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Abstract

We develop a theory of an equilibrium-econometric analysis of rental housing

markets with indivisibilities. It provides a bridge between a (competitive) market

equilibrium theory and a statistical/econometric analysis. The listing service of

apartments provides the information to both economic agents and an econometric

analyzer: each economic agent uses a small part of the data from the service for his

economic behavior, and the analyzer uses them to estimate the market structure.

It is argued that the latter may be done by assuming that the economic agents take

the standard price-taking behavior. We apply our theory to the data in the rental

housing markets in the Tokyo area, and examine the law of diminishing marginal

utility for household. It holds strictly with respect to the consumption, less with

commuting time-distance, and much less with the sizes of apartments

Key-Words: Rental housing market, Indivisibilities, Competitive equilibrium, Dis-

crepancy measure, Law of diminishing marginal utility, Ex post rationalization

JEL Classification: C10, D45, R20

1. Introduction

1.1. General idea

We develop a theory of an equilibrium-econometric analysis of rental housing markets,

and test it with some data from the Tokyo area. Our theory has the following salient

features:
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(i): An econometric method is developed through an (market) equilibrium theory.

(ii): Both economic agents and an econometric analyzer are facing statistical compo-

nents in the economy. We show that an equilibrium theory without statistical com-

ponents is regarded as an idealization, and that its structure is estimated by our

equilibrium-econometric analysis.

(iii): We define the measure of discrepancy between the prediction by our theory and

the best statistical estimator, and show that the prediction is quite satisfactory in the

example of the Tokyo area.

Feature (ii) tells why and how we can use an equilibrium theory for an econometric

analysis of (i). Feature (iii) is a requirement from the econometric point of view. Here,

focusing on these features, we discuss our motivations and backgrounds.

One fundamental question arises in an application of an equilibrium theory to real

economic problems with an econometric method: what is the source for errors in the

econometric analysis? This may be answered in the same way as classical statistics: the

source is attributed to partial observations. In many economic problems, this answer

is applied not only to the economic analyzer but also to economic agents. Both face

non-unique (perturbed) rents of goods. Error terms represent the effects of variables not

included in available information to either economic agents or the econometric analyzer.

We look at a rental housing market in Tokyo. In the Tokyo area, the rental housing

market is held, day by day, in a highly decentralized manner, i.e., many households

(demanders) and many landlords (suppliers) look for better opportunities1. Various

weekly magazines, daily newspapers, and internet services for listing apartments for

rental prices (rents) are available as media for information transmission of supplied

units together with rents from suppliers to demanders2. With the help of those media,

rental housing markets function well, even though rents are not uniform over the “same”

category of apartment units. We will call these media housing magazines.

Housing magazines give concise and coarse date about each listed apartment unit,

following a fixed number of criteria, rents, size, location, age, geography, etc. This

information is far from the description of its full characteristics. This is because the

number of weekly listed units is large; e.g., 100−1, 200 listed around one railway station,
and an weekly issue may exceed 500 pages.

The data of rents show that they are heterogeneous over the “same” category of

apartment units. The market can still be regarded as “perfectly competitive” in that

each has many competitors. These may appear contradictory, but can be reconciled;

1 In the city of Tokyo (about 12 millions of residents), the percentage of households renting apartments

is about 55% in 2005, and in the entire Japan, the percentage is about 37%.
2There are many decentralized real estate agents. In our analysis, we do not explicitly count real-

estate companies. But we should remember that behind the market description, many real-estate

companies are included.
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households and landlords look at summary statistics, and behave as if they are facing

uniform rents. Taking this interpretation into account, the econometric analyzer may

make estimation of a structure of the market. These are the two faces of our theory.

We call the attributes listed in the magazine as systematic components and the oth-

ers as non-systematic factors. The systematic ones are described as a market model

E, which is assumed to be an equilibrium theory without perturbations, and the non-

systematic factors are summarized by error terms ². The listed rents in housing mag-

azines are given as p(E) + ², where the rent vector p(E) is determined by E. Both
economic agents and econometric analyzer observe the rents p(E) + ², but they have
different purposes. The economic agents use them for their behavioral choices, while

the econometric analyzer does for the estimation of the systematic components of E.
Those structures are depicted in Fig.1. In the left box, the rents and behavioral choices

are simultaneously determined as an equilibrium. The determined, yet perturbed, rents

are used by the analyzer. We study each of those, and then synthesize them.

p(E) + ²
−→
←− behavioral choices =⇒ estimation of E

Fig.1; E(²) = (E; ²)
We adopt the theory of assignment markets for the systematic part E, which was

initiated by Böhm-Bawerk [17] and developed by von Neumann-Morgenstern [21] and

Shapley-Shubik [16]. In this theory, housings are treated as indivisible commodities,

which significantly differs from the urban economics literature of bid-rent theory from

Alonso [1]3. In particular, we adopt a theoretical model given by Kaneko [7] in which

income effects are allowed. In the model, apartments units are classified into a finite

number, T, of categories, and are traded for rents measured by the composite commodity

other than housing services.

1.2. Specific developments

Let us discuss specific developments of our theory. First, the systematic part of the

housing market is summarized as:

E = (M,u, I;N,C), (1.1)

whereM is the set of households, u their utility functions, I the income distribution for

households, and N the set of landlords, C the cost functions for landlords. The details

of (1.1) and the market equilibrium theory are given in Section 2.

3See van der Laan et al. [18] and its references for recent papers for the literature of assignment

markets, and see Arnott [2] for a recent survey on the urban economics literature from Alonso [1].
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In the systematic part, the rents are uniform over each category of apartments. How-

ever, the rents listed in housing magazines are not uniform over each category. Those

non-uniform rents are resulted by non-systematic factors other than the components

listed in (1.1). The effects of non-systematic factors are summarized by one random

variable ²k for each category k. That is, the apartment rent for a unit d in category k

is determined by pk + ²kd, where pk is the competitive rent for category k and ²kd is

an independent random variable identical to ²k. This ²kd represents properties of unit

d such as its specific location in addition to the systematic components in E. The rent
pk is latent in that only pk + ²kd is observed in housing magazines. The market model

with housing magazines is denoted by E(²) = (E; ²).
As described above, the housing market model E(²) has two faces: it is purely

the trading place with media for information transmissions; and it is a target of an

econometric study. In both faces, housing magazines serve information about rents to

households/landlords and to the econometric analyzer. Here, we emphasize that these

two faces are asymmetric.

An economic agent pursues his utility or profit in the market, rather than to un-

derstand the market structure. If he looks at the average of the rents of randomly

taken 10 apartment units from one category, its variance becomes 1/10 of the origi-

nal distribution. Thus, the uniform rent assumption for each category seems to be an

approximation. This interpretation will be expressed by the convergence theorem (see

Theorem 3.2). Once this is obtained, we can use a housing market model E without
errors as representing a market structure.

The econometric analyzer estimates the components in E. Let Γ be some class of
market models E so that each E in Γ has a competitive rent vector p(E). He minimizes
the total sum of square residuals TR(PD, p(E)) from the observed data PD to p(E) by
choosing E in Γ. This will be formulated in Section 4.

Here, we consider two specific choice problems:

A: a measure η of discrepancy between the data and predicted rent vector;

B: a candidate set of market models Γ.

For A, the discrepancy measure η is defined in terms of TR(PD, p(E)) in Section 4,
to describe how much the estimated result deviates from the optimal estimates. In

our application to the data in Tokyo, the value of the measure will be shown to be

1.025 ∼ 1.032, i.e., 2.5% ∼ 3.2% of the optimal estimates, by specifying certain classes

of market models with homogeneous utility functions.

As an application, we examine the law of diminishing marginal utility for the house-

hold. It holds strictly with respect to, particularly, the consumption other than the

housing services.

For B, we consider two classes of market models. We show the Ex Post Rationaliza-

tion Theorem in Section 6 that we make the value of the discrepancy measure exactly 1
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by choosing a certain set Γ of market models. However, this has no prediction power in

that only after observations, we adjust a model to fit to the data, because this candidate

set Γ has enough freedom. This means that a too general candidate set is meaningless

for an econometric analysis. As a kind of opposite, we consider the standard linear

regression in our equilibrium-econometric analysis. When the households have the com-

mon linear utility functions with respect to attributes of housing and consumption, our

econometric analysis becomes linear regression, which is “too specific” in that income

effects cannot be taken into account. The choice of an appropriate candidate set is

subtle.

This chapter is organized as follows: In Section 2, the market equilibrium theory

of Kaneko [7] is described together with the example from the Tokyo area. In Sec-

tion 3, a market equilibrium theory with perturbed rents is discussed. In Section 4,

statistical/econometric treatments are developed as well as a definition of the measure

for discrepancy is defined. In Section 5, we apply those concepts to a data set from

the Tokyo metropolitan area. In Section 6, we consider two classes of utility functions.

Section 7 gives conclusions and concluding remarks.

2. Equilibrium Theory of Rental Housing Markets

In Section 2.1, we describe the market structure E of (1.1), and state the existence
results of a competitive equilibrium in E due to Kaneko [7]. In Section 2.2, we describe
a rental housing market in the Tokyo area.

