as follows:

hC�(p1; :::; pm) : � � 0i �! � = hC�(A1; :::; Am) : � � 0i
substituting At for pt

(3)

For example, hC�(p) : � � 0i = hB�N (p) : � � 0i is the germinal form for common knowledge.
We remark that germinal forms do not require (p1; :::; pm) to enter C�(p1; :::; pm) positively, e.g.,
hC�(p) : � � 0i = h:p;::p; :::i is a germinal form, and a less trivial one will be given later.

Let G be a nonempty countable (possibly �nite) set of germinal forms: We de�ne:

F� = f^� : � is generated some germinal form in G and germs in P�g: (4)

Since G is at most countable and used uniformly for all � � �0; we can see that the sets F� and
L� remain countable for each � � �o:

In addition; I�0 to I�2 generate the other in�nite conjunctions. We call ^hC� : � � 0i 2 L�
an �-in�nite conjunction, and hC� : � � 0i an �-permissible sequence. Sometimes, we simply call
^hC� : � � 0i an in�nite conduction. We stipulate that A 2 hC� : � � 0i i¤ A 2 fC� : � � 0g:
We use the same expression, ^�; for a �nite conjunction or an in�nite conjunction. We write
Bi(�) for hBi(C) : C 2 �i if � is an �-permissible sequence or fBi(C) : C 2 �g if � is a �nite
set of formulae in L�:

A series of languages fL� : � � �og is determined by a given set of germinal forms G; we
may write L� = L�(G) to emphasize the choice of G for L�: Each L� serves a language for an
epistemic logic GL(L�) to be given in Section 3. Thus, fL� : � � �og = fL�(G) : � � �og
is not only a series of languages but also determines a series of epistemic logics. When G is
changing with �xed �, we have another series of languages and logics. Using these series, we
discuss the required depth � and germinal forms G for a discourse involving in�nitary concepts.

In Section 1, we gave the germinal form hC�(p) : � � 0i = hB�N (p) : � � 0i for common
knowledge, which is de�ned by (2).3 As emphasized in Section 1, this is generated by iterations
of substitutions. Here, we give a few more examples; the last one is not based on iterations of
substitutions.

Example 2.1 (1) Positive introspection: Let i 2 N be �xed. We de�ne

B0i (p) = Bi(p) and B
�+1
i (p) = Bi(B

�
i (p)) for � � 0: (5)

The sequence hB�i (p) : � � 0i is a possible germinal form. Then, we denote B!i (p) := ^hB�i (p) :
� � 0i: For A 2 P�; B!i (A) belongs to F� as long as hB�i (p) : � � 0i 2 G. We will see in Section
4 that the formula B!i (A) is regarded as the in�nitary extension of �nitary Bi(A) in that B

!
i (A)

enjoys the positive introspection property (Axiom 4) in GL(L!).

For both common knowledge and positive introspection, the germinal forms are obtained by
substituting for one propositional variable. The next example needs two propositional variables.

3The common belief of A is de�ned by plugging germ ^i2NBi(A) to p in hB�
N (p) : � � 0i; that is,

B!
N (^i2NBi(A)):
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Game theoretical examples may involve more propositional variables; one example is given in
Section 5.

(2) In�nite regress: Let n = 2: We prepare two formulae Bi(pj) and Bj(pi) with fi; jg =
f1; 2g: Then, the germinal forms hIr�i [p1; p2] : � � 0i ; i = 1; 2; are generated as follows: for
i; j = 1; 2 (i 6= j);

Ir0i [p1; p2] = Bi(pi); and Ir
�+1
i [p1; p2] = Bi(Ir

�
j [p1; p2]) for � � 0: (6)

We write the conjunction Iri[p1; p2] := ^hIr�i [p1; p2] : � � 0i for i = 1; 2: Let A1; A2 2 P�: The
epistemic in�nite regress for agent i from Ai and Aj is given Iri[A1; A2] = ^hBi(Ai);BiBj(Aj);
BiBjBi(Ai); :::i:

Epistemic in�nite regress is a subjective concept in that each formula for i occurs in the scope
of Bi(�); and is an extension of common belief. When A1 = A2 = A; Ir1[A1; A2] ^ Ir2[A1; A2] is
equivalent to the common belief of A. The epistemic in�nitary regress takes subjectivity (and
individuality) more seriously than common knowledge and common belief.

(3) More general germinal forms: We do not assume positivity for germinal forms. The
example already given is h:p;::p; :::i; which is generated by iterated substitutions with :p:
This is inconsistent, but still allowed in our theory. A consistent example is the germinal forms

hB1(p1);:B1B2(p2);:B1:B2B1(p1);:B1:B2:B1B2(p2); :::i; (7)

hB2(p2);:B2B1(p1);:B2:B1B2(p2);:B2:B1:B2B1(p1); :::i;

each of which is obtained by C�1 (p1; p2) = :B1C��12 (p1; p2) and C�2 (p1; p2) = :B2C��12 (p1; p2)
for each � � 1 with C01 (p1; p2) = B1(p1) and C02 (p1; p2) = B2(p2). Their conjunctions are
consistent in our logic containing them in the language.

The above examples are constructed by iteration of substitutions. However, our formulation
also allows for in�nite conjunctions that cannot be obtained by iterated substitutions. For exam-
ple, let fk� : � � 0g be the sequence of Fibonacci numbers and de�ne C�(p) = Bk01 B

k1
2 :::B

k�
i (p);

where i = 1 if � is even and i = 2 otherwise. This sequence hC�(p) : � � 0i is a germinal
form but cannot be generated by iteration of substitutions. Moreover, germinal forms de�ned
by uncomputable fk� : � � 0g are also allowed.

The subformulae of A 2 L� = L�(G) are de�ned in the standard manner. Then, L� is
subformula-closed. It is proved by the double induction over ordinals � and over I�0 - I�2:

Lemma 2.1. Any subformula of A 2 L� belongs to L�:

The set of formulae L� is increasing up to � = !, but it becomes constant after � = !:

Theorem 2.1. (Stopping at !) Let G be a �xed nonempty set of germinal forms. If � < !;
then L� ( L�+1; and if ! � � � �o; then L� = L! = P! (= [�<!L�):

Proof. Let hC�(p1; :::; pm) : � � 0i be a germinal form in G. Since ^hC�(p1; :::; pm) : � � 0i 2
L1 � L0; we have L0 ( L1: Let 1 � � < !: Suppose L��1 ( L�: By I(� + 1)0; L� � L�+1:
Take A1; :::; Am 2 L� �L��1: Then, ^hC�(A1; :::; Am) : � � 0i is in F�+1 but not in F�; so, it
is not in L�: Hence, L� ( L�+1:

Consider the latter assertion of the theorem. By I!0-I!2; P! � L!: Now, we show L! � P!.
Take germsA1; :::; Am 2 P!: These germs belong toL
 for some 
 < !:Hence, ^hC�(A1; :::; Am) :
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� � 0i belongs to F
+1: Thus, any formulae generated by I!0- I!2 belong to L� for some � < !:
Hence, L! � P! = [�<!L�: Now, by induction over � up to �o; we have P! = L! = L� for all
� (! � � � �o):�

The set L� = L�(G) (0 � � � !; a countable G) is small in the sense that it remains
countable. Also, the depths of formulae in L� are relevant to evaluations of in�nitary concepts
such as common knowledge. We introduce the depth function � over L!; which assigns an
ordinal number to each formula in L!: We de�ne � inductively along the de�nition of formulae
as follows:

d0: �(p) = 0 for all propositional variables p;

d1: �(:A) = �(A) + 1; and �(A � B) = max(�(A); �(B)) + 1;
d2: �(Bi(A)) = �(A) + 1 for all i 2 N ;
d3: �(^�) = supf�(C) + 1 : C 2 �g.

Step d3 have several cases; � may be a �nite set of formulae in I�1 and � may be an �-
permissible sequence in F� or generated by I�2. If supf�(C) + 1 : C 2 �g is a limit ordinal,
then �(^�) = supf�(C) : C 2 �g; and otherwise, �(^�) = supf�(C) : C 2 �g+1: For any set of
formulae �; we de�ne �(�) = supf�(A) : A 2 �g: Since L0 consists only of �nitary formulae, we
have �(L0) = supf�(A) : A 2 L0g = !: It follows from d0-d3 that for any A 2 L!; �(C) < �(A)
for any proper subformula C of A:

Consider the formula B!i (p) = ^hB�i (p) : � � 0i in Example 2.1.(1). Then, �(B!i (A)) = !+1
and B!i (p) 2 L1 � L0; provided hB�i (p) : � � 0i 2 G. Any formula D in L1 including B!i (A)
takes the form !+k for some �nite k; and this k may be arbitrary large; thus, �(D) < !+! = !2
and �(L1) = !2: The following theorem generalizes this observation.

Theorem 2.2. (Depths of formulae) Suppose that G has a germinal form hC�(p1; :::; pm) :
� � 0i such that supf�(C�(p1; :::; pm)) : � � 0g = !:

(1): If 0 � � < !; then �(A) < !(�+ 1) for all A 2 L�; and �(L�) = !(�+ 1):

(2): �(A) < !2 for all A 2 L!; and �(L!) = !2:

Proof. (1): As mentioned above, �(A) < ! for all A 2 L0 and �(L0) = !: Let 1 � � < !; and
suppose the induction hypothesis that �(A) < !� for all A 2 L��1 and �(L��1) = !�: Then,
we prove the assertions for �: First, we show that �(A) < !(�+ 1) for all A 2 L�:

Let ^� 2 F�: Since �(A) < !� for all A 2 � by the induction hypothesis, we have �(^�) �
!� by d3. Thus, �(A) � !� for any A 2 P�[F�: Now, consider I�1: Suppose the other induction
hypothesis that for any immediate subformula C of A generated by I�1; �(C) � !�+k for some
k < !: Then, by d1-d3, we have �(A) � !�+ k0 for some k0 < !:

Consider I�2: The induction hypothesis is that �(D) � !�+k and �(^�) � !�+k for some
k < !: Then, �(D � C) � (!�+k)+1 for any C 2 �; and so �(^hD � C : C 2 �i) � (!�+k)+1:
Also, �(Bi(C)) � (!�+k)+1 for any C 2 �; and so �(^hBi(C) : C 2 �i) � (!�+k)+1: The case
of I�2:(iii) is similar. Thus, for a formula A generated by I�2; it still holds that �(A) � !�+ k0
for some k0 < !: By these two paragraphs and induction, it holds that �(A) < !(� + 1) for all
A 2 L�:

For �(L�) = !(� + 1); we show that for any k < !; there is a formula C 2 L� so that
�(C) � !� + k: Now, since �(L��1) = !�; there are formulae A1; :::; Am 2 L��1 such that
�(At) � !(� � 1) for t = 1; :::;m. Let hC�(p1; :::; pm) : � � 0i be a germinal form given in the
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assumption of the theorem. Consider ^hC�(A1; :::; Am) : � � 0i. Since supf�(C�) : � � 0g = !;
there is a � for any k < ! such that �(C�(A1; :::; Am)) � !(��1)+k: Hence, �(^hC�(A1; :::; Am) :
� � 0i) = !(� � 1) + ! = !�: Then, using I�1; for any k < !; we �nd a formula F 2 L� so
that �(F ) � !�+ k: Thus, �(L�) � supk(!�+ k) = !�+ ! = !(�+ 1); and by the conclusion
of the previous paragraph, we have �(L�) = !(�+ 1):

The �rst part of (2) follows (1), since L! = [�<!L� by Theorem 2.1. The second part follows
L! = [�<!L� and (1); indeed, �(L!) = �([�<!L�) = supf�(L�) : � � 0g = supf!(� + 1) :
! > � � 0g = !2:�

Theorem 2.2 is summarized in Table 2.1; our in�nitary languages L� (1 � � � !) include
in�nitary conjunctions but are not much larger than the �nitary language L0: These extensions
are large enough for treatments of in�nitary concepts mentioned above.

Table 2.1: Depths and cardinalities
L0 ( L1 ( � � � ( L!

# @0 @0 @0
depth ! < !2 < !2

Let us compare the above theorem with the in�nitary logic approach. Following Kaneko-
Nagashima [20], we construct L� (0 � � � �o) as follows. Let F0 = ;; P0 = fp0;p1; :::g: Let
L0 = L0: For any � (1 � � � �o); assuming that L� are de�ned for any � < �; we de�ne

KN� : F� = f^� : � is a countable subset of [�<�L�g;

and then L� is de�ned by I�0 with F� and [�<�L� and by I�1-I�2: We denote the set of
formulae for step � by L�: The set L1 is already uncountable. Also, L� does not stop at � = !;
e.g., [�<�L� ( L! ( L!+1 for all � � !: Then, �([�<!L�) = !2 but �(L!) = !2 + !: This
sequence L� increases up to the �rst uncountable ordinal !1, where we assume �o � !1: Tanaka-
Ono [33] considered the smallest set, LTO; that is closed with respect to �nitary operations on
:; �; Bi(�) and countable conjunctions:

TO: for any countable subset � of LTO; ^� belongs to LTO:

Then, it holds that LTO = [�<!1L�. This LTO is the smallest in�nitary language in the sense
of Karp [19].

3 Epistemic Logics GL(L�) (0 � � � !)

We formulate a Hilbert-style proof theory and Kripke-semantics for epistemic logic GL(L�) =
GL(L�(G)) with 0 � � � ! and a countable set of germinal forms G: We state the soundness-
completeness theorem (Theorem 3.1), which will be proved in Section 6. We discuss the hierarchy
of GL(L�(G)) with respect to both � and G; and provide four meta-lemmas to be used in Section
4.

3.1 Hilbert-style proof theory

The base logic for epistemic logic GL(L�) is an in�nitary classical logic de�ned by the following
four axiom schemata and two inference rules: for all formulae A;B;C;^� in L�;
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L1: A � (B � A);
L2: (A � (B � C)) � ((A � B) � (A � C));
L3: (:A � :B) � ((:A � B) � A);
L4: ^� � C; where C 2 �;

Modus Ponens:
A � B A

B
; and ^-rule: fA � C : C 2 �g

A � ^� :

We add the following epistemic axiom schemata and inference rule: for any A;C;^� in L� and
i 2 N;

K: Bi(A � C) � (Bi(A) � Bi(C));
D: :Bi(:A ^A);
^-Barcan: ^Bi(�) � Bi(^�);

Necessitation:
A

Bi(A)
:

The above axiomatization is an in�nitary version of epistemic logic KDn with the ^-Barcan
axiom (conjunctive analogue of the Barcan axiom 8x(�A(x)) � �(8xA(x)) in the �rst order
modal logic). In�nitary aspects are included in L4, ^-rule, and ^-Barcan, while the other
axioms and inference rules do not directly operate on in�nitary structures. The de�nition of L�
guarantees the well-de�nedness of L4, ^-rule, and ^-Barcan. Indeed, an instance ^� � C for
L4 is in L� for all C 2 � by Lemma 2.1 and I�1. The sequence hA � C : C 2 �i of the upper
formulae in ^-rule is �-permissible by I�2:(i): Since Bi(^�) 2 L� by I�1 and ^Bi(�) 2 L� by
I�2:(ii); the formula ^Bi(�) � Bi(^�) of the ^-Barcan axiom is in L�: An equivalent form of
Axiom D is Bi(:A) � :Bi(A); which is used in (20) in Section 5.

