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Abstract: In this paper, a theory of revealed preference that can be compatible with

preference cycles is considered. The problem of preference cycles is treated in

Schwartz(1972) and he advocated the notion of optimality. Deb(1977) showed that the

notion of optimality can be captured by the maximal set based on transitive closure of a

strict preference. By using this type of maximal sets (they are called quasi-maximal sets

in this paper), we’d like to provide conditions for revealed preferences that rationalize

the choice patterns of the decision-maker. Firstly, several properties of quasi-maximal

sets are considered. The content of a quasi-maximal set is given by the union of

(standard) maximal set and the maximal fully cyclic sets. Secondly, several conditions

for revealed preferences that are compatible with preference cycles are considered.

These conditions are WWARP, IIA and NBDC(or RWARP). Thirdly, as a special case of

our results, a characterization of a top-cycle rule is considered. The conditions to

characterize the top-cycle rule are different from the conditions to characterize it in

Ehlers and Sprumont(2008). Fourthly, an alternative notion of a quasi-maximal set, i.e.,

an extended-maximal set, is considered. It can be seen as a procedural choice function,

and it needs an extra-condition PNCA to characterize it.
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1. Introduction

The search for the conditions about choice functions that can be compatible with

preference cycles is one interesting topic of choice theory. This problem is considered in

Schwartz(1972) for individual choices. Deb(1977) characterized Schwartz’s rule by

using the transitive closure of a strict preference. Recently, Manzini and Mariotti(2008)

give us a set of conditions for sequential choices that can be compatible with preference

cycles. Lombardi(2009) considered the conditions to characterize reason-based choices

and explained one kind of preference cycles.

As for a related field, Ehlers and Sprumont(2008) provide us a characterization of

top-cycle rules that is compatible with preference cycles, by using the conditions of

Weakened Axiom of Revealed Preference(WWARP), Binary Dominance

Consistency(BDC) and Weak Choice Consistency(WCC). Although their

characterization might not be intended to provide us the conditions for individual

choices, it is possible to interpret it as a characterization of individual choices.

Considering a set of conditions about a choice function for revealed preference is

considering how to rationalize the choice function. (As for the conditions, see

Richter(1966), Sen(1971), Suzumura(1983) and Aleskerov and Monjardet(2002). )It is

impossible to rationalize a choice function that contains a preference cycle by simple

maximization of the corresponding revealed preference relation. However, if we use the

notion of quasi-maximal sets, that are equivalent with maximal sets based on the

transitive closure of strict preference, preference cycles are compatible with

maximization of the revealed preference. The conditions considered in this paper are as

the followings: WWARP, Independence of Irrelevant Alternatives(IIA) and Negative

Binary Dominance Consistency(NBDC).

In the next section, by using base preference relations, several properties of fully cyclic

sets and quasi-maximal sets are considered. It is shown that the quasi-maximal set is

equivalent with the union of the maximal set and the set of ‘maximal’ fully cyclic sets.

Furthermore, it will be confirmed the equivalence of Schwartz’s sets of optimal

elements and the quasi-maximal sets. In the third section, the conditions about a choice

function that can be rationalized by a quasi-maximal set are considered. They are

WWARP, IIA and NBDC. It is shown that the revealed base preference is acyclic

pseudo-transitive, i.e., pseudo-transitive if it is acyclic. Also, it is shown that the

conditions about a choice function that induces an acyclic transitive base preference, i.e.,

transitive base preference if it is acyclic, are WWARP, IIA and Restricted Weak Axiom

of Revealed Preference (RWARP). In the fourth section, as a special case, the conditions

for a characterization of top-cycle rules are considered. This result means that the
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conditions in Ehlers and Sprumont (2008), i.e., WWARP, BDC and WCC, are

equivalent with our conditions, i.e., WWARP, IIA and NBDC if the choice function is

resolute, i.e., one alternative must be chosen from the sets of two alternatives. In the

fifth section, an extended-maximal set that is slightly different from quasi-maximal set

is considered. The extended-maximal set does not include any cycles if the usual

maximal set is non-empty. It is shown that if a choice function is rationalized by an

extended-maximal set, then it satisfies the conditions: WWARP, IIA, NBDC and

Priority of non-cyclic alternatives (PNCA).