2.1. Basic theory: the assignment market

The target situation is summarized as E = (M,u, I;N,C), where

M1: M = {1, ...,m} - the set of households, and each i ∈M has a utility function ui and

an income Ii > 0 measured by the composite commodity other than housing services;

M2: N = {1, ..., T} - the set of landlords and each k ∈ N has a cost function Ck.

Each i ∈M looks for (at most) one unit of an apartment, and each k ∈ N supplies some

units of apartments to the market. The apartments are classified into categories 1, ..., T .

These categories of apartments are interpreted as potentially supplied. Multiple units

in one category of apartments may be at the market. When no confusion is expected,

we use the term “apartment” for either one unit or a category of apartments.

Each household i ∈ M chooses a consumption bundle from the consumption set

X := {0, e1, ..., eT} × R+, where ek is the unit T -vector with its k-th component 1
for k = 1, ..., T and R+ is the set of nonnegative real numbers. We may write e

0 for

0, meaning that he decides to rent no apartment. A typical element (ek,mi) means
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that household i rents one unit from the k-th category and enjoys the consumption

mi = Ii − pk after paying the rent pk for ek from his income Ii > 0.

The initial endowment of each household i ∈ M is given as (0, Ii) with Ii > 0. His

utility function ui : X → R is assumed to satisfy:

Assumption A (Continuity and Monotonicity): For each xi ∈ {0, e1, ..., eT},
ui(xi,mi) is a continuous and strictly monotone function of mi and ui(0, Ii) > ui(e

k, 0)

for k = 1, ..., T.

The last inequality, ui(0, Ii) > ui(e
k, 0), means that going out of the market is preferred

to renting an apartment by paying all his income.

Remark 1. The emphasis of the model E is on the households and their behavior,
rather than on the landlords. We simplify the descriptions of landlords: As long as

competitive equilibrium is concerned, we can assume without loss of generality that

only one landlord k provides all the apartments of category k (cf., Sai [15]). Still, he is

a price-taker.

By this remark, we assume that the set of landlords is given as N = {1, ..., T},
where only one landlord k provides the apartments of category k (k = 1, ..., T ). Each

landlord k has a cost function Ck(yk) : Z
∗
+ → R+ with Ck(0) = 0 < Ck(1), where

Z∗+ = {0, 1, ..., z∗} and z∗ is an integer greater than the number of households m. The
cost of providing yk units is Ck(yk). No fixed costs are required when no units are

provided to the market4. The finiteness of Z∗+ will be used only in Theorem 3.2.

We impose the following on the cost functions:

Assumption B (Convexity): For each landlord k ∈ N,
Ck(yk + 1)− Ck(yk) ≤ Ck(yk + 2)− Ck(yk + 1) for all yk ∈ Z∗+ with yk ≤ z∗ − 2.

This means that the marginal cost of providing an additional unit is increasing.

We write the set of all economic models E = (M,u, I;N,C) satisfying Assumptions
A and B by Γ0.

Now, we define the concept of a competitive equilibrium in E = (M,u, I;N,C). Let
(p, x, y) be a triple of p ∈ RT+, x ∈ {0, e1, ..., eT}m and y ∈ (Z∗+)T . We say that (p, x, y)
is a competitive equilibrium in E iff

UM(Utility Maximization Under the Budget Constraint): for all i ∈M,
Ii − pxi ≥ 0; and ui(xi, Ii − pxi) ≥ ui(x0i, Ii − px0i) for all x0i ∈ {0, e1, ..., eT}
with Ii − px0i ≥ 0;
4The cost functions here should not be interpreted as measuring costs for building new apartments.

In our rental housing market, the apartment units are already built and fixed. Therefore, Cj(yj) is the

valuation of apartment units yj below which he is not willing to rent yj unit for the contract period.

This will be clearer in the numerical example in Section 2.2.
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PM(Profit Maximization): for all k ∈ N,
pkyk − Ck(yk) ≥ pky0k − Ck(y0k) for all y0k ∈ Z∗+;
BDS(Balance of the Total Demand and Supply):

P
i∈M xi =

PT
k=1 yke

k.

Note pxi :=
PT
k=1 pkxik. These conditions constitute the standard notion of competitive

equilibrium. Here, each agent maximizes his utility (or profits) as if he can observe all

rents p1, ..., pT , and then the total demand and supply balance.

The above housing market model is a special case of Kaneko [7], where the existence

of a competitive equilibrium is proved.

Theorem 2.1. (Existence) In each E = (M,u, I; N,C) in Γ0, there is a competitive
equilibrium (p, x, y).

A competitive equilibrium may not be unique, but we choose a particular competitive

rent vector. We say that p is a competitive rent vector iff (p, x, y) is a competitive

equilibrium for some x and y, and that p = (p1, ..., pT ) is a maximum competitive

rent vector iff p ≥ p0 for any competitive rent vector p0. By definition, a maximum
competitive rent vector would be unique if it ever exists. We have the existence of a

maximum competitive rent vector in E = (M,u, I;N,C). This fact has been known
in slightly different models since the pioneering work of Shapley-Shubik [16] and Gale-

Shapley [4]. Also, see Miyake [13].

Theorem 2.2. (Existence of a maximum competitive rent vector) There is a

maximum competitive rent vector in each E = (M,u, I;N,C) in Γ0.

We can define also a minimal competitive rent vector, but here we focus on the

maximum one.

2.2. Application to a rental housing market in Tokyo (1)

Consider the JR (Japan Railway) Chuo line from Tokyo station in the west direction

along which residential areas are spread out. See Fig.1. The line has 30 stations from

Tokyo to Takao station, which is almost on the west boundary of the Tokyo great

metropolitan area. Here, we consider only a submarket: we take six stations and three

types of sizes for apartments. We explain how we formulate this market as a market

model E = (M,u, I;N,C).
Look at Table 1. The first column shows the time distance from Tokyo to each

station, i.e., 18, 23, 31, 52, 64, and 70 min. It is assumed that people commute to

Tokyo station (office area) from their apartments. The first raw designates the sizes of

apartments, and the three intervals are represented by the medians, 15, 35, and 55 m2.

Thus, the apartments are classified into T = 6× 3 = 18 categories.
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1

Figure 2.1: Chuo Line

We assume that the households have the common base utility function U0(t, s,mi),

from which the utility function ui(xi,mi) in the previous sense follows: it is given as

U0(t, s,mi) = −2.2t+ 4.0s+ 100
√
mi, (2.1)

where t is the time distance, 18, 23, 31, 52, 64, or 70 (minutes), s is the size 15, 35, or

55 (m2), and mi is the consumption after paying the rent. A pair (t, s) determines a

category. By calculating the first part −2.2t + 4.0s of U0(t, s, c), we obtain hk for the
corresponding cell of Table 1. These hk’s give the ordering over the 18 categories: For

example, −2.2t+ 4.0s takes the largest value at (t, s) = (18, 55); we label k = 1 to the
category of (t, s) = (18, 55). Similarly, it takes the 7-th value at (t, s) = (64, 55), and

thus k = 7. We have the correspondence λ0(t, s) = k from (t, s)’s to k’s. We call λ0 the

category function.

Now, we define the utility function u : X = {e0, e1, ..., e18} ×R+ → R by

u(ek,mi) = hk + 100
√
mi, (2.2)

where λ0(t, s) = k and hk = −2.2t+4.0s for k ≥ 1 and h0 is chosen so that h0+100
√
Im >

h1. The derived utility function in (2.2) satisfies Assumption A. The concavity of

100
√
mi expresses the law of diminishing marginal utility of consumption.

The third entry wk of category k in Table 1 is the number of units listed for sale

in housing magazines; particularly, the Yahoo Real Estate (15, June 2005). The largest

number of supplied units is w11 = 1176 for the smallest apartments in the Nakano area,
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and the smallest number is w9 = 102 for the largest apartments in the Takao area.

The total number of apartment units on the market is
P18
k=1wk = 8957. These large

numbers will be important for statistical treatments in subsequent sections.

Table 1: Basic data for the rental housing market

k hk wk

time
(min)

\ size
(m2)

< 25 25− 45 45− 65
18:Nakano 11 20.4 1176 5 100.4 761 1 180.4 269

23:Ogikubo 12 9.4 1153 6 89.4 739 2 169.4 367

31:Mitaka 14 -8.2 716 8 71.8 571 3 151.8 267

52:Tachikawa 16 -54.4 460 10 25.6 283 4 105.6 260

64:Hachio-ji 17 -80.8 1095 13 -0.8 346 7 79.2 184

70:Takao 18 -94.0 103 15 -14.0 105 9 66.0 102

We assume that the same number, m = 8957, of households come to the market to

look for apartments and they rent all the units.

To determine a competitive equilibrium, we separate between the cost functions for

k = 1, ..., T − 1 and k = T. For k = 1, ..., T − 1, we define the cost function Ck(yk) as:

Ck(yk) =

⎧⎨⎩
ckyk if yk ≤ wk

“large” if yk > wk,

(2.3)

where ck > 0 for k = 1, ..., T −1 and “large” is a number greater than I1. Thus, only the
supplied units are in the scope of cost functions. For k = T, we assume that more units

are waiting for the market. Let w0T be an integer with w
0
T > wT . We define CT (yT )

by (2.3) with cT > 0 and substitution of w0T for wk. Hence, the market rent for an

apartment in category T must be cT . This satisfies Assumption B.