A proof P = hX;<; fi in GL(L�) consists of a countable tree hX;<i and a function f : X !
L� with the following requirements:

(o): hX;<i has no in�nite path from its root;

(i): for each node x in hX;<i; f(x) is a formula attached to x;
(ii): for each leaf x in hX;<i; f(x) is an instance of the axiom schemata;

(iii): for each non-leaf x in hX;<i;

ff(y) : y is an immediate successor of xg
f(x)

is an instance of the inference rules, MP, ^-rule, and Nec.

In�nite branching is possible in (iii) to allow inferences with ^-rule. Thus, the width of
(X;<) can be countably in�nite and also the supremum of the depths can be in�nite.

When A is attached to the root node of P = hX;<; fi; we call P a proof of A: We say that
A is provable in GL(L�); denoted by ` A; i¤ there is a proof of A in GL(L�):

Lemma 3.1 states basic properties of the provability relation ` in GL(L�): Since we adopt
a particular axiomatization of classical logic, these should be proved. Since the fragment deter-
mined by � and : with L1-L3, MP is a standard formulation of classical proposition logic, a
proof of (1) is found in a textbook (e.g., Mendelson [24]). Since our system additionally includes
the connective ^; (2) is crucial; a proof is given in Kaneko [18], Lemma 11.1. (3) is the converse
of ^-Barcan, which is proved for any permissible or �nite �: indeed, since ` ^� � A for A 2 �
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by L4, we have ` Bi(^�) � Bi(A) by Nec and K. Since this holds for all A 2 �; we have,
by ^-rule, ` Bi(^�) � ^Bi(�): Incidentally, when � is a �nite set, the ^-Barcan axiom is
unnecessary, i.e., ^Bi(�) � Bi(^�) is derived without using ^-Barcan.

Lemma 3.1. For any A;B;C;^� 2 L�; and i 2 N;
(1): ` A � B and ` B � C imply ` A � C;
(2): ` [A ^B � C] � A � (B � C);
(3): ` Bi(^�) � ^Bi(�):

Remark 3.1.(1): We can take the standard de Morgan method to de�ne the disjunction formula
as _� := :^ f:A : A 2 �g for a �nite set of formulae �: For an �-permissible sequence �, this
could work when we extend I�2 to include h:A : A 2 �i for any ^� 2 L�; which is not included
in this paper.

(2): In GL(L�); the substitution-rule is stated as follows: for any A[p] and B in L�;

if ` A[p] and A[B] 2 L�; then ` A[B]; (8)

where A[p] is a formula in L� and A[B] is the formula obtained from A[p] by substituting B for
all occurrences of p: This fact will be used in Lemma 4.2.

3.2 Kripke completeness

A Kripke frame K = hW ;R1; :::; Rni is an (n + 1)-tuple of a set of possible worlds and n
accessibility relations over W; where W is an arbitrary nonempty set and Ri is a serial binary
relation over W for each i 2 N; i.e., for any w 2 W; (w; u) 2 Ri for some u 2 W: A truth
assignment � is a function from W � P0 to f>;?g: A pair (K; �) is a Kripke model.

Let G be a �xed countable set of germinal forms. The valuation (K; � ; w) j= for w 2 W
is inductively de�ned over L� = L�(G) as follows: for any A; C; ^� 2 L� = L�(G), and any
w 2W;

V0: for any p 2 P0; (K; w; �) j= p() �(w; p) = >;
V1: (K; � ; w) j= :A() (K; � ; w) 2 A;
V2: (K; � ; w) j= A � C () (K; � ; w) 2 A or (K; � ; w) j= C;

V3: (K; � ; w) j= ^�() (K; � ; w) j= A for all A 2 �;
V4: (K; � ; w) j= Bi(A)() (K; � ; v) j= A for all v with wRiv:

Since L� � L! (� � !); the valuation (K; � ; w) j= is uniform over L� for all � � !; that is, it is
de�ned over L! and it can be restricted to L�: For any A 2 L�; we write j= A i¤ (K; � ; w) j= A
for all K; w 2W and � :

We have the following soundness-completeness theorem; the proof of soundness is standard
and mentioned below, and completeness will be proved in Section 6. In the theorem, let G be a
�xed (at most countable) set of germinal forms.

Theorem 3.1. (Soundness and completeness for GL(L�)) Let � be an ordinal with 0 �
� � !: For any A 2 L�; GL(L�) ` A if and only if j= A:
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Soundness (the only-if part) implies the contradiction-freeness of logic GL(L�), which will be
used in the proof of completeness. Also, by soundness, we can see consistency of the conjunctions
of both germinal forms in (7) by the following Kripke model; both are true in the middle world.


 p1;:p2
�1;2

 �1

 p1; p2
�1;2

�!2

 :p1; p2
�1;2

Figure 3.1

Soundness is proved as follows: Let P = hX;<; fi be a proof of A in GL(L�): We prove
by induction on the tree structure of P from its leaves that j= C for each formula C = f(x)
attached to a node x in P: Each step is veri�ed in the following lemma.

Lemma 3.2. (1): Let A be an instance of L1-L4 in L�: Then j= A:

(2): Let A be an instance of Axioms K, D, ^-Barcan in L�: Then j= A:

(3): j= satis�es inference rules MP, ^-rule, and Necessitation:

Proof. We see only the truthfulness of ^-Barcan: Let (K; � ; w) j= ^Bi(�). Then, (K; � ; w) j=
Bi(C) for any C 2 �: Then, for any accessible v 2W from w by Ri; it holds that for any C 2 �;
(K; � ; v) j= C; equivalently, (K; � ; v) j= C; thus, (K; � ; v) j= ^� holds for any accessible v 2 W
by Ri: This implies (K; � ; w) j= Bi(^�). Thus, (K; � ; w) j= ^Bi(�) � Bi(^�) is true:�

For completeness, a di¢ culty is to show the existence of a maximal consistent set. For this
aim, Karp [19] assumes Axiom of Choice within her axiomatic system. We do not choose this
method; instead, we adopt the Q-�lter method due to Rasiowa-Sikorski [29] and the multi-modal
extension given by Tanaka-Ono [33]. Here, a Q-�lter plays the role of a maximal consistent set.
A sketch of a proof of our proof will be given in Section 6.1.

The above completeness result holds when we add Axioms T, 4, and 5 (or drop D), either in
combination or in isolation, and add the corresponding conditions, re�exivity, transitivity, and
euclidean (or drop seriality) on accessibility relation Ri (i 2 N). Required modi�cations of the
proof will be stated in Remark 6.1. On the contrary, in our framework, we can evaluate these
axioms by studying explicit de�nability of each axiom, which will be undertaken in Section 4.

3.3 Conservativity and four meta-lemmas

We have the conservativity result between two logics with orders over ��s and G�s.

Theorem 3.2. (Conservativity) Let � � � � ! and G;G0 two sets of germinal forms with
G � G0. Then, for any A 2 L�(G); GL(L�(G)) ` A if and only if GL(L�(G0)) ` A:

Proof. The if part is essential. Let GL(L�(G0)) ` A: Let (K; �) be any serial Kripke model;
and w any world in K. By Theorem 3.1, we have (K; � ; w) j= A: Because of subformula-
closedness (Lemma 2.1) and the de�nition V0-V4 for (K; � ; w) j= , the statement (K; � ; w) j= A
is determined in L�(G): Since this holds for any K; � ; w 2 W; we have GL(L�(G)) ` A by
Theorem 3.1:�

By Theorem 3.2, our in�nitary logics form the hierarchy with the conservative extension
relation�; described as in Table 3.1: each row is a series of logics with the same G, corresponding
to (1), and each column is a series with the same � with G � G0 � G00. The weakest logic is
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GL(L0) = KDn and the strongest is GL(L!(G)) in the row with the same G. It holds that for
each �xed A 2 L!(G), we can �nd the smallest �A < ! and GA � G such that A 2 L�A(GA);
then Theorem 3.2 implies that GL(L�A(GA)) ` A() GL(L!(G)) ` A:

Table 3.1 Hierarchy of in�nitary epistemic logics

GL(L0) � GL(L1(G)) � � � � � GL(L!(G))
� �
GL(L1(G0)) GL(L!(G0))
� �
GL(L1(G00)) � � � � � GL(L!(G00))

In terms of languages, the arrows � and � are strict; L�(G) is a proper subset of L�(G0)
whenever � < � or G ( G0. In terms of provability, it is more subtle. Consider positive
introspection (Example 2.1.(1)) and let G = fhB�i (p) : � � 0ig; and G0 = fhB�i (p) : � � 0i;
hB�i (p_:p) : � � 0ig: Then the vertical relation� between GL(L1(G)) and GL(L1(G0)) collapses
in the sense that for any A0 2 L1(G0); there is a formula A 2 L1(G) such that GL(L1(G0)) ` A0 �
A:4 When Go = fhB�i (p _ :p) : � � 0ig; we have the entire collapse result from GL(L�(Go)) to
GL(L0) = KDn for any � � 0; though L�(Go) contains in�nite formulae:

Conversely, both arrows can be strict. Here, we give only two examples. The strictness holds
between GL(L0(G)) = KDn and GL(L1(G)); we show by Lemma 3.3, given below, that for any
A 2 L0(G) = L0;

GL(L1(G)) ` A � B!i (p) =) GL(L1(G)) ` :A: (9)

Thus, there is no formula A 2 L0(G) such that GL(L1(G)) ` A � B!i (p). Now, let G0 = fhB�i (p) :
� � 0i; hB�j (p) : � � 0ig (i 6= j): It holds that for any A 2 L1(G);

GL(L1(G0)) ` A � B!j (p) =) GL(L1(G)) ` :A: (10)

A proof is given in the Appendix. Then, there is no formula A 2 L1(G) such that GL(L1(G0)) `
A � B!j (p): However, a general study of the hierarchy in Table 2.1 is beyond the scope of the
current paper.

Here, we give four meta-results; two are known in a �nitary KDn (cf., Kaneko-Suzuki [22])
and the other two are new. First, the depth lemma for GL(L0) = KDn is converted to GL(L�)
by Theorem 3.2. Recall the depth measure � given in Section 2.5

Lemma 3.3. (Depth lemma) Let A and C be two formulae in L0: Let (i1; :::; ik) be a sequence
of agents in N and �(A) < k: In GL(L�), if ` A � Bi1 :::Bik(C); then ` :A or ` C.

Assertion (9) is proved by this lemma. Let GL(L1(G)) ` A � B!i (p) and k > �(A): Then,
GL(L1(G)) ` A � Bki (p); which implies ` :A by Lemma 3.3.

The second result is an extension of the epistemic disjunction lemma for KDn. The following
lemma is stated in GL(L�); but can be proved in the same manner as in [22], i.e., by constructing
a counter-model based upon Theorem 3.1. Recall Remark 3.1 about disjunction _:

Lemma 3.4. (Epistemic Disjunction lemma) Let A;C 2 L�: In GL(L�), ` Bi(A) _Bi(C) if
and only if ` Bi(A) or ` Bi(C).

4A referee gave a similar example to show the collapse of � :
5 In [22], the epistemic depth to count only the nested occurrences of Bi; i 2 N is used for this lemma:

12



The third result enables us to move forward/backward from the beliefs and their contents.
This will be used in Section 5.

Lemma 3.5. (Scope Lemma) Let A;C 2 L�: In GL(L�), ` Bi(A) � Bi(C) if and only if
` A � C.

Proof. The if part is straightforward. We show the contrapositive of the only-if part. Suppose
0 A � C. By Theorem 3.1, there is a model (K; �) such that (K; � ; w) j= A but (K; � ; w) 2 C
for some world w 2 W: Now, we add a new world w� to W so that W � = W [ fw�g, R�i =
Ri [ f(w�; w)g and R�j = Ri [ f(w�; w�)g for all j 6= i: We extend � to �� : W � � P0 ! f>;?g
so that ��(u; p) = �(u; p) for all (u; p) 2 W � P0 and ��(w�; p) is arbitrary for all p 2 P0. We
have a new model (K�; ��): In this new model; all valuations are preserved from (K; �): Since
agent i refers only to w at w�; we have (K; � ; w�) j= Bi(A) but (K; � ; w�) 2 Bi(C): Hence,
(K; � ; w�) 2 Bi(A) � Bi(C): By Theorem 3.1, 0 Bi(A) � Bi(C):�

Using this lemma and Theorem 3.1, we can prove that in GL(L�), 0 Bi(p) � BiBi(p) and
0 BiBi(p) � Bi(p): Thus, Axioms 4 and T are not provable in our logic. Nevertheless, `
B!i (p) � BiB!i (p) but 0 BiB!i (p) � B!i (p) in GL(L�) with � � 1: This unprovability is shown
by the counter-model:


 p �!i 
 :p �!i

 p
�i

This is a counter-model also for B!i B
!
i (p) � B!i (p) in GL(L2(G)):

The next lemma will be used in Section 5.

