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Motivations of the Research

» For the case of GMM estimator or M-Estimators, including the
MLE, which do not involve estimation of infinite dimensional
parameter (parametric case), once we have the objective
function, the asymptotic variance can be computed easily.

» For the parametric MLE, the asymptotic variance is the inverse
of the information matrix:

_E [82 log f(z, /80)] -
oposT '
For the GMM estimator with the moment condition
E(m(z,6p)) = 0, the asymptotic variance with the optimal
weighting matrix is

[MTQ*M] -

where M = E[0m(z, 30)/0B37T] and
Q= E[m(z’ BO)m(Za BO)T]'
» The same is not the case for semiparametric estimators.
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Motivations of the Research (Cont.)

» Examples of semiparametric problems include

» Estimation of 3 in the partially linear regression model:
E(YIX=x,Z=2z)=x"B+¢(2).

Estimation of 3 in the single index model:

E(Y|X = x) = ¢(x1 + X7 B), where x = (x, %7) 7.
Average Derivative: denoting E(Y|Z = z) = g(2),

/OO ag(zz) fo(z)dz.

v

v
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v

Estimation of 8 = E(Y; — Yo|D = 1) in the program
evaluation problem under the conditional independence
assumption: E(Yy|X,D =1) = E(Ys|X, D =0) and the
common support condition.

Average Density: [ fy(z)?dz, where fy(z) denotes the
Lebesgue density of random variable Z.

v
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Motivations of the Research (Cont.)

» Although the central limit theorems for specific semiparametric
estimators for the parameters discussed above have been
investigated for some years and also standard methods to
derive general central limit theorems have been established
through the works of Ait-Sahalia (1991), Goldstein and Messer
(1992), Newey and McFadden (1994), Andrews (1994), Newey
(1994), Pakes and Olley (1995), Chen and Shen (1998), Ai
and Chen (2003), Chen, Linton, and Keilegom (2003), and
Ichimura and Lee (2010), Ackerberg, Chen, and Hahn (2012),
Chen, Liao, and Sun (2014), Ackerberg, Chen, Hahn, and Liao
(2014), Chen and Pouzo (2015), Mammen, Rothe, and
Schienle (forthcoming), Chen and Liao (forthcoming),
Escanciano, Jacho-Chavez, and Lewbel (forthcoming) the
asymptotic variance is not immediately obvious, in general, to
the extent MLE or GMM is, when we specify the objective
function that is used to define the estimator.
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Motivations of the Research (Cont.)

» In this paper, we show a way to compute the asymptotic
variance of semiparametric estimators by showing a way to
analytically compute the influence function of semiparametric
estimators.

» Definition of the Influence function: Let /3 be an estimator
and its probability limit is 3(fy) under the i.i.d. sampling of
zj ~ fb

» We say f is an asymptotically linear estimator iff:

(3 = B(fo)) = nM2 > (z) + op(1)
i=1

where E[1)(z;)] = 0 and E[¢(z:)(z)T] < oo.
(-) is called the influence function for the estimator J.

v
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Motivations of the Research (Cont.)

» Once we compute the influence function we know the
asymptotic variance is E[)(z)¢(z) ]
» Example: MLE,

N 02 log f(zi; fo) | " Dlog (z: o)
U(zi) = _E{ dBIBT ] B

» Definition of the locally regular estimator: An estimator 3
is a locally regular estimator of §(f) if, for a parametric
sub-model (1 — t,)fy + tng, for any t, = C - n~1/2 where C is
any positive constant with n > C?, the asymptotic distribution
of

V(B = B((1 = ta)fo + tag))

under (1 — t,)fy + tpg does not depend on the sequence.
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Motivations of the Research (Cont.)

» We show that for an asymptotically linear estimator

(3 = B(fo)) = n™H2 > w(z) + op(1),

i=1

that is “locally regular,”, for any fixed densities g, 8(fy) is
directionally differentiable in the direction of g — fy and

9B((1 — t)fo + tg)
ot

= [o@e@az
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Motivations of the Research (Cont.)

» By taking g = g/ to be a sequence of densities that
“converges’ to the Dirac Delta function at some point z,
[ (2, f)g(2)dZ approaches the influence function evaluated
at z, if ¥(Z, fp) is continuous at z:

- 0B((1 - t)fo + tgl)
lim
h—0 ot

t=0

~ lim / V(2)gh(2)dz = v(2).
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Motivations of the Research (Cont.)