For calculation of the maximum competitive rent vector, we take c18 = 48.0 and

c1, ..., c17 are “small” in the sense that all the wk units are supplied at the competitive

rents for k = 1, ..., 17. The cost 48, 000 yen is about the average rents of the smallest

category in Takao around in 2005.

Finally, we assume that the (monthly) income distribution I = (I1, ..., I8957) over

M = {1, ..., 8957} is uniform from 100, 000 yen to 850, 000 yen. Hence, I8957 = 100, 000

and I1 = 850, 000. In fact, this uniform distribution is just for the purpose of calculation,

and can be changed into other distributions5.

5At this stage, the result is not sensitive with the uniform distribution assumption, i.e., if we change

it to a truncated normal distribution, the calculated rents are not much changed. However, in the later

calculation in Section 5, a change of this assumption seems to affect the result.
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Figure 2.2: Calculated and average prices

Under the above specification of E = (M,u, I;N,C), we can calculate the maximum
competitive rent vector p = (p1, ..., p18), which is given in Table 2. The average rents

p = (p1, ..., p18) as well as the standard deviations (s1, ..., sT ) from the Yahoo Real Estate

are given. Fig.2 depicts the average rents p = (p1, ..., p18) from the data of as well as

p = (p1, ..., p18).

In Section 4.1, we will define the discrepancy measure in order to consider how much

the calculated rent vector p = (p1, ..., pT ) fits the data from housing magazines. For the

present data, the value is about 1.032, i.e., the discrepancy is 3.2%.

Table 2: Calculated and average rents

k pk p̄k sk (1,000yen)

time
(min)

\ size
(m2)

< 25 25− 45 45− 65
18:Nakano 11 78.5 74.4 12.7 5 113.9 112.5 23.8 1 154.8 162.7 26.7

23:Ogikubo 12 74.3 75.8 13.6 6 108.6 107.0 23.1 2 149.0 146.2 20.9

31:Mitaka 14 68.7 68.9 9.8 8 110.6 102.1 21.2 3 140.0 143.1 21.6

52:Tachikawa 16 56.4 59.8 11.0 10 80.7 78.1 12.5 4 116.6 116.0 16.5

64:Hachio-ji 17 50.0 51.5 7.5 13 71.0 73.3 11.3 7 104.0 103.5 17.9

70:Takao 18 48.0 46.4 5.9 15 67.2 65.1 9.6 9 98.1 86.1 11.3
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3. Rental Housing Markets with Housing Magazines

In a competitive equilibrium in E = (M,u, I;N,C), all the apartment units in each

category are uniformly priced, but in reality, rents are not uniform. This non-uniformity

represents the effects of non-systematic factors. Here, we modify a housing market model

by taking non-systematic factors into account. We show that the market model E can
still be used as an analytic tool for the markets with non-systematic factors.

3.1. Time structure of the rental housing market

Since our approach is a static equilibrium theory, we do not need time indices. How-

ever, it would be easier first to describe the economy with the time structure for the

consideration of decision making with housing magazines. We use time indices only for

this explanation.

The market is recurrent and is described using the “week” due to Hicks [5] in

Fig.4. In week t, market Et(²t) = (Et; ²t) has, in addition to the systematic part
Et = (M t, ut, It;N t, Ct), a perturbation term ²t = (²t1, ..., ²

t
T ) as the summary of non-

systematic factors.

Et−1(²t−1) Et(²t)
· · · −→ week t− 1 −→ week t −→ · · ·

Diagram 2: weekly markets

Interactions between information from housing magazines and decision making by

households/landlords have a complex temporal structure. For logical clarity, here we

simplify the story in the following manner. Before going to the market of week t,

households M t look at housing magazines of week t− 1 and decide which category they
go to. Landlords N t decide to a supply quantity, also looking at the same housing

magazine (recall Remark 1). Decision making by each household is only about category

choice; and decision making by each landlord is only about supply quantity choice.

Then, households M t and landlords N t go to the market of week t, and there they

trade apartment units (no explicit decision making is considered here in our theory)

and disappear from the market.

In Et(²t), the rental prices are realized with error term ²t. This ²t is a T -vector

of independent random variables which perturb the market rents ptk for apartments

in category k = 1, ..., T to ptk + ²
t
k. However, when apartment unit d in category k is

provided, the error term applied to the unit d is ²tkd. Here, it is assumed that ²
t
kd is

independently and identically distributed as ²tk over those units in category k.

To distinguish between random variables and their realizations, we prepare the un-

derlying probability space (Ω,F ,μ) which all the random variables in this paper follow.
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In week t − 1, apartment units of categories 1, ..., T were brought to the housing

market. Let Dt−11 , ...,Dt−1T are the (finite nonempty) sets of those units. Each unit d in

Dt−1k is listed in housing magazines with its realized rent pt−1k + ²t−1kd (ω
t−1
o ), where ωt−1o

is the realized value of the state of nature. The entire housing magazine of week t − 1
is described as©

pt−11 + ²t−11d (ω
t−1
o ) : d ∈ Dt−11

ª · · · ©
pt−1T + ²t−1Td (ω

t−1
o ) : d ∈ Dt−1T

ª
. (3.1)

Each household i ∈M t looks at the housing magazines (3.1) of week t−1, and then
forms an estimate of the rent distribution:

P
i,t
k = pt−1k + ²

i,t
k for each k = 1, ..., T. (3.2)

In general, P
i,t
k (ω

t) = pt−1k + ²
i,t
k (ω

t) is a random variable for each k; possibly, it may be

degenerated such as P
i,t
k (ω

t) = pt−1k +²t−1kd (ω
t−1
o ) given by the observation of a particular

unit d. Household imakes a choice of a category by looking at his rent estimator in (3.2).

That is, he maximizes the expected utility (subject to the budget constraint) relative

to this rent expectation.

Each landlord k (k = 1, ..., T ) decides the supply quantity of apartment units in

category k based on his estimate pt−1k + ²
k,t
k of the rents of apartments in category k.

3.2. Equilibrium with subjective estimates

Assuming that the market is stationary and P
i,t
k , as a random variable, is independent

of week t, we drop the superscript t from Et(²t) and P i,tk . The economy where the house-
holds and landlords have their estimators are denoted by E(²; ²M∪N ) = (E(²); ²M∪N ),
where ²M∪N = ({²i}i∈M , {²k}k∈N). Thus, each household i ∈M has his own subjective

estimate P ik = pk+²
i
k in each k = 1, ..., T, and each landlord k ∈ N has the rent estimate

P kk = pk + ²
k
k. We assume that these rent estimates do not take negative values:

P ik(ω) ≥ 0 and P kk (ω) ≥ 0 for all ω ∈ Ω. (3.3)

Since the realization ωt−1o of the previous week differs typically from the realization ωto
of the present week, we should distinguish between the realization of the previous week

and the present one. We still use the symbol ωt−1o for the previous week, and the symbol

ω without the time index for the present week.

We give two examples for such subjective rent estimates.

Example 3.1. (Average rents) Looking at the housing magazine (3.1), household i

(landlord k) takes some samples of rents from category k. Let Li be the samples taken.

Then, if he uses the average of the observed rents, he has a single-value for estimate:

P ik(ω) =
P
d∈Lk

(pk + ²kd(ω
t−1
o ))/ |Lk| , (3.4)
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which is independent of ω. On the other hand, if he is more careful and take some

uncertainty about rents into account, he could have the random average P ik :

P ik(ω) =
P
d∈Lk

(pk + ²kd(ω))/ |Lk| . (3.5)

This exact form must be very rare. The point of this example is: The number of samples

|Lk| is typically small such as 5 ∼ 25. In the second case, since ²kd are independent

random variables identical to ²k for d ∈ Dk, the expected value is E(P ik) = pk + E(²k)
and its variance is E(P ik − E(P ik))2 = E(²k − E(²k))2/ |Lk| . Thus, the variance is
reciprocal to the number of samples.

The above examples suggest that the economic agents may take rents with smaller

variances than the actual variances of ² = (²1, ..., ²T ). If household i (landlord k) very

carefully scrutinizes the housing magazines by drawing a histogram. Since the number

of units listed in the magazine is quite large, it is close to the true P ik = pk+²
i
k = pk+²k.

Since, however, the magazine is quite large and not well-organized, it is costly to extract

the distribution pk + ²k(·). Instead, often, the information publicly used is the average
rent of samples; the examples of (3.4) and (3.5) are better fitting to reality.

In the model E(²; ²M∪N), the concept of a competitive equilibrium is adjusted by

incorporating each agent’s rent estimation. We, first, take this estimation into account

in utility maximization for each household, and then we formulate a landlord’s profit

maximization.

To capture the budget constraint for household i with estimation P i = (P i1, ..., P
i
T ),

we define the following utility function: for xi ∈ {0, e1, ..., eT} and ω ∈ Ω,

Ui(xi, Ii − P i(ω) · xi) =
⎧⎨⎩
ui(xi, Ii − P i(ω) · xi) if 0 ≤ Ii − P i(ω) · xi

ui(0, Ii) otherwise.