Lemma 3.6. (In�nitary conjunctions) Let A;^hC� : � � 0i 2 L�: In GL(L�), if ` A � :C�
for some � � 0; then ` A � : ^ hC� : � � 0i:

Proof. Let ` A � :C� for some � � 0: Let (K; �) be any model and w any world in W
with (K; � ; w) j= A: By Theorem 3.1, (K; � ; w) j= :C� , i.e., (K; � ; w) 2 C� : Thus, (K; � ; w) 2
^hC� : � � 0i; equivalently, (K; � ; w) j= :^hC� : � � 0i: Thus, (K; � ; w) j= A � :^hC� : � � 0i:
Since (K; �) and w are arbitrary, we have, by Theorem 3.1, ` A � : ^ hC� : � � 0i:�

4 Application 1: Evaluations of Various Epistemic Concepts

From the viewpoint of epistemic logics, the choices of Axioms T, 4, and 5 are of great importance.
Completeness is one criterion but is neutral in the sense that our logics accommodate all these
axioms, as stated after Theorem 3.1. Axioms 4 and 5 include in�nitary aspects, though they are
formulated in a �nitary logic. Here, we ask whether each can be explicitly de�ned in our in�nitary
logics. The answers di¤er for T, 4, and 5. Then, we consider the possibility of embedding a
logic with such an axiom to GL(L�). A similar consideration is given to the concept of common
knowledge. In the end of Section 4.3, we give a small summary of di¤erences between our
approach and modal �-calculus.
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4.1 Explicit de�nabilities of Axioms T, 4, and 5 in GL(L�)

We �x one agent i throughout Sections 4.1 and 4.2. Also, a set of germinal forms G is �xed here.
We begin with the following requirements for a target formula Fi(p) in L�: for any A;C 2 L�;

F0i : Fi(A) 2 L�; (11)

FEi : ` Fi(A) � Bi(A);
FKi : ` Fi(A � C) � (Fi(A) � Fi(C));
FNi : ` A implies ` Fi(A);

where Fi(p) contains only propositional variable p and ` is the provability relation in GL(L�).
F0i means that Fi(�) is applicable to any A 2 L�; and FEi that Fi(�) is an extension of the belief
operatorBi(�). FKi and FNi correspond to Axiom K and Nec. The corresponding requirement to
Axiom D, ` :Fi(A^:A); is implied by the contrapositive of FEi ` :Bi(A^:A) � :Fi(A^:A)
and Axiom D for Bi(�).

The above requirements are conditions not only for Fi(p) but also for L�; since formulae
A;C vary in L�: Lemma 4.1 states that when Fi(p) 2 L� satis�es F0i; Fi(p) is �nitary or � = !:

Lemma 4.1. If F0i holds for Fi(p) 2 L�; then �(Fi(p)) < ! or � = !.

Proof. Let �(Fi(p)) � !: Then, some in�nitary conjunction ^� with �(^�) � ! is included in
Fi(p): Since Fi(p) contains only propositional variable p; so does ^�: Since Fi(Fi(p)) 2 L� by F0i
and ^�(Fi(p)) is a subformula of Fi(Fi(p)); it holds by Lemma 2.1 that ^�(Fi(p)) 2 L�: But
�(^�(Fi(p))) � ! + !: This implies �(Fi(Fi(p))) � ! � 2: In general, we can prove by induction
on � � 1 that �(F �i (p)) > ! � � for all � < !: Using F0i; F

�
i (p) 2 L� for any � < !: Thus,

!2 � sup�<! �(F
�
i (p)) � �(L�): By Theorem 2.2; we have � = !:�

Another lemma is about the consistency of Fi(p): We say that a formula A is consistent in
GL(L�) i¤ 0 A � :p ^ p in GL(L�): A formula A is not consistent if and only if ` :A:

Lemma 4.2. Let 0 � � � !: Any Fi(p) satisfying FNi is consistent in GL(L�).

Proof. Suppose that Fi(p) is not consistent in GL(L�); i.e., ` :Fi(p): By the substitution-
rule mentioned in Remark 3.1.(2), it holds that ` :Fi(p � p): On the other hand, by FNi;
` Fi(p � p): This is impossible because GL(L�) is contradiction-free, as remarked just after
Theorem 3.1.�

The conditions corresponding to Axioms T, 4, and 5 are as follows: for any A 2 L�;

FTi : ` Fi(A) � A; (12)

F4i : ` Fi(A) � Fi(Fi(A));
F5i : ` :Fi(A) � Fi(:Fi(A)):

We look for a formula Fi(p) satisfying each of these in addition to F0i to FNi: Whether or not
such an Fi(p) exists is explicit de�nability of Axioms T, 4, and/or 5 in GL(L�).

In the case of Axiom T, we observe that Bi(p) ^ p satis�es F0i, FEi; and FTi; and it is
also the deductively weakest among such formulae; we say that Fi(p) is the deductively weakest
among the formulae satisfying given conditions i¤ it satis�es them and for any F 0i (p) among
those formulae, ` F 0i (A) � Fi(A) for any A 2 L�:
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Theorem 4.1. (Explicit de�nability for Axiom T) Let 0 � � � !: In GL(L�); Bi(p) ^ p is the
deductively weakest among the formulae satisfying F0i; FEi; and FTi:

Proof. We can verify that Bi(p) ^ p satis�es F0i; FEi; and FTi in GL(L�). Let F 0i (p) satisfy
F0i; FEi; and FTi: By FEi and FTi; ` F 0i (A) � Bi(A) and ` F 0i (A) � A: By ^-rule, ` F 0i (A) �
Bi(A) ^ A; which holds for any A 2 L�: Thus, Bi(p) ^ p is deductively weakest among Fi(p)
satisfying F0i; FEi; and FTi:�

This theorem holds for every � (0 � � � !): Also, we can include FKi and FNi as required
conditions in Theorem 4.1: Note that G is arbitrary up to this theorem.

Now, we go to the evaluation of Axiom 4. We assume that G contains B!i (p) = ^hB�i (p) :
� � 0i with B0i (p) = Bi(p):

Theorem 4.2. (Explicit de�nability for Axiom 4) (1): Let Fi(p) 2 L� satisfy F0i; FEi; FKi;
FNi; and F4i: Then � = ! and ` Fi(p) � B!i (p) in GL(L!):

(2): B!i (p) is the deductively weakest among the formulae Fi(p) satisfying F0i; FEi; FKi; FNi;
and F4i in GL(L!):

Proof. (1): We prove GL(L�) ` Fi(p) � B�i (p) for all � < ! by induction over � � 0: For
� = 0; the claim is FEi: Suppose the induction hypothesis that ` Fi(p) � B�i (p): Then, by F0i;
FNi; and FKi; we have ` Fi(Fi(p)) � Fi(B

�
i (p)): By this and ` Fi(p) � Fi(Fi(p)) by F4i; we

have ` Fi(p) � Fi(B�i (p)): Since ` Fi(B�i (p)) � BiB�i (p) by FEi; we have ` Fi(A) � B�+1i (A):

Let �(Fi(p)) < !. Take a � > �(Fi(p)): By Lemma 3.3, we have ` :Fi(p) or ` p in GL(L0):
The �rst is impossible since Fi(p) is consistent in GL(L�) by Lemma 4.2: The second is also
impossible. Hence, �(Fi(p)) � !: By Lemma 4.1, � = !: Using F0i; FEi; FKi; FNi; F4i, we have
GL(L!) ` Fi(p) � B�i (p) for all � < !: Thus, GL(L!) ` Fi(p) � B!i (p) by ^-rule.

(2): We can verify that F0i; FEi; FKi; FNi; F4i hold for B!i (p) in GL(L!). By (1) of this
theorem, it is deductively weakest among Fi(p) satisfying these requirements.�

In contrast to Theorem 4.1, Theorem 4.2 states that Axiom 4 is explicitly de�nable only
in GL(L!): It has the implication that ` B!ki (p) � B!i (B

!k
i (p)) for any k < ! in GL(L!);

though 0 B�i (p) � BiB�i (p) for � < !; i.e., after !; further introspection carries no additional
information. F4i with the closure property F0i directly brings us to in�nity.

We showed that both Axiom T and 4 can be explicitly de�ned in our system, though the
depth requirements di¤ers. For Axiom 5, the answer is entirely negative, independent of the
choices of � and G.

Theorem 4.3. (Explicit inde�nability of Axiom 5) There is no consistent formula Fi(p) in
GL(L�) (0 � � � !) such that it satis�es FEi and F5i:

Proof. Suppose that there is some consistent formula Fi(p) in GL(L�) satisfying FEi and
F5i. Then, F5i is equivalent to ` Fi(p) _ Fi(:Fi(p)); which further implies, by FEi, ` Bi(p) _
Bi(:Fi(p)): By Lemma 3.4, we have ` Bi(p) or ` Bi(:Fi(p)): By Lemma 3.5, we have ` p or
` :Fi(p): The former is impossible; and so is the latter because Fi(p) is consistent in GL(L�):�

Thus, Axiom 5 cannot be de�ned explicitly by a formula in GL(L�): However, it can still be
treated as a logical axiom keeping completeness, as remarked in Section 3.2.
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4.2 Faithful embedding

The explicit de�nability results for Axioms T and 4 may imply that an extension GL(L�) with
Axiom T or 4 is faithfully embedded into GL(L�): For Axiom T, the embedding result is available
from L� to L� for any � in terms of language, but for Axiom 4, it can be only from L0 to L!:
We have no embedding result for Axiom 5.6 Here, we give a full embedding argument in the
case of Axiom 4, and a sketch for the embedding result in the case of Axiom T.

Consider the case of Axiom 4 and recall F 4i (p) = B
!
i (p): Let hB�i (p) : � � 0i 2 G. We de�ne

the F 4i -translator  
4 : L0 ! L! = L!(G) inductively as follows: for all A;C 2 L0 and ^� 2 L0;

E0:  4(p) = p if p 2 P0;
E10:  4(:A) = : 4(A);
E20:  4(A � C) =  4(A) �  4(C);
E30:  4(^�) = ^ 4(�);
E40:  4(Bi(A)) = F 4i ( 

4(A)) and  4(Bj(A)) = Bj( 4(A)) for j 6= i:

The following theorem states that KDn+ 4i is faithfully embedded to GL(L!). The depth of the
embedded fragment  4(L0) is �( 

4(L0)) = sup�<!  
4(B�i (A)) = sup�<!(! � �) = !2 = �(L!):

Theorem 4.4. (Faithful embedding of KD4 to GL(L!)) (1): For any A 2 L0; KDn+4i ` A in
if and only if GL(L!) `  4(A):

(2): For any A 2 L0, there exists an � < ! such that KDn + 4i ` A if and only if GL(L�) `
 4(A):

Proof. (1): Take an arbitrary Kripke model (K; �) for KDn; which is also a model for GL(L!).
We replace the accessibility relation Ri in (K; �) by its transitive closure Rtri ; and we denote the
resulting Kripke model by (Ktr; �): Then, KDn + 4i is Kripke complete with respect to those
models (Ktr; �). Then, we prove by induction on the length of A 2 L0 that for any world
w 2 W; (Ktr; � ; w) j= A if and only if (K; � ; w) j=  4(A). We consider only case of A = Bi(C):
Let (Ktr; � ; w) j= Bi(C): Then, (Ktr; � ; v) j= C for any v 2 Rtri (w): By the induction hypothesis,
(K; � ; v) j=  4(C) for any v 2 Rtri (w): Since Rtri is the transitive closure of Ri, it is equivalent to
that (K; � ; v) j=  4(C) for any v reachable from w by Ri: This means (K; � ; w) j= B�i ( 4(C)) for
any � � 0; i.e., (K; � ; w) j= B!i ( 4(C)); implying (K; � ; w) j=  4(Bi(C)): Tracing this argument
back, we have a proof of the converse. For the cases of other connectives, the argument is similar.

(2): For a given A 2 L0, we �nd the maximal iterations, �, of Bi(�) inside A; then, by Theorem
3.2 (conservativity), KDn+ 4i ` A () GL(L�) `  4(A):�

Now, consider the embedding of Axiom T to GL(L�): Now, we do not need hB�i (p) : � � 0i 2
G. In this case, we use the translator  T based on F Ti (p) = Bi(p)^p: Then, the formal de�nition
of  T : L0 �! L0 is obtained by the same rules E0, E10-E30, but E40 with F Ti (p) = Bi(p) ^ p
instead of F 4i (p). This translator  

T is also uniquely de�ned. Then, we have

KDn + Ti ` A() KDn `  T (A): (13)

This embedding result is essentially the same as the result given in Kaneko [18], Section 5.

6Halpern et al. [11] consider two modalities, one called belief (KD45) and the other called knowledge (S5),
and discuss whether the latter can be reduced to the former via various notions of de�nability. In contrast, our
embedding results are about reducing one logic system (e.g., KD4) to GL(L!).
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However, the result (13) holds, under a minor additional condition, from GL(L�)+Ti to
GL(L�) for all � (0 � � � !). When � � 1, the de�nition  T over L� needs one requirement
on the set of germinal forms G to be closed under the translation  T :

hC� : � � 0i 2 G =) h T (C�) : � � 0i 2 G: (14)

This implies that G is countably in�nite.

We have the following lemma. Proofs of this lemma and the next theorem are given in the
Appendix.

Lemma 4.3.  T : L! ! L! is uniquely de�ned by E0, E1� to E4� (� � !):

Now, we have the following theorem, where GL(L�)+Ti denotes the logic GL(L�) plus
Axiom T for Bi(�). Then, the logic GL(L�)+Ti is faithfully embedded into GL(L�) with the
translator  T : Let 0 � � � !:

Theorem 4.5. For any A 2 L�; GL(L�)+Ti ` A if and only if GL(L�) `  T (A).

Theorem 4.5 compares logic GL(L�)+Ti with the fragment  T (GL(L�)) obtained by the
translator  T : It is the main di¤erence from Theorem 4.4 that the translator  T does not change
the layer, i.e., it embeds L� to L� for each �; while  4 embeds L0 to L!: We remark here that
I�2:(iii) is used in proving Lemma 4.3 and Theorem 4.5, but otherwise, it is not needed for any
other results in the present paper.

4.3 Evaluation of common knowledge in GL(L�)

The concept of common knowledge can be formulated in a �xed-point extension of a �nitary
epistemic logic, often S5-type, (Halpern, et al. [8], Meyer-van der Hoek [25]). Here, we consider
its KDn variant, and show that this �xed-point logic is embedded to GL(L�):

The �nitary language L0 is extended by adding the unary operator symbolCN (�) to the basic
symbols listed in Section 2.1, and use LCN to denote the extended language. A formula CN (A)
means the common knowledge of A among the group of agents N . The common knowledge logic
CK(LCN ) is de�ned to be the extension of KDn with the language LCN by adding the following
axiom scheme and an inference rule: for any A;D 2 LCN ;

Axiom CKA: CN (A) � [A ^ ^i2NBiCN (A)];

Rule CKI:
D � [A ^ ^i2NBi(D)]

D � CN (A)
:

A (�nite) proof is de�ned in the same way as in Section 3.1. In this logic, it is shown by repeated
use of CKA that ` CN (A) � B�N (A) for all � � 0; where B�N (A) is de�ned in (2). Thus, CN (A)
contains the common knowledge of A: Rule CKI means that if any D has the property described
by CKA, then D contains CN (A); i.e., CN (A) is the deductively weakest among the formulae
having the property.