» For example, let

1 zZ—z
hrsy
() = i (557).

where [ K(s)ds =1.
» Then by a change of variable, s = (2 — z)/h,

[ vtz = [ ok (7)o
- / (2 + hs)K(s)ds
— /Tﬁ(z)K(s)ds = (2).

» This provides an analytical method to compute the influence
function for semiparametric estimators.
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Main Results

» We consider parametric sub-models of the form
(1-t)fo+tg,

where t is a scalar with 0 < t < 1.
> Let
B((1—t)fo+tg) = plimp

n—o00
when the data are i.i.d. with p.d.f. (1 —t)fy + tg.

» We focus on g that is continuous and bounded on a compact
support which approximates a spike at some z. Consider g/’ —
Dirac delta at z, as h — oo, with support that shrinks to z.
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Main Results (Cont.)

Theorem 1. Suppose 3, an estimator of 3(fy), is (i)
asymptotically linear with influence function (Z) that is
continuous at z and z; is continuously distributed with pdf fy(Z)
that is bounded away from zero on a neighborhood of z and is (ii)
locally regular for the path f; = (1 — t)fy + tg! then

oB(L -t +tel)|  _ /q/;(f)ghdf.
=0 :

ot
Furthermore if B(f;) is differentiable at t = 0 with derivative
(2 gh(2)dz then B is locally regular.

Hidehiko Ichimura, Whitney Newey The influence function of semiparametric estimators



Main Results: A Sketch of the Proof

» The estimator {3 is asymptotically linear:
n
n/2 (8= B(h)) = n2 Y (@) + 0,(1).
i=1

» Let E,(-) denote the expectation under (1 — t,)fy + t,g).
» Adding and subtracting E, [¢(z;)],

m2 (B = B(k)) = n 23" {v(@) — Ealv(z)]}
i=1

+ n'2E, [(2)] + 0p(1).
» Observe that
n'2E, [1(z)]
— [v@N - )+ tegfldz = € [w(Dighaz.
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Main Results: Proof (Cont.)

» Also defining 3, = 3 ((1 — tn)fo + t,,gzh) we have

m2 (8= Ba) = 72N {ulz) — Ea (2]}
i=1
+V2(3(6) - 6a) + C [ w(2)ghdz + 0(1)

» Note that, under f; = (1 — t)fy + tg/,

—WZW z1) — Ea [¥(2)]} % N(O, V),

where V = E [¢(z)¢(z)T].
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Main Results: Proof (Cont.)

» Note that N(0, V) is the asymptotic distribution when t = 0.
» Thus local regularity implies

n*2 (B(fo) — Bn) + C [¥(2)ghdz — 0 or

ﬂ(ﬂ))_ﬁ((cl/;1t/nzﬂ)+tngz /w(z hds s 0

» This holds if and only if B((1 — t)fy + tgl) is differentiable
with respect to t at t = 0 with the derivative [ 1 (Z,1f)gldz.

Thus ,
0B ((1 — t)fy + tg] .
HE=opr ) — [ uzetos
» By continuity of ¥(2) at z, we have
[ oz - u(e)

as h — 0.
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Example 1. Average Density

» |n this case
5(6) = [ f(@Pdz,
» Then

51 0+ tgf) = 10~ () + eh(BP oz
~ [16(3) + e () - (D)Paz
— [ Ardz+ 2t [ 6(lelE) - AlE)dz
+2 [l - (P2
> Thus 88/0t evaluated at t = 0 equals
2 [ H(2)lg(5)~(2)]dz, which converges to 2o (2)~ ().
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Example 2. Hausman and Newey (1995, 2015)

» In this consumer surplus case

plio) = /,,p /Ooo w () exp(—b(p — p°))E(QIB, 7)dydp.
» Then
B((1 - t)fo + tgh
/ 0 / y)exp(—=b(p — p°))Ex(QIB, 7)dydp,
p

where z = (q, p,y) and

J 67[(1 t)fo + tgf]dg
[1(1 = t)fy + tgh]dg

Et(Q’p7y)
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Example 2. Hausman and Newey (1995, 2015) (Cont.)