(3.6)

In the second case, his budget is violated; so, no trade occurs. In general, this utility

function Ui(xi, Ii−P i(·) ·xi) is a random variable. We define the expected utility before
going to a category:

EUi(xi, Ii − P i · xi) =
Z
ω∈Ω

Ui(xi, Ii − P i(ω) · xi)dμ(ω). (3.7)

He chooses a category by maximizing this expected utility function over {0, e1, ..., eT}.
We assume that each landlord k has a risk-neutral utility function. Then his expected

utility is calculated as the expected payoff:

E(ykP
k
k − Ck(yk)) = ykE(P kk )− Ck(yk). (3.8)
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If E(²kk) = 0, i.e., E(P
k
k ) = pk, (3.8) becomes simply the profit function ykpk − Ck(yk).

However, we treat landlords in the same way as households in that he may construct

his rent estimate P kk without assuming E(²
k
k) = 0.

In the housing market E(²; ²M∪N), a competitive equilibrium is simply defined by

substituting the objective functions (3.7) and (3.8) for the utility functions and profit

functions in UM and PM. Nevertheless, we need to take two approximations: a γ-

competitive equilibrium and a convergent sequence of rent estimates.

Let γ be a nonnegative real number. We call (p, x, y) is a γ-competitive equilibrium

E(²; ²M∪N ) when the following two conditions and the BDS condition,
P
i∈M xi =PT

k=1 yke
k, hold:

γ-Expected Utility Maximization: for all household i ∈M,

EUi(xi, Ii − P i · xi) + γ ≥ EUi(x0i, I − P i · x0i) for all x0i ∈ {0, e1, ..., eT}.

γ-Expected Profit Maximization: for all landlord k = 1, ..., T,

E(P kk yk − Ck(yk)) + γ ≥ E(P kk y0k −Ck(y0k)) for all y0k ∈ Z∗+.

The other notion is that ²M∪N is “small perturbations”. To describe this, we intro-
duce the convergence of the vectors of estimators ²M∪N .We say that an error sequence
{²M∪N,ν : ν = 1, ...} = {({²i,ν}i∈M , {²k,ν}k∈N ) : ν = 1, ...} is convergent to 0 in proba-
bility iff for any δ > 0,

μ({ω : max
j∈M∪N

°°²j,ν(ω)°° < δ})→ 1 as ν → +∞, (3.9)

where k·k is the max-norm k(y1, ..., yT )k = max
1≤t≤T

|yt| . This mean that when ν is large

enough, the estimation ²j,ν(ω) is distributed closely to 0.

We have the following theorem. The proof will be given in Section 8.

Theorem 3.2. (Convergence to E) Suppose that the sequence of estimation errors
{²M∪N,ν : ν = 1, ...} is convergent to 0 in probability.
(1): If (p, x, y) be a competitive equilibrium in E, then for any γ > 0, there is a νo such
that for any ν ≥ νo, (p, x, y) is a γ-competitive equilibrium in E(²; ²M∪N,ν).

(2): Suppose that a triple (p, x, y) satisfies pxi < Ii for all i ∈ M. Then, the converse
of (1) holds.

When the rent expectation for landlord k ∈ N satisfies E(²k) = 0, his expected profit

is simply given as the profit function, and so we need to consider neither the convergent

sequence nor the γ-modification for landlord k.Also, if a competitive equilibrium (p, x, y)
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is strict in the sense that a household (landlord) maximizes his utility at a unique choice,

then we do not need the γ-modification for the household (landlord).

The convergence condition is interpreted as meaning that the subjective rent ex-

pectation of each household (landlord) has a small variance. Theorem 3.2 states that

when each household i (landlord j) has his rent expectation ²i (or ²j) with a small

variance, his utility maximization (or profit maximization) in the idealized market E is
preserved approximately in the market E(²; ²M∪N,ν) for large ν, and vice versa. Thus,
the competitive equilibrium in E(²; ²M∪N,ν) can well be represented by one in E.

4. Statistical Analysis of Rental Housing Markets

We turn our attention to estimation of the structures of the rental housing market from

the data given in housing magazines. In Section 4.1 we develop various concepts to

connect the data with possible market models and to evaluate such a connection. In

Section 4.2 we specify a class of market models for estimation.

4.1. Estimation of the market structure

We denote, by Eo(²o) = (Eo; ²o), the true market, to distinguish between Eo(²o) and an
estimated E. We call Eo = (Mo, uo, Io;No, Co) the latent true market structure. We

assume that this Eo satisfies Assumptions A and B of Section 2, i.e., Eo ∈ Γ0. The
maximum competitive rent vector po = (po1, ..., p

o
T ) of E

o is called the latent market rent

vector. Let Dok be a nonempty set of apartment units listed in category k = 1, ..., T.

Once the perturbation term ²o is realized at ω ∈ Ω for each d ∈ Dok, k = 1, ..., T , we

have the housing magazines {P o1d(ω) : d ∈ Do1}, ..., {P oTd(ω) : d ∈ DoT}. Here, ω is not
fixed to be a specific ωo. The listed rent for each unit d ∈ Dok, k = 1, ..., T is given as:
P okd(ω) = p

o
k + ²

o
kd(ω). We estimate components of E

o from the housing magazines; in

this paper, specifically, we estimate the utility functions of households.

Let p = (p1, ..., pT ) be a rent vector in RT , which is intended to be an estimated one.
Then, the total sum of square residuals TR(P

o
D(ω), p) is given as

TR(P
o
D(ω), p) =

TP
k=1

P
d∈Do

k

(P okd(ω)− pk)2. (4.1)

This is the distance between the data and estimated rent vector.

Let Γ be a subset of Γ0 where T is fixed and M = {1, ...,m} is determined by m =PT
k=1 |Dok| . Our problem is to choose E = (M,u, I;N,C) to minimize TR(P oD(ω), p(E))

in Γ, where p(E) is the maximum competitive rent vector in E. We write our problem
explicitly:
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Definition 4.1. (Γ-MSE)We choose a model E from Γ to minimize TR(P oD(ω), p(E))
subject to the condition:

(∗): (p(E), x, y) is a maximum competitive equilibrium in E for some (x, y)

with yk = |Dok| for k = 1, ..., T.

The additional condition yk = |Dok| for k = 1, ..., T requires (p(E), x, y) to be com-
patible with the number of apartment units listed in the housing magazines.

If the latent true structure Eo belongs to Γ, it is a candidate for the solution of the
Γ-MSE. However, we do not know whether or not Eo belongs to Γ. A simple idea is to
choose a large class for Γ to guarantee that Eo could be in Γ. In fact, this idea does not
work well: in Section 6.1, we discuss the negative result for this; we should somehow

look at a narrower class for Γ.

As the benchmark, we consider the average rent estimator : given the housing mag-

azines P oD = {P okd : d ∈ Dok and k = 1, ..., T}, we define P
o
= (P

o
1, ..., P

o
T ) by

P
o
k(ω) =

P
d∈Do

k
P okd(ω)¯̄

Dok

¯̄ for each ω ∈ Ω and k = 1, ..., T. (4.2)

This is the best estimator of the latent market rents po = (po1, ..., p
o
T ). Each realization

P
o
(ω) (ω ∈ Ω) is the unique minimizer of TR(P oD(ω), p) with no constraints. When

E(²ok) = 0, P
o
k is an unbiased estimator of p

o
k.

Lemma 4.2. (1) For each ω ∈ Ω, TR(P oD(ω), P
o
(ω)) ≤ TR(P

o
D(ω), p) for any p =

(p1, ..., pT ) ∈ RT .
(2) When E(²ok) = 0, P

o
k is an unbiased estimator of p

o
k, i.e., E(P

o
k) = p

o
k.

Proof.(1) Let ω ∈ Ω be fixed. Since TR(P
o
D(ω), p) is a strictly convex function of

p = (p1, ..., pT ) ∈ RT , the necessary and sufficient condition for p to be the minimizer
of TR(P

o
D(ω), p) is given as ∂TE(PD(ω), p)/∂pk = 0 for all k = 1, ..., T. Only the average

P
o
(ω) = (P

o
1(ω), ..., P

o
T (ω)) satisfies this condition.

(2) Since ²okd is identical to ²
o
k for all d ∈ Dok and E(²ok) = 0, we have E(²okd) = 0 for all

d ∈ Dok. Hence E(P
o
k) =

P
d∈Do

k
E(P okd)/ |Dok| =

P
d∈Do

k
(pok +E(²

o
kd))/ |Dok| = pok.

The estimator P
o
enjoys various desired properties such as consistency (i.e., conver-

gence to the latent market rent vector po in probability as mink |Dk| tends to infinity)
and efficiency in the sense of Cramer-Rao. For these, see van der Vaart [20].

We have the decomposition of the total sum of square residuals, which corresponds

to the well-known decomposition property in the regression model (cf., Wooldridge [19]).

This will be a base for our further analysis.
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Lemma 4.3. (Decomposition) For each ω ∈ Ω,

TR(P
o
D(ω), p) = TR(P

o
D(ω), P

o
(ω)) +

TP
k=1

|Dok| (P
o
k(ω)− pk)2. (4.3)

Proof The term
P
d∈Do

k

(P okd(ω)− pk)2 of TR(P oD(ω), p) for each k is transformed to:

P
d∈Do

k

(P okd(ω)− P
o
k(ω) + P

o
k(ω)− pk)2 =

P
d∈Do

k

(P okd(ω)− P
o
k(ω))

2

+
P
d∈Do

k

2(P okd(ω)− P
o
k(ω)) · (P ok(ω)− pk) +

P
d∈Do

k

(P
o
k(ω)− pk)2.