In CK(LCN ), the formula CN (A) is not explicitly expressed in terms of B1(�); :::;Bn(�) in
CK(LCN ); but CN (A) is implicitly de�nable. To see this, we add another operator symbol
C0N (�) to the language LCN and assume CKA, CKI for C0N (�). By CKA for C0N (A) and CKI
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with D = C0N (A), we have ` C0N (A) � CN (A): We have the converse by a parallel argument.
Thus, ` C0N (A) � CN (A):

In contrast, our in�nitary logic GL(L�) allows us to express the concept of common knowl-
edge explicitly, i.e., B!N (A) = ^hB�N (A) : � � 0i; assuming hB�N (p) : � � 0i 2 G. In a similar
manner to Section 4.1, we look for a formula F (p) 2 L� in GL(L�) having the following prop-
erties: for A 2 L� and D 2 L�; F0 with the replacement of Fi(p) by F (p) and

FCA� : ` F (A) � A ^ [^i2NBi(F (A))];
FCI� : if ` D � A ^ [^i2NBi(D)]; then ` D � F (A):

These require F (p) satisfy the properties corresponding to CKA and CKI in CK(LCN ):

The following theorem states that the common knowledge is explicitly de�nable in GL(L�):
Since it follows from FCA� and Nec, K for Bi(�)�s that F (A) is an in�nitary formula, Lemma
4.1 is applied to F (p), the explicit de�nability holds only for � = !:

Theorem 4.6. (Explicit de�nability of common knowledge). In GL(L!); the common knowledge
F (p) = ^hB�N (p) : � � 0i is a unique, up to the deductive equivalence, formula satisfying FCA!
and FCI!.

Now, we look at the relation between CK(LCN ) and GL(L�): The Kripke semantics for
CK(LCN ) is the same as that for GL(L�): Here, M = ((W ;R1; :::; Rn); �) is a serial model as
in Section 3.2 and the valuation of CN (A) is de�ned in the same way except the following:

(M;w) j= CN (A) i¤ (M;v) j= A for all CN -reachable v from w;

where v is CN -reachable from w i¤ there is a �nite sequence hw0; :::; wmi (m � 0) in W such
that w0 = w; wm = v; and for all k = 0; :::;m� 1; (wk; wk+1) 2 Ri for some i 2 N:

We have the completeness/soundness result for CK(LCN ); which is a variant of the well-
known result (cf., Fagin et al. [8]); for any A 2 LCN ; A is valid if and only if CK(LCN ) ` A:

Now we show that CK(LCN ) can be faithfully embedded into GL(L!) with the translator
 CN : LCN ! L! by E0 and E10 - E30, and

E40 :  CN (Bi(A)) = Bi( 
CN (A)) for all i 2 N ;

EC :  CN (CN (A)) = B
!
N ( 

CN (A)):

Then, we have the following theorem.

Theorem 4.7. (Faithful embedding of CK(LCN ) to GL(L!)) (1): For any A 2 LCN ; CK(LCN ) `
A if and only if GL(L!) `  CN (A):

(2): For any A 2 LCN , there exists an �A < ! such that CK(LCN ) ` A if and only if
GL(L�) `  CN (A):

Proof. (1) can be proved by observing that with the translation  CN ; the Kripke semantics
for CK(LCN ) and for GL(L!) are the same. For (2), we take the maximum nested depth � of
CN (�) in A 2 LCN : By Theorem 3.2, we have GL(L�) `  CN (A) () GL(L!) `  CN (A). By
part (1) and this, we have (2).�

This theorem is similar to Theorem 4.4 with respect to the depths required, that is, the
�nitary logics are faithfully embedded to GL(L!).
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It may be relevant to see the rank function given by Alberucci et al. [2] in this context; this
concept is de�ned in modal �-calculus, but Alberucci [1] shows that CK(LCN ) (based on K-type)
can be regarded as a fragment of modal �-calculus. In our context with G = fhB�N (p) : � � 0ig,
their problem is to �nd a function f over LCN assigning an ordinal to each formula in LCN

having the following two properties: for all A 2 LCN ;
(a): if B is a proper subformula of A; then f(B) < f(A);

(b): f(CN (A)) > f(B�N (A)) for all � < !.

The second is motivated by the fact that ` CN (A) � B�N (A) for all � � 0: In the present context,
their rank function f is de�ned by the inductive de�nition of our depth function � by replacing
the second part of d3 by: f(CN (A)) = f(A) + ! for all A 2 LCN : This function f satis�es the
requirements (a) and (b). Furthermore, we have:

f(A) = �( CN (A)) for all A 2 LCN : (15)

Thus, their rank function for LCN corresponds to our depth function � for L!: In the same
manner as Theorem 4.7.(2), we can evaluate the depth for each A 2 LCN : Since each A 2 LCN
has the maximum nested depth � < ! of CN (�); it follows from (15) and Theorem 2.2 that for
each A 2 LCN ; there is an �A < ! such that !�A � f(A) = �( CN (A)) < !(�A + 1):

We remark that Theorem 4.7 does not hold for generic common knowledge (Sato [30], Arte-
mov [4], Antonakos [3]). In one version of such logics, the language LJ is obtained from LCN by
adding J(�). Here, we consider the extension JL(LJ) of CK(LCN ) in which the belief operators
Bi(�) obey KDn and J(�) obeys S4 axioms (including Nec), and

Interaction axiom (IA): J(A) � ^i2NBi(A) for all A 2 LJ:

The expression J(A) is interpreted as meaning that A is �obvious fact� in that it is known to
all agents: Interaction Axiom connects J(A) to ^i2NBi(A); but the converse is not guaranteed.
Also, JL(LJ) ` J(A) � CN (A); since ` JJ(A) � ^i2NBi(J(A)) by plugging J(A) to A in IA
and ` J(A) � JJ(A) by the S4 axioms for J(�); we have ` J(A) � ^i2NBi(J(A)); and since this
is the upper formula of CKI, we have ` J(A) � CN (A):

In JL(LJ); the operator J(A) is not explicitly de�ned in terms of B1(�); :::;Bn(�) and CN (�).
Contrary to this, in GL(L!); there are multiple formulae satisfying the corresponding properties
to the axioms for J(�). The formula F (p) = B!N (p) enjoys the S4 properties and IA, but for
another propositional variable q 6= p, the formula F 0(p) = B!N (p)^B!N (q) also enjoys all of these
properties, but is deductively stronger than F (p):

A more general development in the �xed-point logic literature is given in the study of modal
�-calculus (cf., Enqvist, et al. [7]). Our approach looks similar in that germinal forms can be
based on iterated substitutions. However, the two approaches also have signi�cant di¤erence,
as summarized below.

(i) The de�nition of germinal forms in Section 2 allows non-constructive germinal forms, and
even when germinal forms are constructive in terms of iterated substitutions, they may include
negative occurrences of propositional variables for substitution. See Example 2.1.(3). In con-
trast, the positivity assumption that the �-operator (and �-operator) is applied only to a formula
is crucial. See Enqvist, et al. [7], Section 3, and Fountaine [9] for related problems.

(ii) The required depth for the language of GL(L�) is !(�+1) (0 � � < !) and that of GL(L!)
is !2: On the other hand, Alberrucci et al. [2] showed that their notion of ordinal ranks to eval-
uate the depths of formulae in modal �-calculus and it goes up to !!: Our germinal forms are
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sequences in GL(L0) and are assumed to be uniform in generating the series GL(L0); GL(L1); :::
In modal �-calculus, this is regarded as corresponding to A(�x:A(x)); A2(�x:A(x)); :::; and the
�-operator is also applied to formulae already including the �-operator, that is, �y(�x:A(x; y))
as long as the variable condition is satis�ed. The di¤erence in the required depths is caused by
these facts.

5 Application 2: Rationalizability in Game Theory

We apply our framework to the study of decision making in game theory, called the theory of
rationalizability (cf., Bernheim [5], Pearce [28], and Osborne-Rubinstein [27]). This applica-
tion has two purposes. First, we show that our framework enables us to formalize each agent�s
decision-making process in terms of agents�logical inference. Second, it gives a concrete example
of a discourse requiring GL(L�) exactly with � = 2; which di¤ers from the in�nitary concepts
discussed in Section 4. Also, the theory requires more complex germinal forms involving dis-
junctions, and we will use the sound/completeness theorem (Theorem 3.1) to prove one step
(Lemma 5.4) of the main theorem (Theorem 5.2). We remark that Axiom D is used for (20) in
this section.

A 2-person game is given as G = (f1; 2g; S1; S2; g1; g2); where 1 and 2 are agents, Si is a
�nite nonempty set of available actions, and gi : S1 � S2 ! R (reals) is the payo¤ function of
agent i = 1; 2. Before the actual play of the game, each agent chooses his action to be played
without knowing the other�s choice. The focus is on this ex ante decision making.

A crucial component for rationalizability is the best response property: an action si 2 Si for
agent i is a best response to an action tj 2 Sj for agent j i¤ gi(si; tj) � gi(s

0
i; tj) for all s

0
i 2 Si;

where we often write gi(s1; s2) as gi(si; sj): We stipulate that when agent i is focused, the other
agent is denoted by j: We say that an action si 2 Si for agent i is rationalizable i¤ si is a best
response to some action s1j 2 Sj for j, and s1j is a best response to some s2i , and s2i is a best
response to some s3j , and so on ad in�nitum.

7 The referred action st+1i for t is interpreted as
a prediction inferred in the interpersonal beliefs of depth t in the mind of agent i: Here, this
interpretation is informal; to make it explicit, we go to our formal system.

To express the above game theoretical concepts, we add the following atomic propositions
as propositional variables to the basic symbols listed in the beginning of Section 2: for i = 1; 2;

preference symbols Pri(s1; s2 : t1; t2) for (s1; s2); (t1; t2) 2 S1 � S2;
decision symbols Ii(si) for si 2 Si:

The atomic proposition Pri(s1; s2 : t1; t2) intends to mean that �agent i weakly prefers (s1; s2)
to (t1; t2)�, which is also written as Pri(si; sj : ti; tj) with fi; jg = f1; 2g: The expression Ii(si)
means that �si is a possible �nal decision for agent i�. The �nitary language L0 is now de�ned
by I�0 and I�1 with � = 0 based on these additional symbols and the list of primitive symbols
in Section 2. In L0; the best response property is described as a formula: for si 2 Si and tj 2 Sj ;

Bsti(si; tj) := ^fPri(si; tj : s0i; tj) : s0i 2 Sig: (16)

7 In the literature, this is called point-rationalizability, which is the degenerate version of �rationalizability�
allowing mixed strategies with the interpretation that they express probabilistic beliefs about the other�s choices
(Bernheim [5], Peace [28]). In the recent game-theory literature, rationalizability is studied in a state space with
probabilistic (common) beliefs (cf., Tan and Werlang [31] and Hu [13]). However, this approach does not explicitly
formulate logical inferences as in proof theory, since it does not have a formal language.
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For rationalizability, we use two types of germinal forms. The �rst is the germinal forms for epis-
temic in�nite regresses hIr�i [p1; p2] : � � 0i in Example 2.1.(2). We denote GIR = fhIr�i [p1; p2] :
� � 0i : i = 1; 2g: The other will be introduced after giving the decision making criterion.

Consider the following criterion for decision making by agent i :

DR
i : ^si2Si(Ii(si) � _tj2Sj hBj(Ij(tj))^Bsti(si; tj)i):

This is used in his mind, i.e., DR
i occurs in the scope Bi(�): It states that agent i makes some

prediction about the other�s decision tj and his decision si is a best response to the prediction
tj . The disjunction _tj2Sj is speci�c to the rationalizability theory and to capture the idea of
rationalization.

The criterion DR
i is self-insu¢ cient in that it lacks the description of how agent j infers tj in

agent i�s mind; that is, agent i needs to have a certain criterion for it. We assume that agent i has
the same (symmetric) criterion, DR

j , to predict a possible tj for the imaginary agent j in agent
i�s mind. This is formally expressed as BiBj(DR

j ). However, this formula includes Bi(Ii(ti)) in
the innermost DR

j ; and by the parallel argument to the above, BiBjBi(D
R
i ) is required. Unless

we force this argument to stop at some �nite level, this leads to an in�nite regress:

Bi(D
R
i )! BiBj(D

R
j )! BiBjBi(D

R
i )! ::: (17)

The conjunction of this sequence is exactly the in�nite regress formula Iri[DR] = Iri[D
R
1 ; D

R
2 ].

We regard the in�nite regress Iri[DR] as a system of equations with unknowns I1(s1) and
I2(s2); agent i may �nd some formulae so that they could be regarded as solutions for Iri[DR].
To discuss solutions for Iri[DR]; we introduce the germinal forms to express the rationalizability
property.

First we choose subsets of propositional variables fpi(t1; t2) : (t1; t2) 2 S1 � S2g for i = 1; 2
from fp0;p1; :::g; where pi(ti; tj)�s are all distinct. We de�ne two sets of sequences fhrat�i (si) :
� � 0i : si 2 Sig; i = 1; 2; interactively as follows: for i = 1; 2;

rat0i (si) = _tj2Sjpi(si; tj); (18)

rat�i (si) = _tj2Sj hBj(rat��1j (tj)) ^ pi(si; tj)i for � � 1:

Recall _� = :^f:A : A 2 �g for a �nite nonempty set � in L�. Let GR = fhrat�i (si) : � � 0i :
si 2 Si; i = 1; 2g: Hence, GR consists of jS1j + jS2j germinal forms, and each hrat�i (si) : � � 0i
contains 2�jS1 � S2j propositional variables for substitution. set of these germinal forms by GR:
We adopt the set of germinal forms GIR+R := GIR [ GR: The series of languages fL� : � � 0g
is de�ned based on GIR+R:

Let si 2 Si and i = 1; 2: For each � � 0; let Rat�i (si) be the formula obtained from rat�i (si)
by substituting Bsti(ti; tj) for all occurrences of each pi(ti; tj) in rat�i (si); which is still in L0:
The rationalizability formula is given as Rati(si) := ^hRat�i (si) : � � 0i; which is in L1. Again,
we note that Rati(si) occurs in the scope of Bi(�).

The formula Rati(si) is intended to be a solution of the inference process (17), i.e., Iri[DR]:
However, the directions of predictions are opposite to (17); in (17), predictions go to deeper
layers along � = 0; 1; :::; but Rat�i (si) = _tj2Sj (Bj(Rat��1j (tj)) ^Bsti(si; tj)) has a prediction
Bj(Rat��1j (tj)); and Rat��1j (tj) has a prediction Bi(Rat��1i (ti)); and so on to � = 0. In the
latter, we require si to satisfy this backward argument for all � � 0: For this reason, it holds
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that Iri[DR] = Iri[D
R
1 ; D

R
2 ] with some additional axiom determines Ii(si) to be equivalent to

Rati(si): The one direction is given by the following theorem, which will be proved later in this
section.