» Taking the derivative with respect to t we have

/ i — ) dq/[(l—t)ﬁ3+tgh]dq
- / §l(1— ) + tg"dd / (& — f)dd

divided by [[[(1 — t)fo + tgM]dg]>.
» Evaluating it at t = 0, we have

[ d(g! —ﬁ)dqfoﬁ? f fodg [(gh — f5)d§
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Example 2. Hausman and Newey (1995, 2015) (Cont.)

J (gl — f)ddf(p, y) — | Gfodd [ (g7 — fo)d§

f(p. 7
_ [ agldafo(p,y) — | G%dG [ gfd§
fo(B. 7)?
_ [a — E(QI, y)]g(’;)’y)(ﬁ,f/)
fo(B, ¥) '
» Thus 8ﬁ/8t evaluated at t = 0 equals, denoting
W (B, y) = w(y) exp(—b(p — p°)),
/ /00 W(B,7)la — E(QIB, )&, (B, 7 )dyd[3
fo(B. )

which converges to
W(p,y)la — E(Qlp, )]
fo(p, )
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Example 3. GMM

» The target parameter 5 = (3(fy) is implicitly defined via the
first order condition:

om’(Z, )
op

» Analogously 8; = B((1 — t)fy + tgl) is implicitly defined via

E[ IWE[m(Z,5)] = 0.

8mT(Z, ,Bt)

Et[ 8,8

IWEm(Z,8:)] = O,
where
Em(Z. 5] = [ m(z, 501 - () + tel(2)ldz
= [ m(z.B)lA(E) + tlel(2) - (D)dz
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Example 3. GMM (Cont.)
» Thus

E[—]WE [ ] 98

857_
W [ m(z, 56062~ (2 =
» Observing that [ m(Z, 5(f))f(Z)dZ = 0, we have

05 (tgf + (1 — t)h)
ot

t=0

- {erywe 5] } e w [ m(z. e)et(2)a2

{E[—]WE o]} e e o)
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Example 4. Single Index Models (Conditional Mean)

» The model is E(Y|X) = ¢(XT6p) with normalization
imposed; first regressor coefficient is 1 so that 6y = (1,57)7.

» Consider an estimator that is based on the identification result
that the following minimization problem yields unique solution
B(f): Let § = (1,b7)7

min E{[Y — E(YIXT0)?}).

» Note that at b = f3, the derivative of E(Y|X76) with respect

to b equals y N
¢'(XT00)[X — E(X|XT6p)].

» Thus the target parameter [3 satisfies the first order condition
0= E{¢/(XT6o)[X — E(X|XT6o)I[Y — E(Y|XT60)]}.

» We compute 93/0t using this implicit definition of the
functional 5.
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Example 4. Single Index Models (Conditional Mean) (Cont.)

» Observing that E[Y — E(Y|X T 6)|X] = 0, almost surely in X,
the only terms that are left are two terms:

» the term that takes derivative in Y — E(Y|X7#), and
> the term that takes derivative for the density defining the
outer-most expectation.

» They yield
0 = —E{[6/(X )P IR~ E(RIX T 00)]IX~E(X|XT00)] T} O
+ [ 6T EKIXTOI[Y~E(Y X b0)][g! ol
Taking the limit yields
0 = —E{[6/(X )P IR~ E(RIX o)X~ E(X|XT00)] T} O
o (TO)I — EKITA)lly — E(YIxT0o)]
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Example 5. Single Index Models (Conditional Median)

» The model is M(Y|X) = ¢(X ) with the same
normalization as before is imposed.
» Consider an estimator that is based on the identification result

that the following minimization problem yields unique solution
B(f): Let § = (1,b7)7

min E{|Y — My(Y|XT6)|}.

» Note that at b = f3, the derivative of M,(Y|X78) with
respect to b equals

¢/ (XT00)IX — E(XIXT B/ fy x(Ma(Y|XT 60)| X).
» Thus the target parameter [3 satisfies the first order condition

0= E{¢/(XT60)[X — E(X|XT6p)]
< [2-1{Y < Ma(Y X 00)} — 1]/ fvix(Ms(Y|X T 60)|X)}.
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Example 5. Single Index Models (Conditional Median)
(Cont.)

» We compute 93/0t using this implicit definition of the
functional .

» Observing that E{[2- 1{Y < Mg(Y|XT6p)} — 1]|1X} =0,
almost surely in X, the only terms that are left are two terms:

> the term that takes derivative in 2Fy|x(Mg(Y|XT6o)|X) — 1],
and

» the term that takes derivative for the density defining the
outer-most expectation.