The second term of the last expression vanishes by (4.2). The third is written as

|Dok| (P
o
k(ω)− pk)2. We have (4.3) by summing these over k = 1, ..., T .

The first term of (4.3) is the residual between the data and the averages (optimal

estimates) of rents. The second is the total sum of the differences between the average

P
o
(ω) and p, and this is newly generated by the estimates p = (p1, ..., pT ). We call the

ratio

η(p)(ω) =
TR(P

o
D(ω), p)

TR(P
o
D(ω), P

o
(ω))

= 1 +

PT
k=1 |Dok| (P

o
k(ω)− pk)2

TR(P
o
D(ω), P

o
(ω))

(4.4)

the discrepancy measure of p from of P
o
(ω). The second is the theoretical discrepancy,

relative to the smallest total sum of residuals from P
o
(ω). In the example of Section

2.2, η + 1.032 (denoted by η0), i.e., the theoretical discrepancy is only 3.2%6.

4.2. Subclass Γsep of Γ0

We estimate the utility functions uo = (uo1, ..., u
o
m) in E

o = (Mo, uo, Io;No, Co) from

the rents listed in the housing magazines, assuming that the other components in

Eo = (Mo, uo, Io;No, Co) are given from the other information included in the housing

magazines. For example, the set of householdsMo is given as {1, ...,m}, where m is the

cardinality of the data set Do = ∪Tk=1Dok.
The set of market models Γsep consists of E = (M,u, I;N,C) satisfying the following

three conditions:

S1: The incomes of households are ordered as I1 ≥ ... ≥ Im > 0.
6 Incidentally, in the present context, the coefficient of determination is defined as

T

k=1 |Do
k| (P ok(ω)−

P
o

(ω))2/TV (P
o
D(ω), P

o

(ω)), where P
o

(ω) is the entire average of P oD. It indicates how much the system-

atic factors explain the observed rental prices. In the above example, the coefficient is approximately

0.757.
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S2: Every household in M has the same utility function u1 = ... = um expressed as

u(ek,mi) = hk + g(mi) for all (e
k,mi) ∈ X, (4.5)

where h0, h1, ..., hT are given real numbers with hk > h0 for k = 1, ..., T and g : R+ → R

is an increasing and continuous concave function with g(mi)→ +∞ as mi → +∞ and

h0 + g(Ii) > hk + g(0) for k = 1, ..., T.

S3: Each landlord k = 1, ..., T has a cost function of the form (2.3).

In S1, the households are ordered by their incomes. Condition S2 has two parts:

Every household has the same utility function; and the utility function is expressed

in the separable form. The former part is interpreted as requiring the households to

have the same location of their offices. The latter still allows the law of diminishing

marginal utility over consumption, i.e., g(mi) may be strictly concave. Condition S3 is

for simplification: Our theory emphasizes on the households’ side.

The set Γsep may be regarded as very narrow from the viewpoint of mathematical

economics in that the households have the same utility functions and the landlords’ cost

functions are also very specific. However, we will show in Section 6.1 that the class Γsep
is still too large in that the estimated model has no prediction power. Thus, we will

consider a narrower class for Γ.

Amethod of calculating a maximum competitive equilibrium (p, x, y) in E = (M,u, I;N,C)
was given in Kaneko [8] and Kaneko et al. [10]. This method is used to implement our

econometrics. Here, we describe this method without a proof.

Consider a rent vector p = (p1, ..., pT ) with p1 ≥ ... ≥ pT > 0. This is obtained by
renaming 1, ..., T. Then, we regard the units in category 1 as the best, and will suppose

that the richest households 1, ..., |Do1| rent them. Similarly, the units in category 2 are
the second best and the second richest households |Do1| + 1, ..., |Do1| + |Do2| rent them.
In general, defining

G(k) =
kP
t=1

|Dot | for all k = 1, ..., T, (4.6)

we suppose the households G(k−1)+1, ...,G(k) rent units in category k.We focus on the
boundary households G(1),G(2), ..., G(T − 1) and their incomes IG(1), IG(2), ..., IG(T−1).

We have the following lemma due to Kaneko [8] and Kaneko, et al. [10]. Our

econometric calculation is based on this lemma.

Lemma 4.4. (Rent Equations) Consider a vector (p1, ..., pT ) with p1 ≥ ... ≥ pT > 0.
Let E = (M,u, I;N,C) ∈ Γsep satisfying
(1): pk ≤ IG(k) for all k = 1, ..., T − 1;
(2): ck ≤ pk and wk = |Dok| for all k = 1, ..., T,
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where ck is the marginal cost given in (2.3). Suppose also that (p1, ..., pT ) satisfies

hT−1 + g(IG(T−1) − pT−1) = hT + g(IG(T−1) − pT )
hT−2 + g(IG(T−2) − pT−2) = hT−1 + g(IG(T−2) − pT−1)

· · ·
h1 + g(IG(1) − p1) = h2 + g(IG(1) − p2).

(4.7)

Then, there is an allocation (x, y) such that (p, x, y) is a maximum competitive equilib-

rium in E with yk = |Dok| for all k = 1, ..., T .

In (4.7), the boundary household G(T − 1) compares his utility hT−1 + g(IG(T−1) −
pT−1) from staying in a unit in category T − 1 with the utility hT + g(IG(T−1) − pT )
obtained by switching to category T. Also, the household G(T − 2) makes a parallel
comparison between hT−2+g(IG(T−2)−pT−2) and hT−1+g(IG(T−2)−pT−1), and so on.
The logic of this argument is essentially the same as Ricardo’s [14] differential rents.

The rent pT = cT in the worst category T is regarded as the land rent-cost of farm

lands, which corresponds to Ricardo’s absolute rent.

5. Application to the Market in Tokyo (2)

Here, we apply our equilibrium-econometric analysis to the rental housing market in

Tokyo described in Section 2.2. First, we give a simple heuristic discussion on our

application, and then give a more systematic study of it.

5.1. Heuristic discussion

For a study of a specific target, we consider a more concrete class for Γ than the class

Γsep given in Section 4.2. In Section 2.2, we used a specific form of the base utility

function U0(t, s,mi) = −2.2t + 4.0s + 100√mi and obtained the resulting value of the

discrepancy measure, η0 = 1.032. Perhaps, we should explain how we have found it and

how good it is relative to others.

Let us compare several other base utility functions with (2.1):

U1(t, s,mi) = −t+ s+ 100√mi η1 = 3.259

U2(t, s,mi) = −2t+ 255
√
s+ 1000 + 100

√
mi η2 = 1.036

U3(t, s,mi) = −74t+ 165s+ 100mi η3 = 1.124.

(5.1)

With U1, the discrepancy measure η takes large value 3.259. Thus, the total sum of

square residuals from the estimated rents is more than the three-times of that from the
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average rents. With U2, the value of η is already almost as small as 1.032 given by (2.1).

With U3, it is larger than this value, but U3 is entirely linear. The law of diminishing

marginal utility does not hold.

The case of U1 tells that if coefficients are arbitrarily chosen, the discrepancy value

could be large. On the other hand, U0 is chosen by minimizing the discrepancy measure

η by changing the coefficients of t and s in the class of base utility functions:

U(1, 1, 1
2
) := {U(t, s,mi) = −α1t+ α2s+ 100

√
mi : α1,α2 ∈ R}, (5.2)

where 1, 1 and 1
2
are the exponents of t, s and mi. The coefficient 100 of the third term

is chosen to make the values of α1,α2 clearly visible. Both U
0 and U1 belong to this

class. Then, U0(t, s,mi) is obtained by minimizing the discrepancy measure η in this

class. This is not the exact solution but is calculated using a method of grid-search by

a computer.

Consider our computation procedure more concretely. Suppose that U ∈ U(1, 1, 1
2
) is

given. For each (t, s) ∈ {18, 23, 31, 52, 64, 70}×{15, 35, 55}, we have the value−α1t+α2s,
which gives the ranking, 1, ..., 18 over {18, 23, 31, 52, 64, 70} × {15, 35, 55}. Recall that
this is described by the category function λ0. The k-th category has hk = α1t+α2s and

λ0(k) = (t, s). This method is the same as in Section 2.2. Hence, U determines

u(ek,mi) = hk + 100
√
mi for k = 0, 1, ..., T. (5.3)

Thus, each U ∈ U(1, 1, 1
2
) determines E ∈Γsep.

Now, we consider the subclass Γ(1, 1, 1
2
) of Γsep defined by

{(M,u, I;N,C) ∈ Γsep : u is determined by some U ∈ U(1, 1, 12)}. (5.4)

Then, we apply the Γ(1, 1, 1
2
)-MSE problem to the data in Section 2.2, and find an

approximate solution (α1,α2) for it.

An approximate solution will be obtained by the following process.

Step 1: we assume that each of α1 and α2 takes a (integer) value from some intervals,

say, [1, 100]. Then, we have 1002 = 104 combinations of (α1,α2).