Theorem 5.1. (Necessity) Let si 2 Si; sj 2 Sj and fi; jg = f1; 2g: Then,

(1): ` Iri[DR] � [Bi(Ii(si)) � Bi(Rati(si))] in GL(L1);

(2): ` Iri[DR] � Iri[Ii(si) � Rati(si);Ij(sj) � Ratj(sj)] in GL(L2):

In (1), Iri[DR] implies that if agent i believes that si is a �nal decision, then he believes the
rationalizability property for si. In (2), the conclusions for both agents in (1) form an in�nite
regress. The epistemic logic GL(L1) is su¢ cient for (1), but GL(L2) is required for (2) since the
in�nitary formulae fRati(si)gsi2Si ; i = 1; 2 occur in the germinal form Iri[�; �] of in�nite regress.

Consider the converse of the conclusions of Theorem 5.1. If we plug fRati(si)gsi2Si ; i = 1; 2
to fIi(si)gsi2Si ; i = 1; 2 in Iri[DR]; they could be regarded as a solution for DR: Formally,
we substitute each Rati(si) for the corresponding Ii(si) in DR for i = 1; 2; and we denote
the resulting formulae by DR(Rat) = [DR

1 (Rat); D
R
2 (Rat)]: If D

R
i (Rat) is provable, then each

Rati(si) would be a candidate for Ii(si): This argument is formulated as follows:

V R
i : D

R
i (Rat) � ^ti2Si(Rati(ti) � Ii(ti)):

We write VR = (V R1 ; V
R
2 ):

8 In fact, we need the in�nite regress Iri[VR] of VR = (V R1 ; V
R
2 ) in

order to have the converse of the conclusions of Theorem 5.1. We have the following theorem,
which will be proved below.

Theorem 5.2. (Full Characterization) Let (s1; s2) 2 S1 � S2 and i = 1; 2: Then, both hold
in GL(L2) :

(1): ` Iri[VR] � Iri[Rat1(s1) � I1(s1);Rat2(s2) � I2(s2)];

(2): ` Iri[DR] ^ Iri[VR] � Iri[Rat1(s1) � I1(s1);Rat2(s2) � I2(s2)]:

The �rst is the converse of Theorem 5.1.(2). Combining this and Theorem 5.1.(2), we obtain
the second assertion, the full characterization of I1(s1) and I2(s2); which is done in GL(L�) with
� = 2. The in�nitary logic GL(L2) is required and is su¢ cient to have these results.

Theorems 5.1 and 5.2 study the logical inferences required for decision making and possible
�nal decisions. These are not about an actual play of a recommended action. The next stage for
agent i is the play of such an action. For this, the agent needs the detailed information about
the payo¤ functions g1 and g2 of the game G = (f1; 2g; S1; S2; g1; g2): The payo¤ function gi
(i = 1; 2) is formulated in terms of atomic propositions as follows:

fPri(s1; s2 : t1; t2) : gi(s1; s2) � gi(t1; t2)g [ f:Pri(s1; s2 : t1; t2) : gi(s1; s2) < gi(t1; t2)g; (19)

which is denoted by �i: We assume the in�nite regress of these preferences, i.e., Iri[�] =
Iri[^�1;^�2]:

We denote the set of rationalizable actions by Ri in the sense of the non-formalized game
theory: Incidentally, Bernheim [5] proved that Ri 6= ; for i = 1; 2 in any �nite game G:

8 In the in�nitary logic, we can formulate the choice of weakest formulae enjoying the property DR as in�nitary
formulae without using inference rules
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Returning to our logical framework, it holds that

GL(L1) ` Iri[�] � [ ^
si2Ri

Bi(Rati(si))] ^ [ ^
si2Si�Ri

Bi(:Rati(si))]; (20)

which will be proved in the end of this section. Thus, under the in�nite regress of preferences
Iri[�]; agent i can decide whether a given action si is rationalizable or not. To relate this
to a description of agent i�s decision, we combine (20) with Theorem 5.2.(2), and we have the
following theorem; under the in�nite regresses Iri[DR]^Iri[VR]^Iri[�]; agent i can tell whether
a given si is a decision for him or not: Mathematically, Theorem 5.3 is a corollary of Theorem
5.2.(2) and (20).

Theorem 5.3. (Playability) Let si 2 Si and i = 1; 2: We have, in GL(L2);

` Iri[DR] ^ Iri[VR] ^ Iri[�] � [ ^
si2Ri

Bi(Ii(si))] ^ [ ^
si2Si�Ri

Bi(:Ii(si))]:

Note that the conclusions of (20) and Theorem 5.3 can be formulated in the form of in�nite
regress including predictions.

The above discourse starts with the decision/prediction criterion and goes to the considera-
tion of a play of the game. The main engine is logical inferences by agent i and the imaginary
agents in his mind. The discourse of decision making is done within the in�nitary logic GL(L2):
In the game theory literature, decision making and existence of a resulting outcome have been
discussed a lot, but these are not explicitly connected by agents�logical inferences. The above
discourse is the very �rst attempt in this respect.

From the viewpoint of logic, the above discourse is based upon complex germinal forms, GIR
and GR, though they are still obtained by iterations of substitution. The germinal forms GIR
for in�nite epistemic regress are conceptually not speci�c to the theory of rationalizability, but
the germinal forms GRi are speci�c to the theory of rationalizability: In fact, in�nite epistemic
regress can be captured in terms of a �xed-point logic, similar to the common knowledge logic.
However, so far, we do not know whether the rationalizability property is captured in terms of
a �xed-point logic, though we conjecture an a¢ rmative answer.

We remark that when �some prediction�in DR
i is replaced by �all predictions�, the theory

becomes the decision making following the line of Nash�s [26] theory; speci�cally, DR
i is changed

into ^si2Si(Ii(si) � ^tj2Sj [Bj(Ij(tj)) � Bsti(si; tj)]i: Then, we can develop the theory in a
parallel manner, with the use of only germinal forms of in�nite regress, to the discourse in this
section, but this theory depends more upon the payo¤ structure and is more complex as a whole
(see Hu-Kaneko [14] within the framework of a �xed-point logic).

Finally, we prove the above theorems and (20). All steps, except for Lemma 5.4, are done in
proof-theoretic ways in GL(L1) and GL(L2): Lemma 5.4 is proved using the Kripke semantics:
The proof of (20) is partially semantic since Lemma 3.6 is used.

Lemma 5.1 states various properties of in�nitary regress formulae Iri[A]: GL(L2) is required
for (3), but GL(L1) is enough for the others as long as content formulae are in L1. We de�ne
the epistemic content of Iroi [A] by Ir

o
i [A] := Ai ^ Irj [A]:

Lemma 5.1. (1): ` Iri[A] � Bi(Iroi [A]);
(2): if ` Ak for k = 1; 2; then ` Iri[A];
(3): ` Iri[A] � Iri[Iroi [A]; Iroj [A]];
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(4): ` Iri[A1 � C1; A2 � C2] ^ Iri[A1; A2] � Iri[C1; C2];

(5): ` Iri[A1; A2] ^ Iri[C1; C2] � Iri[A1 ^ C1; A2 ^ C2]:

Proof. We prove (1), (3), and (4).
(1): Recall Iri[A] = ^hIr�i [A] : � � 0i; where Ir0i [A] = Bi(Ai) and Ir�+1i [A] = Bi(Ai ^ Ir�j [A])
for all � � 0: Hence, ` Iri[A] � Bi(Ai^Ir�j [A]) for all � � 0; so ` Iri[A] � ^hBi(Ir�j [A]) : � � 0i:
By ^-Barcan, we have ` Iri[A] � Bi(^hIr�j [A] : � � 0i): Thus, ` Iri[A] � Bi(Ai ^ Irj [A]): The
converse is similar.
(3): By (1), ` Iri[A] � Bi(Iroi [A]) for i = 1; 2: Suppose that ` Iri[A] � Ir�i [Iro1[A]; Iro2[A]] for
i = 1; 2: Since ` Bi(Irj [A]) � Bi(Ir

�
j [Ir

o
1[A]; Ir

o
2[A]]) by Nec and K, and since ` Iri[A] �

Bi(Ai ^ Irj [A]) by (1), we have ` Iri[A] � Ir�+1i [Iro1[A]; Ir
o
2[A]]: By ^-rule, ` Iri[A] �

Iri[Ir
o
1[A]; Ir

o
2[A]]:

(4): It su¢ ces to show that ` Iri[A1 � C1; A2 � C2] ^ Iri(A1; A2) � Iri[C1; C2]: It is proved
by induction over � that ` Iri[A1 � C1; A2 � C2] ^ Iri[A1; A2] � Ir�i [C1; C2] for all � � 0: By
^-rule, we have the result.�

Lemma 5.2. GL(L1) ` Iroi [DR] � [Ii(si) � Rat�i (si)] for all � � 0; si 2 Si; i = 1; 2:

Proof. We show this by induction on �. Since ` Iroi [DR] � DR
i and ` DR

i � [Ii(si) �
_tj2SjBsti(si; tj)]; we have the assertion for � = 0: Suppose the assertion for �. Then, `
Irj [D

R] � [Bj(Ij(sj)) ^ Bsti(si; sj) � Bj(Rat�j (sj))^ Bsti(si; sj)]: Hence, we have ` Irj [DR] �
[_tj2Sj hBj(Ij(tj))^Bsti(si; tj)i � _tj2Sj hBj(Rat�j (tj))^ Bsti(si; tj)i]: Since ` Iroi [DR] � Irj [DR];

we have ` Iroi [DR] � [_tj2Sj hBj(Ij(tj)) ^Bsti(si; tj)i � _tj2Sj hBj(Rat�j (tj))^ Bsti(si; tj)i]:
Also, since ` Iroi [DR] � [Ii(si) � _tj2Sj hBj(Ij(tj))^ Bsti(si; tj)i]; we have ` Iroi [DR] � [Ii(si) �
_tj2Sj hBj(Rat�j (tj)) ^Bsti(si; tj)i]: Thus, ` Iroi [DR] � [Ii(si) � Rat�+1i (si)]: Hence, we have the
assertion for � + 1:�

Proof of Theorem 5.1.(1): This is obtained by Lemma 5.2.

(2): Lemma 5.2 implies ` Iroi [DR] � (Ii(si) � Rati(si)) for i = 1; 2. By Lemma 5.1.(2), we
have ` Iri[Iro1[DR] � (I1(s1) � Rat1(s1)); Iro2[DR] � (I2(s2) �Rat2(s1))]: Using Lemma 5.1.(4),
we have ` Iri[Iro1[DR]; Iro2[D

R]] � Iri[I1(s1) �Rat1(s1);I2(s2) �Rat2(s1)]: Since ` Iri[DR] �
Iri[Ir

o
1[D

R]; Iro2[D
R]] by Lemma 5.1.(3), we have the assertion.�

To prove Theorem 5.2, we will show that ` DR
i (Rat) for i = 1; 2: Then, we have `

Iri[D
R
1 (Rat); D

R
2 (Rat)] by Lemma 5.1.(2): By Lemma 5.1.(4), we have ` Iri[VR] � Iri[Rat1(s1) �

I1(s1); Rat1(s1) �I2(s1)]: This is Theorem 5.2.(1). Combining this with Theorem 5.1.(2) by
Lemma 5.1.(5), we have Theorem 5.2.(2).

The �rst step for ` DR
i (Rat) for i = 1; 2 is the following lemma.

Lemma 5.3. (Monotonicity): GL(L0) ` Rat�+1i (si) � Rat�i (si) for all � � 0; si 2 Si; i = 1; 2:

Proof. We prove the assertion by induction over � � 0: Recall Rat0i (si) = _tj2SjBsti(si; tj):
Since Rat1i (si) = _tj2Sj hBj(Rat0j (tj))^Bsti(si; tj)i; we have ` Rat1i (si) � _tj2SjBest(si; tj); i.e.,
` Rat1i (si) � Rat0i (si): Suppose that ` Rat�+1i (si) � Rat�i (si) for i = 1; 2: This implies `
Bj(Rat�+1j (sj))^Bsti(si; sj) � Bj(Rat�j (sj))^ Bsti(si; sj); and then ` _tj2Sj hBj(Rat�+1j (tj))^
Bsti(si; tj)i � _tj2Sj hBj(Rat�j (tj))^Bsti(si; tj)i; i.e., ` Rat�+2i (si) � Rat�+1i (si):�
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Now, we prove ` DR
i (Rat) for i = 1; 2. The proof of part (1) is based on the sound-

ness/completeness (Theorem 3.1); the �niteness of Si and Lemma 5.3 are used. In the following
lemma, we use the abbreviation ^�A� of ^hA� : � � 0i:

Lemma 5.4. GL(L1) ` Rati(si) � _tj2Sj [Bj(Ratj(tj))^Bsti(si; tj)]:

Proof. First, we recall ^�Rat�i (si) = ^�_tj2Sj [Bj(Rat�j (tj))^Bsti(si; tj)]:We prove ` ^�Rat�i (si) �
_tj2Sj [^�hBj(Rat�j (tj))i^Bst(si; tj)]: By rule I�2:(ii) with � = 1; ^�hBj(Rat�j (tj))i is a permis-
sible conjunction. Since ` ^�hBj(Rat�j (tj))i � Bj(^�Rat�j (tj)); it follows that ` ^�Rat�i (si) �
_tj2Sj [Bj(^�Rat�j (tj))^Bst(si; tj)]; which is the assertion of the lemma.