> They yield
0= —2E{[¢/(XT60)]’[X — E(X|XT6)]
x [X — E()~(|XT90)]T/fy|x(Mﬁ(Y|XT90)|X)}%
+ / ¢/(XT60)[X — E(X|XT6o)]

X [2-1{Y < Ms(Y|X7 60)} =11/ fyix(Ms(Y|XT 60)|X)g7—fo] cdxdy.
The influence function of semiparametric estimators



Example 5. Single Index Models (Conditional Median)
(Cont.)

» Taking the limit yields
0= —E{[¢/(X7 0)]*[X — E(X|XT6p)]
x [X — E()~<|XT00)]T/fy|x(M6(Y‘XT90)’X)}%

+ ¢ (xT00)[% — E(X|x7 )]
x [2- 1y < Ma(Y|xT00)} — 11/ frix(Ms(Y|x" 6)|X).
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Example 6. Average Treatment Effect (ATE)
» We make the unconfoundedness assumption:

and

where Y7 and Yj are the outcomes with and without
treatment.
» Under this assumption

ATE = E[g1(X) — go(X)] = E[g1(X)] — Elgo(X)],
where go(X) = E[Y|X,D = 0], g1(X) = E[Y|X, D = 1].
» An estimator of the ATE can be formed from nonparametric
estimators 8o(x) and g1(x) as

B=ntS[a(X)—8o(X)] =S a(X)—nt Y &0(X)).
i=1 i=1 i=1
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Example 6. ATE (Cont.)

» The average treatment effect can be expressed in terms of
densities:

B = Bl - 607
f'
51,:/ X)x — Jyf(y,x,j)dy y,Xde (x)dx.
f(x,4)
where f(y, x,j) is the joint density of (Y, X, D) evaluated at
Y=y, X=x,D=jand f(x,j) = ffy,XJ)dy
» For j=1,0, let
gii(y, x,d) = hk((y = 7)/h)k((xa — %1)/h)
~k((xd — X4)/h))1{d = j}.
» Then
gig(x, d) = h9k((xa — 52)/h) -+ k{(x¢ — %a) /) 1{d =}
81j(x) = h=9k((xs = x1)/h) - k((xa — %a)/h)).
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Example 6. ATE (Cont.)

We compute

9 [ [ ylteg(y,x, d) + (1= t)f (v, x,j)ldy
ot [tg(x, d) + (1 — t)f(x,))]

[tgKi(x) + (1 — t)f(x)]dx

and evaluate at t = 0. This yields

f)/[gk Y X, d) y’Xuj)]dy %)dx
/ J f(x,J) Fxd

/fyf Y, %, J)dyf x)lgig(x, d) — f(x, j)ldx

/ Lot X0 ey 0) e
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Example 6. ATE (Cont.)

» Taking the limit as k — oo yields,

1d =) 8~ E(Y)
“1{d = }E(Y|D = j, X = %) f'éixj)
+E(Y|D = j, X = %) — E(Y)).

+E(Y)

» Observe that f(x,j)/f(x) = Pr(D = j|X = X).
» Thus the influence function for 3 is, for
P(x) =Pr(D =1|X = x)

g1(x) — go(x) — B+ P(x)"d(y — g1(x))
+[1 =PI (L = d)(y — &o(x)).
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Sufficient Conditions for Asymptotic Linearity

» Using the influence function, we provide a sufficient set of
conditions under which the asymptotic linearity of an estimator
holds for semiparametric GMM estimator with the moment
condition

E[m(zi, Bo,Y0)] = 0.
» Let M(B) = n~1Y."_ m(z, 3,4) where ¥ is an estimator of
70-
» Objective function is

m(B)T Wr(B)
» The first order condition is
_ BT L
0= 95 Wm(p).
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Sufficient Conditions for Asymptotic Linearity (Cont.)

» Taylor series expansion of rﬁ(ﬁ) at f3p yields

_om(B)T arm(B)
0= Tw[m(ﬁo) 98T

where 3 lies on the line connecting 3 and fo. Thus

AT - om(B)] " om(B)T .
= oy = - (2D 20D O i,

(B Bo)l,

Therefore, the key component to show asymptotic linearity is

Vni( ﬁo)_”_l/zz (zi, Bo, %)
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Sufficient Conditions for Asymptotic Linearity (Cont.)