Step 2: for each combination (α1,α2), we find a maximum competitive rent vector p

compatible with the data set P oD(ω) and we have the value η of discrepancy measure.

The algorithm to find a maximum competitive rent vector given by Lemma 4.4 is used

to find the rent vector.

Step 3: we find a combination (α1,α2) with the minimum value of η among 104 com-

binations of (α1,α2).

If a solution is on the boundary, we calibrate the intervals, and if not, we repeat these

steps by choosing a smaller intervals with finer grids. Hence, the computation to ob-

tain the minimum value of η is not exact: it may be a local optimum as well as an

approximation.
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By the above simulation method, we have found the utility function U0(t, s,mi) of

(2.1) in the class Γ(1, 1, 1
2
) with η0 = 1.032.

The base utility function U2 is obtained by minimization in the class U(1, 1
2
~β2,

1
2
):

{U(t, s,mi) = −α1t+ α2
p
s+ β2 + 100

√
mi : α1,α2,β2 ∈ R}. (5.5)

In fact, when β2 is increased, the optimal value of η is decreasing (we calculated η up

to β2 = 400, 000), but it does not reach η0 = 1.032. Since β2 is getting large, the

second term is getting closer to the linear function. Therefore, we interpret this result

as meaning that the base utility function U0(t, s,mi) = −2.2t+4.0s+100√mi of (2.1)

would be the limit function.

The utility function U3(t, s,mi) is obtained by minimizing the value η in the class

U(1, 1, 1) :
{U(t, s,mi) = −α1t+ α2s+ 100mi : α1,α2 ∈ R}. (5.6)

That is, the utility functions are entirely linear. The estimation in this class is only

interested in seeing the relationship between our Γ-MSE problem and the standard

linear regression. This will be discussed in Section 6.2.

5.2. Law of diminishing marginal utility

In the above classes of base utility functions, U0(t, s,mi) gave the best value to the

discrepancy measure. The law of diminishing marginal utility holds strictly only for the

consumption term mi, but not for the other variables, the commuting time-distance t

and size of an apartment s. One possible test of this observation is to broaden the class

of base utility functions. Here, we will give this test.

Consider the following class U(π1 ~ β1,π2 ~ β2,π3 ~ β3):

U(t, s,mi) = α1(β1 − t)π1 + α2(s+ β2)
π2 + 100(mi + β3)

π3 , (5.7)

where α1,α2,β1,β2,β3,π1,π2,π3 are all real numbers. The introduction of β1 is natural,

since the commuting time-distance t has a limit. The parameters β2 and β3 will be

interpreted after stating the calculation result. The parameters π1,π2,π3 are related to

the law of diminishing marginal utility. When they are close to 1, the law is regarded

as not holding, and when they are far away from 1, the law holds.

The computation result is given as

UMU (t, s,mi) = 3.53(140− t)0.75 + 2.68(s+ 200)0.91 + 100(mi − 25)0.40, (5.8)

and the discrepancy value is ηMU = 1.025. Assuming the incomes are uniformly distrib-

uted, we adjusted parameters of the lowest income I8957, the highest income I1 and the
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lowest rent p18, and obtained the estimated minimum income as I8957 = 94 (×1000yen)
and the highest as I1 = 1120

7.

First, the law of diminishing marginal utility holds for each variable. However, the

degree is quite different: the degree of diminishing marginal utility is the largest with

consumption, the second with the commuting time-distance, and is the least with the

size of an apartment unit.

The fact that it is the least with the size may be caused by our restriction on

apartments up to 65m2. In Tokyo, we may find a quite small number of apartments

larger than 85m2, and omitted these “large” apartments, since the number of supply

is much smaller than the smaller types. This may be the reason for almost constant

marginal utility.

Second, the degree for the commuting time-distance is higher than that for the

apartment size. This suggests, perhaps, that the time-distance 70 minutes to Takao

station is already quite large. Our computation result is sensitive with β1 = 140, i.e.,

if we change β1 = 140 slightly either up or down, the value of η changed. Thus, this

upper limit has a specific meaning; it may be an upper limit for commuting.

Finally, the degree of diminishing marginal utility for consumption is quite large.

This means that the choice by a household renting an apartment crucially depends upon

its income level. The dependence of willingness-to-pay for an apartment upon income

is quite strong: a poor people do not (or cannot) want to pay for a rent for a good

apartment, but if they become rich, they would change their attitudes.

Nevertheless, the discrepancy value ηMU = 1.025 for UMU is not very different from

η0 = 1.032 for U0; despite of the fact that the latter has 2 parameters controlled and the

former has 8. This means that more precision after U0 does not give much differences.

It is more important to see the difference between the discrepancy values for U0 and

U3 (η3 = 1.124) in (5.1). After all, we conclude that the law of diminishing marginal

utility surely holds for consumption, but less for other variables.

This conclusion differs from the estimation result of a utility function in Kanemoto-

Nakamura [11] in the hedonic approach (cf., Epple [3]). It is stated in [11], p. 227,

that the degree of diminishing marginal utility is very low, for example, consumption

term is x0.978. The approach itself is totally different from ours. One difference is: all

variables take continuous values in the hedonic approach. This approach requires a very

large variety of attributes of apartment units. In contrast, the number T of apartment

categories should not be so large, because the choice of description criteria is restricted,

as discussed in Section 1.1.

7One possible amendment of our estimation is to change the assumption on the income distribution.

We have assumed that the incomes are distributed from the lowest I8957 to the highest I1. The above

computation result seems to be quite sensitive by changing these lowest and highest income levels.

Hence, it could give a better result if we replace the assumption of a uniform distribution by the data

available from the other source. This is an open problem.
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6. Two Classes of Market Models

Here, first we argue that Γsep is too large as a candidate set of models for estimation.

Second, we consider the other extreme, i.e., the class of linear utility functions, and

show that the Γ-MSE problem is equivalent to linear regression.

6.1. Γsep-market structure estimation: ex post rationalization

From the viewpoint of mathematical economics, the class Γsep of market models is

quite restrictive. However, the following theorem implies that it is too large to have

meaningful estimation. A proof will be given in the end of this section.

Theorem 6.1. (Ex post rationalization) Suppose that each Dok is nonempty and

the average rents P
o
(ω) = (P

o
1(ω), ..., P

o
T (ω)) are positive. Then, there exists a market

model E = (M,u, I;N,C) in the class Γsep such that for some (x, y), (P
o
(ω), x, y) is

a maximum competitive equilibrium in E with yk = |Dok| > 0 for k = 1, ..., T. This

existence assertion holds for any fixed g : R+ → R in Condition S2 of Section 4.2.

Within the class Γsep, we can “fully explain” any data set from housing magazines

in the sense that the estimate coincides with the average rents P
o
(ω) and the discrep-

ancy measure η takes the exact value 1. The key fact for this is that the number of

dependent variables P
o
(ω) = (P

o
1(ω), ..., P

o
T (ω)) is the same as that of independent

variables (h1, ..., hT ) in utility function u(e
k,mi) = hk + g(mi). For a different observed

P (ω) = (P 1(ω), ..., PT (ω)), the theorem gives different (h1, ..., hT ). The Γ(1, 1,
1
2
)-MSE

problem in Section 5.1 exhibits a clear-cut contrast: 18 average rents are explained by

the choice of parameters by changing essentially 2 parameter values, and ηo = 1.032.

Should we be pleased by finding a class to guarantee to “fully explain” each data

set? Or should we interpret this theorem as meaning that the true market E0 is included
in the class Γsep?

Contrary to these interpretations, we regard the above theorem as a negative re-

sult. The estimated economic model critically depends upon the observed average rents

P
o
(ω) = (P

o
1(ω), ..., P

o
T (ω)). If a different ω

0 happens and the realized rents P o(ω0) are
different, the estimated model E0 differs, too. This estimation explains the observed
rents only after observations; it cannot make any meaningful forecast. In particular,

since the assertion is done with an arbitrary given function g, it is totally incapable in

talking about the law of diminishing marginal utility8.

8The reader may recall the Debreu-Mandel-Sonnenshein Theorem in general equilibrium theory (see

Mas-Colell, et al. [12]) stating that any demand function with a certain required condition is derived

from some economic model. It describes the equivalence between the set of demand curves and the set

of economic models. In this sense, it gives an important implication to the theory of general equilibrium

theory.
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Perhaps, this is related to the fact that the degree of diminishing marginal utility

is very low in the hedonic price approach mentioned in Section 5.2. It allows a great

variety of attributes, which is contrary to the above negative interpretation of Theorem

6.1.

Proof of Theorem 6.1 We denote (P
o
1(ω), ..., P

o
T (ω)) by (p1, ..., pT ), and let G(k) =Pk

t=1 |Dot | for k = 1, ..., T. We assume without loss of generality that p1 ≥ ... ≥ pT > 0.
First, we let g : R+ → R be any monotone, strictly concave and continuous function

with lim
mi→+∞

g(mi) = +∞.
Let h0 = 0. We choose Im, IG(T−1), ..., IG(1) and define hT , hT−1, ..., h1 inductively

as follows: the base case is as follows:

(T -0): choose an income level Im so that Im > pT > 0, and then define hT > h0 +

g(Im)− g(Im − pT ).
The choices of Im and hT are possible by the monotonicity of g. Here, hT +g(Im−pT ) >
h0 + g(Im).