LetM = (F ; �) be a serial Kripke model, and w any possible world inW: Suppose (M; w) j=
^� _tj2Sj hBj(Rat�j (tj))^Bsti(si; tj)i: Then, (M; w) j= _tj2Sj hBj(Rat�j (tj))^Bsti(si; tj)i for any
� � 0: Let

T �j = ftj 2 Sj : (M; w) j= Bj(Rat�j (tj)) ^ Bsti(si; tj)g for � � 0:

Since (M; w) j= _tj2Sj hBj(Rat�j (tj))^Bsti(si; tj)i; we have T �j 6= ; for all �: Since (M; w) j=
Rat�+1j (sj) � Rat�j (sj) by Lemma 5.3 and Soundness, we have T

�
j � T �+1j for all � � 0:

Since Sj is a �nite set, there is some �0 such that T �j is constant for all � � �0: Hence, we
�nd an sj 2 \�T �j ; which implies (M; w) j= h^�Bj(Rat�j (sj))i^Bsti(si; sj): Thus, (M; w) j=
_tj2Sj [h^�Bj(Rat�j (tj))i ^Bsti(si; tj)]: Thus, (M; w) j= ^�Rat�i (si) � _tj2Sj [h^�Bj(Rat�j (tj))i
^Bsti(si; tj)]: Since F ; � ; w 2W are all arbitrary, we have ` ^�Rat�i (si) � _tj2Sj [h^�Bj(Rat�j (tj))i
^Bsti(si; tj)] by completeness.�

Proof of (20): We use Lemma 3.6, which allows us to infer (20) from assertions about Rat�j (sj)
for �nite ��s: Now, we work with GL(L0). In fact, the main argument uses the technique that
eliminates the belief operators B1(�) and B2(�) from KDn and hence we can work with �nitary
classical logic, whose provability relation is denoted by `0 : Correspondingly, we denote, by
Nat�j (sj); the formula obtained from Rat

�
j (sj) eliminating all B1(�) and B2(�): The set ^(�1[�2)

is complete by (19) with respect to atomic preference propositions; for a �nitary nonepistemic
formula A containing only atomic preference propositions,

`0 ^ (�1 [ �2) � A or `0 ^ (�1 [ �2) � :A: (21)

This is applied to Nat�j (sj) for all i = 1; 2; si 2 Si; and � � 0: Also, when A contains only atomic
preference propositions for agent i, the premise in (21) can be ^�i:

We prove, by induction over �; that for i = 1; 2; si 2 Si; and � � 0;

if `0 ^ (�1 [ �2) � Nat�i (si); then ` Iri[�] � Bi(Rat�i (si)); (22)

if `0 ^ (�1 [ �2) � :Nat�i (si); then ` Iri[�] � Bi(:Rat�i (si)): (23)

For � = 0; Nat0i (si) = Rat0i (si) = _tj2Sj Bsti(si; tj). Since Iroi [�] = (^�i) ^ Irj [�], we obtain
(22) and (23) for � = 0 by applying Nec and K. Suppose that (22) and (23) hold for �. By (21),
`0 ^(�1[�2) �Nat�+1i (si) or `0 ^(�1[�2) � :Nat�+1i (si). First, let `0 ^(�1[�2) � Nat�+1i (si);
by de�nition, Nat�+1i (si) = _tj2Sj (Nat�j (tj)^Bsti(si; tj)), and hence, by (21) again, `0 ^(�1 [
�2) � (Nat�j (tj)^Bsti(si; tj)) for some tj 2 Sj : For this tj ; it holds that ` ^�i �Bsti(si; tj)
and ` Irj [�] � Bj(Rat�j (tj)) by (22) for �: Combining these, we have ` Irj [�] ^ (^�i) �
Bj(Rat�j (tj))^Bsti(si; tj): Hence, ` Irj [�] ^ (^�i) � _tj2Sj [Bj(Rat�j (ti))^Bsti(si; tj)]: Thus,
` Iroi [�] �Rat�+1i (si); so, ` Iri[�] � Bi(Rat�+1i (si)) by Nec and K:
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Second, let `0 ^(�1 [ �2) � :Nat�+1i (si): Again, by de�nition and (21), `0 ^(�1 [ �2) �
:(Nat�j (tj)^Bsti(si; tj)) for all tj 2 Sj : Let tj 2 Sj : Then, `0 ^(�1 [ �2) � :Nat�j (tj) or
`0 ^(�1 [ �2) � :Bsti(si; tj): Then, by (23) for �, we have ` Irj [�] � Bj(:Rat�j (ti)) or `
^�i � :Bsti(si; tj): Combining these, we have ` Irj [�]^(^�i) � Bj(:Rat�j (ti))_(:Bsti(si; tj)):
This and Axiom D for Bj(�) imply ` Irj [�] ^ (^�i) � :Bj(Rat�j (ti)) _(:Bsti(si; tj)); i.e.,
` Irj [�]^(^�i) � :(Bj(Rat�j (tj))^ Bsti(si; tj)): Since tj is arbitrary, we have ` Irj [�]^(^�i) �
: _tj2Sj (Bj(Rat�j (ti)) ^Bsti(si; tj)): That is, ` Iroi [�] � :Rat�+1i (si); which, by Nec and K,
implies (23) for � + 1:

Now, take any si 2 Si: Then, let si be rationalizable action. Then, `0 ^(�1 [ �2) �Nat�i (si)
for all � � 0: In this case, by (22), ` Iroi [�] �Rat�i (si) for all � � 0: Thus, ` Iroi [�] �Rati(si) by
^-rule. Hence, ` Iri[�] � Bi(Rati(si)):

Let si be a non-rationalizable action. Then, `0 ^(�1 [ �2) � :Nat�i (si) for some � � 0: In
this case, by (23), ` Iroi [�] � :Rat�i (sj) for some � � 0: By Lemma 3.6, we have ` Iroi [�] �
:hRat�j (sj) : � � 0i: Hence, ` Iri[�] � Bi(:Ratj(sj)): These imply (20).�

6 Proof of the Completeness of GL(L�) by Q-�lters

We adopt the Q-�lter method to prove completeness of GL(L�). First, we give a sketch of the
proof, a summary of the concepts to be used, and then go to the main body of the proof.

6.1 Sketch of the proof

As usual, we show that if a formula A 2 L� is not provable, we �nd a Kripke model so that A is
not true in some world. It is standard in the literature to construct maximal consistent sets as
those possible worlds via the Henkin method (cf. Hughes and Cresswell [15]). This may appear
to be applicable to our logics because the set of formulae L� (0 � � � !) is kept countable.
But this does not work in our case for two reasons. Since GL(L�) allows in�nite conjunctions,
the Henkin method to extend a consistent set does not �t our purpose; the in�nitary approach
from Karp [19] avoids this di¢ culty by requiring Axiom of Choice in the axiomatic system
(cf. Heifeitz [12] in the epistemic logic context). Instead, we adopt the Q-�lter method, due
to Rasiowa-Sikorski [29] for algebraic semantics and Tanaka-Ono [33] for Kripke semantics. A
Q-�lter is a strengthened version of a prime �lter to deal with in�nitary conjunctions. This
method has been developed as an alternative to prove completeness for a �rst-order logic as well
as for in�nitary modal logics (cf., Tanaka [32]). We note that the countability of the language
L� is crucial in applications of these lemmas.

The Q-�lter method relies upon various concepts in Boolean algebra, though we deal with
Kripke semantics rather than algebraic semantics. Utilizing the Q-�lter method, we construct a
counter-model. This is not the canonical model; instead, we start with the Lindenbaum algebra
L�= �; where � is the equivalence relation of provability in GL(L�): Then, a Q-�lter is a
subset of L�= � and is a possible world for the counter-model. A Q-�lter is required to satisfy
certain closure properties in addition to the prime �lter condition. These closure properties are
guaranteed by the formula construction steps, I�2:(i) and (ii); for the de�nition of L�. Once the
set of possible worlds is de�ned, accessibility relations Ri; i 2 N are de�ned in a similar manner
as in the standard proof based on maximal consistent sets.
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In Section 6.2, we provide a small summary of Q-�lters in a Boolean algebra. In Section
6.3, we de�ne the Lindenbaum algebra based on GL(L�); and prepare for applications of the
Rasiowa-Sikorski and Tanaka-Ono lemmas. In Section 6.4, we construct a counter-model. A key
step is the truth lemma that a formula A is true in a world w if and only if [[A]] 2 w; where [[A]]
is the equivalence class including A. This step requires the Tanaka-Ono Lemma to deal with
Bi(�). Finally, we show that if 0 A, there is a Q-�lter w such that [[A]] =2 w; the existence of
such a Q-�lter w is guaranteed by the Rasiowa-Sikorski Lemma.

6.2 Boolean algebra and Q-�lters

We give basic de�nitions and relevant properties of a Boolean algebra (cf., Halmos [10] and
Mendelson [23]). Consider a Boolean algebra B = (B;u;t;�;0;1):We de�ne a � b i¤ at b = b:
Then � is a lattice ordering on B (i.e., a u b and a t b are the greatest lower bound and least
upper bound of a; b with respect to �). We say that a nonempty subset F of B is a �lter i¤
F1(upward closed): a � b and a 2 F =) b 2 F ; and F2(u-closed): a; b 2 F =) au b 2 F: Also,
we say that a �lter F is prime i¤ P1(Non-triviality): F 6= B; and P2(t-property): a t b 2 F
=) a 2 F or b 2 F: We have the following fact on a prime �lter F :

a 2 F , (�a) =2 F: (24)

In the following, we write a ! b for �a t b = (�a) t b: When F is a prime �lter, a ! b 2 F if
and only if a =2 F or b 2 F; since (�a) t a = 1 2 F:

For any subset S of B; the greatest lower bound of S in (B;u;t;�;0;1) is denoted by uS;
and the least upper bound of S is denoted by tS: Note that uS and tS may not exist, but if
either exists, it is unique. Let Q = (Q1;Q2) be a pair of countable sets of nonempty subsets of
B so that

((u;t)-closed): uQ1 and tQ2 exist for all Q1 2 Q1 and Q2 2 Q2:
We say that a prime �lter F is a Q-�lter i¤

Q1: for any Q1 2 Q1; Q1 � F =) uQ1 2 F ;
Q2: for any Q2 2 Q2; tQ2 2 F =) a 2 Q2 for some a 2 F:

These correspond to the conditions F2 and P2. The following is Rasiowa-Sikorski lemma (see
also Tanaka-Ono [33]).

Lemma 6.1. (Rasiowa-Sikorski [29]) Let B be a Boolean algebra, and Q = (Q1;Q2) a pair
of countable sets of nonempty subsets of B with (u;t)-closedness: For any a; b 2 B; if a � b;
then there is a Q-�lter F such that a 2 F and b =2 F:

For a given Q = (Q1;Q2); we denote the set of all Q-�lters of B by FQ(B): The nonemptiness
of FQ(B) follows from Lemma 6.1 if 0 6= 1: The set FQ(B) will be adopted for the set of all possible
worlds in our construction of a Kripke model.

Since the logic GL(L�) has belief operators, Rasiowa-Sikorski lemma is not enough: We
extend it, which is Tanaka-Ono lemma. We say that B = (B;u;t; �;0;1;�1; :::;�n) is a multi-
modal algebra i¤

ma1: (B;u;t;�;0;1) is a Boolean algebra;
ma2: for i 2 N; �i is a unary operator on B satisfying the property that �i1 = 1
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and �i(a u b) = �ia u�ib for all a; b 2 B:
We de�ne ��1i F = fx 2 B : �ix 2 Fg for any F � B:

Let B be a multi-modal algebra, and Q = (Q1;Q2) a �xed pair of countable sets of non-
empty subsets of B satisfying (u;t)-closedness: The following three conditions are crucial for
the Tanaka-Ono Lemma: for all i 2 N;

q0: for all Q1 2 Q1; u(�iQ1) := uf�ia : a 2 Q1g exists and u(�iQ1) = �i(uQ1);
q1: f�i(a! b) : b 2 Q1g 2 Q1 for all a 2 B and all Q1 2 Q1;
q2: f�i(b! a) : b 2 Q2g 2 Q1 for all a 2 B and all Q2 2 Q2:

Lemma 6.2. (Tanaka-Ono [33]) Let B = (B;u;t;�;0;1;�1; :::;�n) be a multi-modal
algebra, and Q = (Q1,Q2) a �xed pair of countable sets of nonempty subsets of B: Suppose
that Q satis�es (u;t)-closedness, and the conditions q0, q1; and q2 for i 2 N . Then, for any
i 2 N; b 2 B; and F 2 FQ(B); if �ib =2 F; there exists a G 2 FQ(B) such that ��1i F � G and
b =2 G:

6.3 Lindenbaum algebra

Recall that for any A;B 2 L�; A � B i¤ ` (A � B)^ (B � A) in GL(L�):We take the quotient
set L�= �. For any A 2 L�; we denote, by [[A]]; the equivalence class in L�= � including A: In
B := L�= �; we de�ne elements 0;1 and operations u;t;�; and �1; :::;�n by

`1: 0 =[[:p0 ^ p0]] and 1 =[[p0 � p0]];
`2: for any A;B 2 L�; [[A]] u [[B]] = [[A ^B]]; [[A]] t [[B]] = [[:(:A ^ :B)]]; �[[A]] = [[:A]];
`3: for any A 2 L�; �i[[A]] = [[Bi(A)]] for i 2 N:

Using these, we have, for any A;B 2 L�;

[[A]]! [[B]] = (�[[A]]) t [[B]] = [[:A]] t [[B]] = [[:(::A ^ :B)]] = [[A � B]]: (25)

It follows from this that �i([[A]]! [[B]]) = �i([[A � B]]) = [[Bi(A � B)]]:
Lemma 6.3. L = (B;0;1;u;t;�;�1; :::;�n) with B = (L�= �) is a multi-modal algebra.

Proof. We can show in the standard manner that (B;0;1;u;t;�) with B = (L�= �) is a
Boolean algebra. It remains to show condition ma2: Let i 2 N: Since ` [(A � A) � Bi(A �
A)]^ [Bi(A � A) � (A � A)]; we have �i1 = 1: Since ` [Bi(A^C) � Bi(A)^Bi(C)]^ [Bi(A)^
Bi(C) � Bi(A ^ C)]; we have �i([[A]] u [[C]]) = �i[[A]] u�i[[C]]:�

In the following, we call L in Lemma 6.3 the Lindenbaum algebra. We prove the following
lemma, which guarantees we can use Lemmas 6.1 and 6.2 in the proof of completeness.