> Let u(y) = E[m(z, Bo, )] and D() be the linear functional
representing the Frechet derivative of (7).

» We consider the following decomposition, where ¢(z;)
represents the adjustment term for estimating .

Vm(Bo) — 72> [m(zi, Bo, o) + (z)] = Ru+ Ro + R

i=1
= V/n[Mm(Bo) — n71 Z m(z;, Bo, v0) — 1(¥)]
= Vn[p(y ) D(% - %)]
Rs = /nD(§ —~0) —n~*/? Z ().

i=1
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Sufficient Conditions for Asymptotic Linearity (Cont.)

» Theorem 7 in the paper provides high level assumptions on
R1—Rj3 to ensure asymptotic linearity of the semiparametric
GMM estimators.

» Theorem 8 provides low level assumptions for semiparametric
GMM estimators, under which the conditions in Theorem 2
holds when we use a series estimator for estimating o making
use of the results by Belloni, Chernozhukov, Chetverikov, Kato
(2015).

Hidehiko Ichimura, Whitney Newey The influence function of semiparametric estimators



Estimation of Asymptotic Variance

» Once the formula for the influence function is known, one can
use it to estimate the asymptotic variance.

» For example, for the average density estimation, the influence
function is 2[fy(z) — B(fp)] so that

> (2 - B
i=1

can be shown to be a consistent estimator.
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Estimation of Asymptotic Variance (Cont.)

» Alternatively, one can use the result more directly, and
examine estimates (3, ; obtained under data created from

(1—t)fo + tgh

where N < n observations of Z; from i =1,...,n, denoted ZJ*
for j=1,..., N are chosen randomly from the sample and
used as z.

» We can then compute (3Z7t - B)/t This is an estimator of
the influence function at z.

» An estimator of the asymptotic variance is

1 N (sz*,t - B)(BZJ*,t - 3)7—

t2

=

j=1

Hidehiko Ichimura, Whitney Newey The influence function of semiparametric estimators



A relation to the Jackknife Bias Correction

» Our view of the influence function provides an alternative to
the Jackknife bias correction in the context of semiparametric
estimators.

» To see this we first review the Jackknife bias correction.
> Let l:_(,-) denote the empirical CDF using but the ith

observation, B(,) = ﬂ(ﬁ(,)), and ,3() =n1 27:1 B(,) .
» The Jackknife bias estimator is

A

Biasjsek = (n—1)(By — B).

» This can be rewritten as

" By - B
(n=1)I 125()—5)]—” Zh
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A relation to the Jackknife Bias Correction

» Observe that

Fiy(t=(n-1)"3 1z <1)
J#i
=(n—1)"1 Z Uz <t)—(n—-1)""(z < t)
F(t)—(n—1)"1(z < t)

n

n—-1
=1+ (-1 YO~ (n-) Mz < 1)
= F(t)+ (n—1)7F(t) — 1z < t))].
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A relation to the Jackknife Bias Correction (Cont.)

» Using this we can see that
(n=1)[Bi)—B1 = [B(F+(n-1) " [F=1(z < ))-B(F)/(n-1)~"

> Since this can be viewed as an estimator of the influence
function, denote it by 1(z;).
> Then Biasj,cx = —n~ 130, 0(z).

» Analogously, our result suggest to estimate bias by

B=—n"tY [8((1 - t)f + tgh) - B)/t.

i=1
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A relation to the Jackknife Bias Correction (Cont.)

» Thus our approach can be viewed as a smoothed version of the
Jackknife approach. This point is further explored in Ichimura
and Newey (2016).

» This approach may allow us to obtain bias reduction for
semiparametric estimators in the way it was not possible by the
Jackknife method because our approach imposes smoothness.

» This point is explored in “Locally Robust Semiparametric
Estimation” (with V. Chernozhukov, J-C Escanciano, W.
Newey).
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Conclusion

» We provided purely an analytical way to compute the influence
function for semiparametric estimators, avoiding probabilistic
arguments, just like GMM or MLE estimators in parametric
settings.

» This approach provides an alternative method to compute the
asymptotic variance of semiparametric estimators.

» We provided sufficient set of conditions under which the
calculation is valid.

» We are exploring using the influence function for bias
reduction in semiparametric estimators.
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