Let k be an arbitrary number with 1 ≤ k < T. The inductive hypothesis is that

IG(k) and hk are already defined. First, we choose IG(k−1) so that

(k-1) : IG(k−1) > pk−1 and IG(k−1) > IG(k).

This choice is simply possible. Then we define hk−1 by

(k-2) : hk−1 = hk + g(IG(k−1) − pk)− g(IG(k−1) − pk−1).
Since g(IG(k−1) − pk−1) ≤ g(IG(k−1) − pk), we have hk−1 ≥ hk.

By the above inductive definition, we have Im, IG(T−1), ..., IG(1) and hT , hT−1, ..., h1.
We also choose other Ii’s (i 6= m and i 6= G(k) for k = 1, ..., T ) so that Im ≤ Im−1 ≤
... ≤ I1.

Thus, we have the utility function u(ek,mi) = hk + g(mi) for (e
k,mi) ∈ X. By the

above inductive definition, (p1, ..., pT ) satisfies the recursive equation (4.7).

Let us define the cost function Ck(·) for landlord k. We assume 0 < ck ≤ pk for all
k = 1, ..., T − 1 and cT = pT . Then each Ck(·) is defined by (2.3) for k = 1, ..., T . Then,
by Lemma 4.4, (p1, ..., pT ) is the maximum competitive rent vector of E with yk = |Dok|
for k = 1, ..., T.¤

6.2. Linear utility functions and linear regression

Here, we compare our approach with the linear utility assumption to linear regression.

We assume that there are L attributes for the base utility function U for each household,

and the domain of U is expressed as Y = RL+×R+. In the example of Section 2.2, there
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are only two attributes, the commuting time t and the apartment size s. A linear base

utility function over Y is expressed as

U(a1, ..., aL,mi) =
LP
l=1

αlal +mi for all (a1, ..., aL,mi) ∈ Y. (6.1)

Here, al represents the magnitude of the l-th attribute of an apartment and αl ∈ R is

its coefficient for l = 1, ..., L. We denote the set of all base utility function of the form

(6.1) by Ulin. We choose 1 for the coefficient of mi for a direct comparison to the linear

regression analysis, while it was 100 in the previous examples.

An attribute vector τk = (τk1, ..., τ
k
L) ∈ RL+ is given for each k = 0, 1, ..., T. That is,

the choice ek gives the attribute vector τk, which means that an apartment in category

k has the magnitudes τk1, ..., τ
k
L of attributes 1, ..., L. For k = 0, τ0 is interpreted as

the attributes of the outside option. In the example of Section 2.2, category k = 5

(Nakano, size: 25-45) has the attribute vector τ5 = (18min, 35m2). Then, each U in

Ulin determines

u(ek,mi) = U(τ
k,mi) =

LP
l=1

αlτ
k
l +mi for all k = 0, 1, ..., T. (6.2)

We define the class Γlin := {E ∈ Γsep : u is determined by U ∈ Ulin and τ0, ..., τT}.
The boundary condition “u(0, Ii) > u(e

k, 0) for all k = 1, ..., T” holds E ∈ Γlin, because
E ∈Γsep. Once this class is defined, we have the Γlin-MSE problem.

The next lemma states that the competitive rents in E ∈Γlin are simply described
by the utility from the attributes of an apartment and some constant.

Lemma 6.2. Let E ∈ Γlin. If p = (p1, ..., pT ) is a maximum competitive rent vector in

E ∈ Γlin, then there is some β such that

pk =
P
l

αlτ
k
l + β > 0 for k = 1, ..., T and β < −

LP
l=1

αlτ
0
l . (6.3)

Proof. Let (p, x, y) be any competitive equilibrium in E = (M,u, I;N,C) in Γlin with
|Dok| = yk > 0 for all k = 1, ..., T. Without loss of generality, we assume that pk ≥ pT
for k = 1, ..., T − 1. First, we show

pk − pT =
P
l

αlτ
k
l −

P
l

αlτ
T
l for all k = 1, ..., T. (6.4)

Suppose that this is shown. Let β = pT −
P
l αlτ

T
l .We have, by (6.4), pk =

P
l αlτ

k
l +β

for k = 1, ..., T. For each k, since |Dok| = yk > 0 and ck > 0, we have pk ≥ ck.

Hence pk > 0 for k = 1, ..., T, which is the first half of (6.3). Since any household i in
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DoT chooses the T -th apartment rather than (0, Ii), i.e., U(e
T , Ii− pT ) =

P
l αlτ

T
l + Ii−

(
P
l αlτ

T
l +β) = Ii−β > u(0, Ii) = h0+Ii =

P
l αlτ

0
l +Ii, which implies β < −

P
l αlτ

0
l .

Now let us prove (6.4). Consider any k = 1, ..., T. Since |Dok| > 1, we take a household
i with xi = e

k. Since he chooses xi = e
k by utility maximization under p = (p1, ..., pT ),

we have
P
l αlτ l(k) + Ii − pk ≥

P
l αlτ l(T ) + Ii − pT . By the same argument for a

household i0 with xi0 = eT , we have
P
l αlτ l(t) + Ii0 − pk ≤

P
l αlτ l(T ) + Ii0 − pT .

Equation (6.4) follows from these two inequalities.

Now let us turn our consideration to linear regression: the rent of an apartment in

category k is assumed to be a linear combination of the magnitudes of attributes and

some constant. Mathematically, it is exactly the same as (6.3) subject to some error,

that is9,

Pk =
LP
l=1

αlτ
k
l + β + ²k for k = 1, ..., T. (6.5)

The attribute vectors τ0, ..., τT are fixed. Given the housing magazine P oD(ω) as data,

we estimate α = (α1, ...,αL) and β by minimizing the sum of square residuals, i.e., the

method of least squares. It is formulated by the following minimization problem:

min
α,β

TP
k=1

P
d∈Do

k

(P okd(ω)− pk)2 = min
α,β

P
k

P
d

µ
P okd(ω)− (

LP
l=1

αlτ
k
l + β)

¶2
. (6.6)

This is a no-constraint minimization problem and has a solution (bα, bβ).
The above linear regression problem is very close to the Γlin-MSE problem. In linear

regression, however, neither utility maximization nor profit maximization is included.

It would be worth considering the exact relationship.

The minimization (6.6) is applied to any data set P oD(ω), even if P
o
D(ω) contains

negative elements. On the other hand, the Γlin-MSE problem may not be if it contains

negative elements: if the estimated rent for category k is negative, landlord k provides

no apartments, i.e., condition yk = |Dok| is violated. We need a certain condition to
avoid such a case. For this, the following condition is enough, though it is not directly

on P oD(ω):
LP
l=1

αlτ
k
l + β > 0 for all k = 1, ..., T and β < −

LP
l=1

αlτ
0
l . (6.7)

Again, this corresponds to (6.3) in Lemma 6.2. Using this condition, we can state the

equivalence between the Γlin-MSE problem and the linear regression problem.

Theorem 6.3. (Linear Regression) Let (bα, bβ) ∈ RL ×R. Then, (bα, bβ) is a solution
of the minimization (6.6) and satisfies (6.7) if and only if there is a solution model bE

9This is regarded as a linear hedonic price model.
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in the Γlin-MSE problem such that bu of bE is determined by U of (6.2) with bα and the
maximum competitive rent vector p(bE) = bp is given as10

bpk = LP
l=1

bατkl + bβ for all k = 1, ..., T. (6.8)

In the example of Chuo line in Section 2.2, the base utility function and rents are

estimated as follows:

U(t, s,mi) = −0.74t+ 1.65s+mi and pλ0(t,s) = −0.74t+ 1.65s+ 41.3, (6.9)

where λ0(t, s) is the category function. This U is the same as U3 of (5.1) as a utility

function in that U3 = U/100. The discrepancy value η = η3 = 1.124 is larger than the

corresponding values given in Section 5 except U1.

The next lemma states that the rent vector given in (6.7) is sustained as a competitive

vector by some E in Γlin.

Lemma 6.4. (Sustainability) Let (6.7) hold for α = (α1, ...,αL) and β, and let pk =P
l αlτ

k
l + β > 0 for k = 1, ..., T. Then, there is a model E in Γlin such that p = p(E).

Proof : First, we define the base utility function by U(a1, ..., aL,mi) =
P
l αlal+mi. Let

I1, ..., Im be incomes with I1 > ... > Im > p1. We define cost functions C1, ..., CT−1 by
(2.3) with wk = |Dok| and ck < pk for k = 1, ..., T−1. Define CT by (2.3) with w0T > |DoT |
and cT = pT . In this case, for each k = 1, ..., T, yk = |Dok| maximizes landlord k’s profits.

The rents pk =
P
l αlτ

k
l + β satisfies the rent equation (4.7). Also, since β <

−Pl αlτ
0
l , each household i has the utility, u(e

k, Ii − pk) = Ii − β > Ii +
P
l αlτ

0
l =

u(0, Ii). Hence, his choice of an apartment is better than choosing no apartments.