Lemma 6.4. For any ^� 2 L� and i 2 N;
(a): uf[[C]] : C 2 �g = [[^�]];
(b): uf�i[[C]] : C 2 �g = [[Bi(^�)]]:

Proof. (a): First, let us see that [[^�]] is a lower bound of f[[C]] : C 2 �g. Since ` ^� � C for
all C 2 � by L4, we have (�[[^�]]) t [[C]] = 1: Let C 2 �: Then, we have

[[^�]] = [[^�]] u 1 = [[^�]] u h(�[[^�]]) t [[C]]i
= h[[^�]] u (�[[^�]])i t h[[^�]] u [[C]]i = 0 t h[[^�]] u [[C]]i = [[^�]] u [[C]]:
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Hence, [[^�]] � [[C]]: Since C is arbitrary in �; [[^�]] is a lower bound of f[[C]] : C 2 �g:

It remains to show that [[^�]] is the greatest lower bound of f[[C]] : C 2 �g: Now, let [[D]] be
a lower bound of f[[C]] : C 2 �g: This means [[D]] � [[C]]; i.e., [[D]] t [[C]] = [[C]]; for any C 2 �:
Let C 2 �: Then (�[[D]]) t [[C]] = (�[[D]]) t ([[D]] t [[C]]) = (�[[D]] t [[D]]) t [[C]] = 1 t [[C]] = 1:
This implies ` D � C: Since C is arbitrary in �; we have, by ^-rule; we have ` D � ^�: This
means that [[^�]] is greater than or equal to [[D]] in L: Thus, [[^�]] is the greatest lower bound
of f[[C]] : C 2 �g:
(b): Since ` Bi(^�) � Bi(A) for all A 2 �; and since f�i[[A]] : A 2 �g = f[[Bi(A)]] : A 2 �g,
[[Bi(^�)]] is a lower bound of f�i[[A]] : A 2 �g: Now, let [[D]] be a lower bound of f�i[[A]] :
A 2 �g: Using the same argument as in (a), we have ` D � Bi(A) for all A 2 �: Thus, ` D �
^Bi(�) by ^-rule. By ^-Barcan, we have ` D � Bi(^�): This means that [[Bi(^�)]] is the
greatest lower bound of f�i[[A]] : A 2 �g:�

Now we de�ne a pair Q = (Q1;Q2) as follows:

Q1 = ff[[A]] : A 2 �g : ^� 2 L�g and Q2 = ;: (26)

Then, Q1 is a countable. Then, the following lemma holds.
Lemma 6.5. (1): Q = (Q1;Q2) satis�es (u;t)-closedness.
(2): Q = (Q1;Q2) satis�es the conditions q0, q1, q2.

Proof. Since Q2 = ;; the (u;t)-closedness for t and q2 are vacuous.
(1): Let Q 2 Q1: This Q is written as f[[A]] : A 2 �g for some ^� 2 L�: Since uQ = [[^�]] by
Lemma 6.4.(a), uQ belongs to B = L�= �.
(2)(q0): We show that for anyQ 2 Q1; u(�iQ) := uf�ia : a 2 Qg exists and u(�iQ) = �i(uQ):
Since Q 2 Q1; f�ia : a 2 Qg is expressed as f[[Bi(A)]] : A 2 �g for some ^� 2 L�: By I�1-I�2,
^� 2 L� implies ^Bi(�) 2 L�: Then, by Lemma 6.4.(b) and ` ^Bi(�) � Bi(^�); it holds that
u(�iQ) = [[^hBi(A) : A 2 �g]] = [[Bi(^�)]] = �i[[^�]] = �i uQ:
(q1) : Let Q 2 Q1 and a 2 B: We show f�i(a ! b) : b 2 Qg 2 Q1: Since a = [[A]] for some
A 2 L� and Q is also expressed as f[[B]] : B 2 �g for some ^� 2 L�; we have, by (25),

f�i(a! b) : b 2 Qg = f[[Bi(A � B)]] : B 2 �g: (27)

Since ^hA � B : B 2 �i 2 L� by I�2:(i); we have ^hBi(A � B) : B 2 �i 2 L� by I�2:(ii): Let
�0 = hBi(A � B) : B 2 �i: Then, since ^�0 2 L�; we have, by (27), f�i(a ! b) : b 2 Qg =
f[[Bi(A � B)]] : B 2 �g 2 Q1:�

6.4 Construction of a counter-model

Recall that L = (B;0;1;u;t;�;�1; :::;�n) with B = L�= � is the Lindenbaum algebra given
in Lemma 6.3. Also, let Q = (Q1;Q2) be given by (26). Now, we de�ne a Kripke frame
K = (W ;R1; :::; Rn) and an assignment � as follows:

(i): W = FQ(L); where FQ(L) is the set of all Q-�lters for L;
(ii): for all i 2 N; wRiu if and only if ��1i w � u;
(iii): for any w 2W and any propositional variable p; �(w; p) = > if and only if [[p]] 2 w:

The nonemptiness of FQ(L) follows from Lemma 6.1 and the contradiction-freeness of GL(L�)
noted after Theorem 3.1. Then, M = (K; �) = (W ;R1; :::; Rn; �) is a Kripke model.
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Lemma 6.6. Ri is serial for each i 2 N:

Proof. Let w 2W: Consider �i0 = �i[[:p0^p0]] Then, �i0 = [[Bi(:p0^p0)]] = [[:p0^p0]] = 0
by `1 and by Axiom D. Since w is a prime �lter, we have �i0 = 0 =2w: By Lemma 6.2 (Tanaka-
Ono Lemma), we have u 2 FQ(L) such that ��1i w � u; i.e., wRiu; and 0 =2u:�

The following lemma is central to the completeness theorem.

Lemma 6.7. (Truth lemma) For any A 2 L� and w 2W; (K; � ; w) j= A if and only if [[A]] 2 w.

Proof. We prove the assertion by induction along the de�nition I�0-I�2 (� � �) of formulae.
Consider a propositional variable p. Then (K; � ; w) j= p , �(w; p) = > , [[p]] 2 w:

Now, consider a non-propositional formula A in L� : Suppose that A is generated by I�1:
Here, the induction hypothesis (abbreviated as IH), is simply that the assertion holds for any
proper subformulae of A: The case ^ is applied to an in�nitary conjunctive formula.

(�) : Let (K; � ; w) j= A � B: Then (K; � ; w) 2 A or (K; � ; w) � B: By the induction hypothesis,
we have [[A]] =2 w or [[B]] 2 w: Since [[:A]] 2 w or [[B]] 2 w; and since [[:A]] � [[A � B]] and
[[B]] � [[A � B]]; we have [[A � B]] 2 w:

Let [[A � B]] 2 w: Then [[:A _ B]] = [[:A]] t [[B]] 2 w: Since w is a prime �lter, we have
[[:A]] 2 w or [[B]] 2 w: Hence [[A]] =2 w or [[B]] 2 w: By IH, we have (K; � ; w) 2 A or (K; � ; w) � B:
Thus, (K; � ; w) � A � B:

(:) : The proof is similar.

(Bi) : Let (K; � ; w) j= Bi(A): Then (K; � ; u) j= A for any u with (w; u) 2 Ri: By IH, [[A]] 2 u
for any u with (w; u) 2 Ri: Now, on the contrary, suppose that �i[[A]] =2 w: Then, by Lemma
6.2 (Tanaka-Ono Lemma), there is a u 2 FQ(L) such that ��1i w � u and [[A]] =2 u: This is a
contradiction. Hence, [[Bi(A)]] = �i[[A]] 2 w:

Let [[Bi(A)]] = �i[[A]] 2 w: Then [[A]] 2 u for all u with ��1i w � u: By IH, we have
(K; � ; u) j= A for all u with (w; u) 2 Ri: Hence, (K; � ; u) j= Bi(A):

(^) : Let ^� be a �nite conjunctive formula generated by I�1; or an in�nite conjunctive
formula given from a germinal form: In the latter case, any A 2 � belongs to [
<�L
 : In either
case, IH is that the assertion holds for any A 2 �: In these cases, we have the following proof.

Let (K; � ; w) j= ^�: Then (K; � ; w) j= A for all A 2 �: By IH, [[A]] 2 w for all A 2 �: Then
uf[[A]] : A 2 �g exists by Lemma 6:5:(1); and it belongs to w by Q1. Hence, [[^�]] = uf[[A]] :
A 2 �g 2 w:

Let [[^�]] 2 w: Then [[^�]] � [[A]] for all A 2 �: Since w is a �lter, we have [[A]] 2 w for all
A 2 � by F1. Hence (K; � ; w) j= A for all A 2 � by IH, which implies (K; � ; w) j= ^�:

Now, consider the cases of I�2:(i); I�2:(ii); and I�2:(iii): Suppose that ^� = ^hD � C� :
� � 0i; ^� = ^hBi(C�) : � � 0i; or ^� = ^hC� ^D� : � � 0i be generated by I�2:(i); I�2:(ii);
or I�2:(iii) from D; ^hC� : � � 0i; and ^hD� : � � 0i: Here, IH is that the assertion holds form
D; ^hC� : � � 0i; and ^hD� : � � 0i:

Let (K; � ; w) j= ^hD � C� : � � 0i: Then (K; � ; w) j= D � C� ; i.e., (K; � ; w) 2 D or
(K; � ; w) j= C� ; for all � � 0: The latter part implies (K; � ; w) j= ^hC� : � � 0i: By IH, we have
[[D]] =2 w or [[^hC� : � � 0i]] 2 w: Since w is a prime �lter, we have [[D]]! [[^hC� : � � 0i]] 2 w,
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which implies [[D � ^hC� : � � 0i]] 2 w by (25): Since ` (D � ^hC� : � � 0i) � ^hD � C� :
� � 0i; we have [[^hD � C� : � � 0i]] 2 w: The converse can be obtained by tracing back this
argument.

Let (K; � ; w) j= ^hBi(C�) : � � 0i: This implies (K; � ; w) j= Bi(^hC� : � � 0i): Let u be any
world with (w; u) 2 Ri: Then, (K; � ; u) j= ^hC� : � � 0i: By IH, we have [[^hC� : � � 0i]] 2 u:
Now, on the contrary, suppose that �i[[^hC� : � � 0i]] =2 w: Then, by Lemma 6.2 (Tanaka-
Ono Lemma), there is a uo 2 FQ(L) such that ��1i w � uo and [[^hC� : � � 0i]] =2 uo: Since
(w; uo) 2 Ri by the de�nition of Ri; this is a contradiction. Hence, �i[[^hC� : � � 0i]] 2 w:
Thus, [[^hBi(C�) : � � 0i)]] = [[Bi(^hC� : � � 0i)]] = �i[[^hC� : � � 0i]] 2 w; using ^-Barcan.

Conversely, let [[^hBi(C�) : � � 0i)]] 2 w: Then, �i[[^hC� : � � 0i]] = [[Bi(^hC� : � � 0i)]] =
[[^hBi(C�) : � � 0i]] 2 w using ^-Barcan: Let u 2 W be an arbitrary world with ��1i w � u:
Then, [[^hC� : � � 0i]] 2 u: By IH, we have (K; � ; u) j= ^hC� : � � 0i: Since u is arbitrary with
(w; u) 2 Ri; we have (K; � ; u) j= Bi(C�) for all � � 0: Hence, (K; � ; u) j= ^hBi(C�) : � � 0i:

Let (K; � ; w) j= ^hC� ^ D� : � � 0i: Then (K; � ; w) j= C� ^ D� ; i.e., (K; � ; w) j= C� and
(K; � ; w) j= D� for all � � 0: This implies (K; � ; w) j= ^hC� : � � 0i and (K; � ; w) j= ^hD� : � �
0i: By IH, [[^hC� : � � 0i]] 2 w and [[^hD� : � � 0i]] 2 w: Since w is a �lter, we have [[^hC�
: � � 0i]] u[[^hD� : � � 0i]] 2 w� : Since ` [hC� : � � 0i ^ hD� : � � 0i] � ^hC� ^D� : � � 0i; we
have [[^hC� ^D� : � � 0i]] 2 w: The converse can be obtained by tracing back this argument.�

The �nal step of completeness is to show that for any A 2 L�; if 0 A; then (K; � ; w) 2 A
for some world w 2 W . Suppose 0 A: This means [[A]] 6= 1; hence, [[A]] � 1: Applying Lemma
6.1 (Rasiowa-Sikorski lemma) to [[A]] and 1, there is a Q-�lter F such that 1 2 F and [[A]] =2 F:
Denote F by w: Then, by Lemma 6.7, we have (K; � ; w) 2 A:�
Remark 6.1. Lemma 6.6 can be extended to other epistemic axioms, T, 4, or 5, and the
corresponding conditions, re�exivity, transitivity, or euclidean for Ri. Transitivity is derived
from Axiom 4: Let ��1i w � u and ��1i u � v and [[A]] 2 ��1i w: Then, [[Bi(A)]] 2 w: Since
` Bi(A) � BiBi(A); we have [[Bi(A)]] � [[BiBi(A)]]: Since w is a �lter, we have [[BiBi(A)]] 2 w;
so [[Bi(A)]] 2 ��1i w: Hence, [[Bi(A)]] 2 u; i.e., [[A]] 2 ��1i u: Repeating this argument, we have
[[A]] 2 ��1i v: Also, euclidean: wRiu and wRiv =) uRiv is derived from Axiom 5. Let ��1i w � u
and ��1i w � v: Suppose that for some A; [[A]] 2 ��1i u but [[A]] =2 v: Since ��1i w � v; we have
[[Bi(A)]] =2 w: Thus, [[:Bi(A)]] 2 w: By Axiom 5, [[Bi(:Bi(A))]] 2 w: Thus, [[:Bi(A))]] 2
��1i w � u; which is a contradiction to [[A]] 2 ��1i u: Hence, ��1i u � v:

7 Conclusions

We developed a series of small in�nitary epistemic logics. This series inherits useful features
from both in�nitary logic approach and �xed-point logic approach. Similar to the in�nitary
logic approach, our framework allows for explicit and uni�ed formulations of in�nitary concepts
such as common knowledge; and it allows for the direct evaluation of depths of such in�nitary
concepts. Similar to the �xed-point approach, we can control in�nitary expressions by imposing
speci�c germinal forms. Moreover, we have shown that our completeness result holds for each
layer, and our logics in di¤erent layers are connected by the conservative extension relation.

We provided two applications. The �rst is about explicit de�nabilities of epistemic axioms
T, 4, and 5. Speci�cally, we showed that Axiom T can be captured in GL(L�) for any �
(0 � � � !); Axiom 4 can be done in GL(L!); since it needs in�nite iterations of the belief
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operator. Axiom 5 is not explicitly de�nable for any � (0 � � � !): These results di¤erentiate
the three axioms. The second is for game theory: we considered an agent�s decision-making in
a game, based on the idea of rationalizability. We gave a full epistemic characterization, which
was done within GL(L2); a shallow part in the series in (1); and, based on this characterization,
we obtained the playability result for an agent in a game.

Our approach gives rise to new open problems. As already stated, a full study of Table 3.1
is an open problem of great importance. As seen in Section 4.3, we showed that some known
�xed-point logics such as common knowledge logic can be faithfully embedded into our system
(Theorem 4.7). In recent years, the �xed-point approach has been extensively developed in
modal �-calculus, and a natural question is whether such embedding results can be extended to
(some speci�c fragments of) those logics, and what relationship exists between our system and
modal �-calculus. A full answer to this question remains open, though we gave a summary of
di¤erences in our approach and modal �-calculus in the end of Section 4.3.

There are open problems related to explicit de�nability and embedding. We studied explicit
de�nability and embedding for each of the three epistemic axioms and common knowledge.
However, a general criterion for an in�nitary (and/or �nitary) concept to be explicitly de�nable
in some GL(L�) remains open.9 A related problem is to have a general understanding of when
a �xed-point logic can be embedded into our system.