Proof of Theorem 6.3 (Only-If) Let (α,β) be any vector satisfying (6.7) and let

pk =
P
l αlτ

k
l + β > 0 for k = 1, ..., T. By Lemma 6.4, p = (p1, ..., pT ) is the maximum

competitive rent vector of some E ∈ Γlin. Hence, if (bα, bβ) minimizes the total sum
of total square errors in (6.6), then it also minimizes TR(P

o
D(ω), p(E)) over Γlin with

yk = |Dok| for k = 1, ..., T.
(If) Suppose that bE is a solution of the Γlin-MSE problem, and that its maximum

competitive rent vector bp = (bp1, ..., bpT ) is expressed by (6.8). Let bα be the coefficients of
the utility function in bE and let bβ be the constant given in (6.8). For each k = 1, ..., T,
it holds that

PL
l=1 bαlτkl + bβ = bpk ≥ bck > 0, since some unit in category k is supplied inbE. Then, bβ < −Pl bαlτ0l by the boundary condition in bE.

10 In fact, “maximum” can be dropped in here in the sense that each E has a unique competitive rent
vector.
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Suppose that bp = (bp1, ..., bpT ) is not a solution of (6.6). Then, some other p0 =
(p01, ..., p

0
T ) with α

0 and β0 gives the smallest total sum of square errors in (6.6). Consider
the convex combination α(π) = πα0 + (1 − π)bα and β(π) = πβ0 + (1 − π)bβ with 0 ≤
π ≤ 1. The, (α(1),β(1)) gives the smaller total sum of square errors than any other

(α(π),β(π)). Since the total sum is a convex function of α and β, (α(0),β(0)) gives a

larger value than (α(π),β(π)) for any π (0 < π < 1). We can take a small π > 0 so

that β(π) < −Pl αl(π)τ
0
l and

PL
l=1 αl(π)τ

k
l + β(π) > 0. By Lemma 6.4, there is an

economy E in Γlin such that p(E) =
PL
l=1 αl(π)τ

k
l +β(π). This is a contradiction to the

supposition that bE is a solution of the Γlin-MSE problem. Hence, (bα, bβ) is a solution of
(6.6). .

7. Conclusions

We developed the equilibrium-econometric analysis of rental housing markets. Our

analysis provides a bridge between a market equilibrium theory and an econometric

analysis. This is built by focusing on housing magazines as serving information about

apartment units to economic agents (households, landlords) as well as to the econometric

analyzer. We modified the equilibrium theory by incorporating the former aspect, but at

the same time, we showed that we can ignore the error terms, which is the convergence

theorem (Theorem 3.2) for equilibrium theory.

Then, we introduced the discrepancy measure as the ratio of the total sum of square

residuals from the predicted rents over that from the average rents. In the best esti-

mation we obtained in Section 5, the measure takes about the value 1.025. This result

has strong implications on the law of diminishing marginal utility. It holds strictly for

consumption, less for the commuting time-distance to the office area, and much less for

the sizes of apartment units.

We have many untouched problems, which are divided into three classes: We end

this paper by mentioning some problems in each class.

(1): Subjective estimation: we simply assumed that each economic agent forms an

estimate of a rent distribution from housing magazines. Theorem 3.2 is a study of

this subjective estimation. However, a more study is of great interests also from the

viewpoint of inductive game theory (Kaneko-Kline [9]): the question is whether an

agent with a limited analytical ability can derive a meaningful estimation. This should

be studied not only theoretically but also empirically.

(2): Applications to housing markets along different railway lines and in different cities:

we discussed only a submarket along the JR Chuo railway line in Tokyo. The authors

have been applying the theory to some other railway lines, but those are not more than

pilot studies. A more systematic study of rental housing markets in different places

and in different time is an important future problem. Then, for example, the law of
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diminishing marginal utility can be tested in different areas.

Although there are almost no clear-cut segregations, in the Tokyo area (also in

Japan), with different income groups and/or ethnic groups, such segregations are com-

mon phenomena in the world. The theory of assignment markets has not been developed

to treat such problems. To treat it, we need to develop a more general procedure to

calculate a competitive equilibrium than that used in this paper. An application to such

cases will make our theory more fruitful.

(3): Applications to panel data: this is related to (2). Each housing magazine is issued

daily or weekly. Accumulating these housing magazines, we have panel data, and can

study the temporal changes of the housing market. One problem is to check the com-

parative statics results obtained in Kaneko et al. [10] and Ito [6] with those railway

lines. In doing so, we may have better understanding of the structure of the housing

market.

8. Proof of Theorem 3.2

Since the condition BDS in E is preserved to E(²; ²M∪N,ν), we show that the γ-UM and

γ-PM hold for E(²; ²M∪N,ν) for all ν ≥ some ν0, but show it only for a household i ∈M.
It is similar to prove it for j ∈ N ; the assumption that the domain of the profit function
is finite is used for it.

Now, let γ be an arbitrary positive number, and P i,ν = p+²i,ν for ν = 1, .... Consider

any i ∈M. Let zi ∈ {0, e1, ..., eT} with Ii − pzi ≥ 0. Then, by UM,
ui(x

i, Ii − pxi) ≥ ui(zi, Ii − pzi). (8.1)

We should consider two cases: xi = et (t 6= 0) and xi = 0, but now we consider the case
of xi = et.

As δ → 0, the utility value ui(e
t, Ii − (pt + δ)et)) converges to ui(x

i, Ii − pxi) =
ui(e

t, Ii − pt) by continuity of ui in Assumption A. Since {²i,ν} converges to 0 in prob-
ability, for any δ > 0, there is a ν(δ) such that for any ν ≥ ν(δ),

μ({ω :
°°²i,ν(ω)°° < δ}) < 1− δ

2
. (8.2)

Since ui is increasing in consumption by Assumption A, it holds that for all ν ≥ ν(δ),

EUi(e
t, Ii − P i,ν · et) ≥ (1− δ

2
)ui(e

t, Ii − (pt + δ)et)) +
δ

2
ui(e

t, Ii). (8.3)

Since the right-hand side converges to ui(e
t, Ii − ptet) as δ → 0, there is some δ1 such

that for all δ ≥ δ1,

(1− δ

2
)ui(e

t, Ii − (pt + δ)et)) +
δ

2
ui(e

t, Ii) ≥ ui(et, Ii − ptet)− γ

2
. (8.4)
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Since δ in (8.3) is arbitrary, we can take the above δ1 for δ. From (8.3) for δ1 and (8.4),

for any ν ≥ ν(δ1), we have

EUi(e
t, Ii − P i,νet) ≥ ui(et, Ii − ptet)− γ

2
. (8.5)

Now, let zi be in {0, e1, ..., eT}. Since ui is increasing in consumption, we have, using
(8.2) and (8.1), for all ν ≥ ν(δ),

(1− δ

2
)ui(e

t, Ii− (pt0 − δ)et)) +
δ

2
ui(e

t, Ii) ≥ EUi(et, Ii−P i,νet) ≥ EUi(zi, Ii−P i,νzit)
(8.6)

The first term converge to ui(e
t, Ii − ptet) as δ → 0. Hence, there is some δ2 such that

for any δ ≥ δ2,

ui(e
t, Ii − ptet) + γ

2
≥ (1− δ

2
)ui(e

t, Ii − (pt + δ)et)) +
δ

2
ui(e

t, Ii). (8.7)

Hence, from (8.6) and (8.7), it holds that for any ν ≥ ν(δ2),

ui(e
t, Ii − ptet) + γ

2
≥ EUi(zi, Ii − P i,νzi) (8.8)

Let δ3 = min(δ1, δ2). Then, it follows from (8.5) and (8.8) that for all ν ≥ δ3,

EUi(e
t, Ii − P i,νet) + γ

2
≥ ui(et, Ii − ptet) ≥ EUi(zi, Ii − P i,νzi)− γ

2
.

Connecting the first term with the last term, we have the final target: EUi(e
t, Ii −

P i,νet) + γ ≥ EUi(zi, Ii − P i,νzi).
In the case xi = 0, the first half of the above proof should be modified.

(2): Suppose the if clause of the assertion. Now, let {γβ} a positive decreasing and
converging sequence to 0. For each γβ, we find a νβ such that for all ν ≥ νβ, (p, x, y)

is a γβ-competitive equilibrium in E(²; ²M∪N,ν).We show that the utility maximization
and profit maximization hold under rent vector p.

Consider utility maximization for xi. We have, for all β,

EUi(xi, Ii − P i,νβxi) + γβ ≥ EUi(zi, Ii − P i,νβzi) for all zi ∈ {0, e1, ..., eT}. (8.9)

Let zi ∈ {0, e1, ..., eT} be fixed. Suppose Ii − pzi > 0. Then, both EUi(xi, Ii − P i,νβxi)
and EUi(z

i, Ii − P i,νβzi) converge to ui(xi, Ii − pxi) and ui(zi, Ii − pzi); by (8.9), we
have ui(xi, Ii − pxi) ≥ ui(zi, Ii − pzi).

Now, suppose Ii − pzi = 0. Since ui(zi, 0) < ui(0, Ii) by Assumption A, there is a

β0 such that for all β ≥ β0, EUi(z
i, Ii − P i,νβzi) > ui(zi, 0). Hence, by (8.9), we have

ui(xi, Ii − pxi) ≥ ui(zi, 0) = ui(zi, Ii − pzi).
The profit maximization for yj can be proved even in a simpler manner.¤
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