Our framework adopts the Hilbert-style proof theory. One alternative would be to formulate
it in the Gentzen style sequence calculus. In particular, if cut-elimination is available, then one
can discuss the sizes of proofs. For this purpose, there are two possibilities from the literature.
One is to adopt Kaneko-Nagashima [21]�s formulation in the context of an in�nitary logic,
which is close to the original Gentzen formulation. Cut-elimination is available, while ^-Barcan
prevents it from implying the full subformula property. Another is in the modal �-calculus,
for which Brünnler-Studer [6] provided a di¤erent Gentzen style formulation, focusing on some
shallow fragments for cut-elimination. A full study of these systems remains open.
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Wydawnictwo Naukowe, Warszawa.

[30] Sato, M., (1977), A Study of Kripke-type Models for Some Modal Logics by Gentzen�s
Sequential Method, Publication RIMS 13, 381-468.

[31] Tan, T. C., and S.-R. Werlang, (1988), The Bayesian Foundation of Solution Concepts of
Games, Journal of Economic Theory 45, 370�391.

[32] Tanaka, Y., (1999), Kripke Completeness of In�nitary Predicate Multi-Modal Logics. Notre
Dame Journal of Formal Logic 40, 326-340.

[33] Tanaka, Y., and H. Ono, (2001), Rasiowa-Sikorski Lemma and Kripke Completeness of
Predicate and In�nitary Modal Logics, Advances in Modal Logic, vol. 2, 419�437. Stanford:
CSLI Publications.

Appendix

Proof of (10): Let N = f1; 2g; i = 1; j = 2; and G = fhB�1(p) : � � 0ig, G0= fhB�1(p) : � � 0i;
hB�2(p) : � � 0ig; this can be extended to a general case without di¢ culty. The contrapositive
of the claim is proved by constructing a counter-model. Let A 2 L1(G) be any formula with
GL(L1(G0)) 0 :A: By Theorem 3.1, there is a Kripke model (K; �) = ((W;R1; R2); �) such
that (K; � ; w0) j= A for some w0 2 W: If there is a world w 2 W such that w is (sequentially)
accessible from wo by R2 and �(w; p) = ?; then (K; � ; w0) 2 A � B�2(p) for some � < !;
so, (K; � ; w0) 2 A � B!2 (p): In the following, we assume that �(w; p) = > for any sequentially
accessible w from w0 by R2:We extend (K; �) to (K0; � 0) so that (K0; � 0; w0) j= A but � 0(w; p) = ?
for some sequentially accessible w by R02:

Since A 2 L1(G); the nested depth of B2(�) is �nite, and let mo be the maximum of the
nested depths of B2(�) in A. We denote the set of all subformulae of A by Sub(A); and the
maximum nested depth of B2(�) in C 2 Sub(A) by �2(C): There are two cases to be considered:

(A): there is a sequence fw0; w1; :::; w`1g such that w0; w1; :::; w`1 are all distinct, wtR2wt+1 for
all t = 0; :::; `1 � 1; but w`1R2w`0 for some w`0 2 fw0; w1; :::; w`1g;

(B): for any in�nite sequence fw0; w1; :::g with wtR2wt+1 for all t � 0 and for any w` 2
fw0; w1; :::g; there is no element w`0 2 fw0; w1; :::; w`g with w`R2w`0 :

These two cases are mutually exclusive and exhaustive because of seriality for R2.

Case (A): We choose a sequence fw0; w1; :::; w`1g with the smallest `1: Then, we choose an `0
given in (A). Incidentally, `0 = `1 could be possible. The idea of extending (K; �) to (K0; � 0)
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is as follows: a sequence fv1; :::; vmo+2g of new symbols (for new possible worlds) is sequen-
tially connected to w`0 by the new R02 but not R

0
1: The additional accessibilities in R

0
2 are the

connections from w`o to v1; from v1 to v2; :::; and from vmo+1 to vmo+2, but the out-going ref-
erences from vt (1 � t � vmo+1); in addition to the connection to vt+1; are the same as w`0+t0
where t = k(`1 � `0 + 1) + t0 and t0 � `1 � `0: The last vmo+2 is the dead-end. In addition to
fv1; :::; vmo+2g; we de�ne the sequence hw`0+t : t = 1; :::;mo + 2i in W so that w`0+t = w`0+t0

when t = k(`1�`0+1)+ t0 for some k � 0 and t0 � `1�`0: That is, this is the sequence counting
w`0+1; :::; w`1 and then counting along the same cycle and it stops at w`0+m0+2:

w0 !2 :::!2 w`0 !2 v1 !2 v2 !2 ::: vmo+1 !2 vmo+2 	1;2
#1&2 #1&2 #1&2 #1&2 #1&2

W W W W

In the above �gure, we consider the special case where `0 = `1: We replicate the connections
from w`0 and attach them to each vt up to vmo+1. We can extend � to �

0 so that � 0(vt; �) takes
the same value as �(w`0 ; �); but � 0(vmo+2; �) takes the negative value ? for all q 2 P0: Then, we
prove (K0; � 0; w0) j= A but (K0; � 0; w0) 2 B`0+mo+2

2 (p):

Now, we prove the assertion more rigorously. We extend (K; �) to (K0; � 0) as follows:

W 0 =W [ fv1; :::; vmo+2g; (28)

R01 = R1 [ f(vt; w) : (w`0+t; w) 2 R1 and t = 1; :::;mo + 1g [ f(vmo+2; vmo+2)g (29)

R02 = R2 [ f(w`0 ; v1)g [ f(vt; vt+1) : t = 1; :::;mo + 1g [ f(vmo+2; vmo+2)g[
f(vt; w) : (w`0+t; w) 2 R2 and t = 1; :::;mo + 1g;

and for any q 2 P0;

� 0(v; q) =

8<:
�(w; q) if v 2W
�(w`0+t; q) if v = vt (1 � t � m0 + 1)
? if v = vmo+2:

(30)

In (29), only v1 is directly connected only to w`0 ; and there may be references from vt to some
worlds in W in the same way from w`0+t:

Now, we show by induction on k = 0; :::;mo that for any C 2 Sub(A) with �2(C) � k and
for any t = 1; :::;mo � k;

(K; � ; w`0+t) j= C () (K0; � 0; vt) j= C: (31)

We show this claim by double induction over k = 0; :::;mo � 1 and the length of formula
C 2 Sub(A) with �2(C) = k:We call the induction over k the main induction, and the induction
for the length of formula the sub-induction.

Let k = 0; which is the induction base of the main induction. We prove the assertion for any
formula C with �2(C) = 0: By (30), the truth assignment �

0(vt; �) is the same as �(w`0+t; �) for t
(1 � t � mo): Also, C has no occurrences of B2(�): For the valuation of C; R

0
2 is not used at vt

and w`0+t: When the outermost connective of C is B1(�); R
0
1 does not connect vt with vt+1 and

the out-going references from vt are the same from w`0+t: Hence, (31) for C: The cases of the
other logical connectives, including in�nitary formulae, are similar. Hence, for all t = 1; :::;mo;
we have (31) for C 2 Sub(A) with �2(C) = 0:
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Suppose (31) for k < mo: Then, it is su¢ cient to consider the case �2(C) = k+1: The main
induction hypothesis is that (31) holds for any D 2 Sub(A) with �2(D) = k: The next step is
induction by the length of C: The �rst case is that C = B2(D) for some D: Then �2(D) = k;
we have (31) for D by the main induction hypothesis. By the choice of w`0+1; :::; w`1 and (29),
each of vt+1 and w`0+t+1 is accessible, respectively, from each of vt and w`0+t by R

0
2; thus, the

out-going references by R02 from vt are the same as w`0+t for all t � mo � k; we have (31) for
C = B2(D):

Then, we should consider the other connectives, :;�;^ and B1(�): Consider the case where
C = B1(D) for some D: Then �2(D) = k + 1: By the sub-induction hypothesis, we have (31)
for D: Since the out-going references by R01 from vt are the same as w`0+t for all t � mo� k; we
have (31) for C = B1(D): The cases of the other connectives are similar.

The equivalence (31) for k = mo implies that for all C 2 Sub(A);

(K; � ; w`0+1) j= C () (K0; � 0; v1) j= C:

Since v1 is connected to w`0 by R
0
2 and not by R

0
1; we have, for all C 2 Sub(A); (K; � ; w`0) j=

C () (K0; � 0; w`0) j= C: We do not change the out-going references with respect to R01 and R
0
2

from w0; :::; w`0�1. Also, the truth assignments � and �
0 are the same over W: Hence, for k =

0; :::; `0 and for all C 2 Sub(A); (K; � ; wk) j= C () (K0; � 0; wk) j= C: Hence, (K0; � 0; w0) j= A:

In sum, we have (K0; � 0; w0) j= A and (K0; � 0; vm0+2) j= :p: Thus, (K0; � 0; w0) 2 A � B!2 (p):
Case (B): In this case, for any in�nite sequence fw0; w1; :::g with wtR2wt+1 for all t � 0 and for
any w` 2 fw0; w1; :::g; there is no element w`R2w`0 for some w`0 2 fw0; w1; :::; w`g: In this case,
we can take any w` and plug v1; :::; vmo+2 to w`: Then, we construct (K0; � 0) in the same way
as above. Only we take w`+1; :::; w`+mo+2 from fw0; w1; :::g; here, the above cyclical argument
is unnecessary. The remaining part is the same as above, and we have (K0; � 0; w0) j= A and
(K0; � 0; vm0+2) j= :p: Thus, (K0; � 0; w0) 2 A � B!2 (p):�

Proof of Lemma 4.3: We show by induction over � � ! that  T : L� ! L� is uniquely
extended by E0, E1�-E4�: This holds for � = 0: Suppose the induction hypothesis that it holds
for all � < �. Then, we show that E1�-E4� uniquely de�ne  T : L� ! L�:

First, we prove that for any formulaG(p1; :::; pm) in L0 andG0(p1; :::; pm) =  T (G(p1; :::; pm));

 TG(A1; :::; Am) = G0( TA1; :::;  
TAm) for any A 2 P�: (32)

This is proved by induction on the length of formula G:We consider only the case ofm = 1; from
which a general case is simply obtained. If G(p) = p; then  T (G(A)) =  T (A) = G0( T (A)):
We consider the induction step only for the case where the outermost connective of G(p) 2 L0 is
Bi(�); i.e., G(p) = Bi(D(p)) for some D(p); supposing (32) for D(p): Then, G0(p) =  TBi(D(p))
= Bi( 

TD(p))^ TD(p) by E4�; and let D0(p) =  TD(p): Since  TD(A) = D0( T (A)) by (32)
for D(p); we have G0(p) = Bi(D0( TA)) ^D0( TA); which is G0( TA):

Now, we show that  T is well-de�ned over F�: Suppose that ^hC�(A1; :::; Am) : � � 0i is
generated by a germinal form ^hC�(p1; :::; pm) : � � 0i and germs A1; :::; Am 2 P�: By (14),
C�0(p1; :::; pm) =  TC�(p1; :::; pm) 2 G; and let A0k =  T (Ak) 2 P� for k = 1; :::;m. Then,
abbreviating C�(A1; :::; Am) as C� ; we have  T (^hC� : � � 0i) = ^h TC� : � � 0i by E3�:
Now, by (32), C 0� =  TC� =  T (C�(A1; :::; Am)) = C�0( TA1; :::;  

TA1) 2 P� for all � � 0:
Hence, ^h TC� : � � 0i is generated by germinal form ^hC�0(p1; :::; pm) : � � 0i and germs
A01; :::; A

0
m 2 P�: Thus,  T (^hC�(A1; :::; A�) : � � 0i) 2 F�:
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We extend  T from P�[F� to the entire L� along I�1 - I�2: This is also by induction. The
steps in I�1 are standard. Consider I�2: Let A; ^hC� : � � 0i; ^hD� : � � 0i 2 L�; and assume
the induction hypothesis IH� :  TA; ^h TC� : � � 0i; ^h TD� : � � 0i 2 L�: We prove only
I�2:(ii) and I�2:(iii):

Consider I�2:(ii): By IH�, ^h TC� : � � 0i 2 L�; and by I�2:(ii); ^hBi( TC�) : � � 0i 2
L�: By I�2:(iii); we have ^hBi( TC�) ^  TC� : � � 0i 2 L�: This is written as ^h TBi(C�) :
� � 0i 2 L� by E4�. Thus,  T (^hBi(C�) : � � 0i) = ^h TBi(C�) : � � 0i = ^hBi( TC�) ^
 TC� : � � 0i 2 L�: In the case of j 6= i; this proof becomes simpler.

Consider I�2:(iii): By In�; ^h TC� : � � 0i 2 L� and ^h TD� : � � 0i 2 L�: By
I�2:(iii); we have ^h TC� ^  TD� : � � 0i 2 L�: By E3�;  T (^hC� ^ D� : � � 0i) =
^h T (C� ^D�) : � � 0i = ^h TC� ^  TD� : � � 0i 2 L�:�

Proof of Theorem 4.5. Take an arbitrary serial model (K; �) and let Kref be the re�exive
closure of K with respect to Ri. We show by induction on the length of A that

for all w 2W; (Kref ; � ; w) j= A() (K; � ; w) j=  T (A): (33)

Thus, Kref j= A() K j=  T (A): Since K is an arbitrary serial model, this equivalence implies,
by the completeness theorems for GL(L�) and GL(L�)+ Ti (Theorem 3.1 and its variant) that
(GL(L�)+Ti) ` A if and only if GL(L�) `  T (A).

We prove (33) by induction on the length of A 2 L�: We consider only the two cases: Case
A = ^hC� : � � 0i 2 F� and Case A = ^hC� ^D� : � � 0i generated by I�2:(iii):

Consider Case A = ^hC� : � � 0i 2 F�: Then, (Kref ; � ; w) j= ^hC� : � � 0i ()
(Kref ; � ; w) j= C� for all v � 0 () (K; � ; v) j=  TC� for all v � 0 by the induction hy-
pothesis. This is further equivalent to (K; � ; w) j= ^h TC� : � � 0i; which is equivalent to
() (K; � ; w) j=  T (^hC� : � � 0i):

Consider Case A = ^hC�^D� : � � 0i: The induction hypothesis is: (33) holds for C� andD�

for all � � 0: Now, (Kref ; � ; w) j= ^hC� ^D� : � � 0i () (K; � ; w) j= C� ^D� for all � � 0()
(K; � ; w) j=  T (C� ^D�) for all � � 0; which is equivalent to (K; � ; w) j= h T (C� ^D�) : � � 0i
() (K; � ; w) j=  T hC� ^D� : � � 0i:�
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