2. Maximization and preference cycles

In this section, we would like to consider the maximization of preference on the set of

choice alternatives when the preference permits preference cycles. As for the notion of

maximization that can be compatible with preference cycles, the notion of the

quasi-maximal set is introduced, and its characterization is considered.

To begin with, we would like to provide several notations in this paper. Let X be a

finite set of alternatives with cardinality |X|3 and (X) the set of nonempty subsets of

X. Let R be a binary relation defined on X, i.e., RXX. R is considered as a weak

preference relation. Thus, (x, y)R means that x is weakly preferred to y. Denote P(R)

and I(R) as P(R)={(x, y)| (x, y)R and (y, x)R} and I(R)={(x, y)| (x, y)R and (y,

x)R} respectively.

R is assumed complete, i.e., (x, y)R or (y, x)R for any x, yX, in this section. Since

R is complete, R is reflexive, i.e., R where ={(x, x)| xX}. R is acyclic if there is

no x, {xi} such that (x, x1), (xi, xi+1), (xk, x)P(R) for i=1, 2, .., k-1. R is transitive: if (x,

y), (y, z)R, then (x, z)R.

For any A(X), R|A is the restriction of R on A, i.e., R|A=R(AA). The transitive

closure of R|A is defined as follows: for all x, yA, (x, y)T(R|A) if and only if there

exists a positive integer n and x1, x2, .., xnA such that x1=x, xn=y and (xi, xi+1)R for

i=1, 2, .., n-1. Since R is complete, T(R|A) is complete and transitive.

Define the set of maximal elements or the maximal set as M(A, R)={xA| (y, x)P(R)

for all yA} for given A(X). The maximal set M(A, R) is empty if R includes

cycles. Thus, we need another notion of ‘maximum.’ Schwartz(1972) showed that the

set of optimal elements, a substitute of the maximal set, is compatible with preference

cycles. Later, Deb(1977) showed that the maximal set with the transitive closure of a

strict preference is equivalent with the set of optimal elements.

In this section, the relations among the set of alternatives constituting preference
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cycles are considered. By using the results about these sets, it is shown that Schwartz’s

set of optimal elements is equivalent with the union of the maximal set and the set of

alternatives that constitutes a ‘maximum’ cycle in A.

Definition 1. Suppose a binary relation R is defined on X, and A is a nonempty subset

of X, i.e., A(X).

(1) R|A is called fully cyclic on A if A={a1, a2, …, an} and (ai, ai+1), (an, a1)P(R) for i=1,

2, .., n-1 and n3. Alternatively, A is called a fully cyclic set (with respect to R) if

R|A is fully cyclic on A.

(2) Suppose there are k distinct sets {Ci} such that CiA and any R|Ci is fully cyclic on

Ci (i=1, 2, .., k). C(A)=iCi is the set of all cyclic sets in A if every R|Ci is fully

cyclic on Ci, and either R|(A∖C(A)) is acyclic or empty.

(3) Let fc(X) be the set of indices of all fully cyclic sets in X. The cardinality of fc(X) is

finite, since X is a finite set. fc(A) is called the set of indices of all fully cyclic sets in

A, and fc(A)={ifc(X)| CiA}.

Remark 1. For any A(X) and for any binary relation R on X, there exists the set of

all cyclic sets C(A)A such that R|(A∖C(A)) is acyclic or A∖C(A) is empty. Thus,

C(A)= if A does not include any fully cyclic set.

(Proof) Since X is finite, there is only finite number of fully cyclic sets in X. Let the

number of all fully cyclic sets in X be n. The number n might be 0 because there is a

possibility of no fully cyclic set. Thus, there are distinct sets {Ci} in X (i=1, 2, .., n)

such that CiX and any R|Ci is fully cyclic on Ci. (Note that CiCj is possible for some

i, j.) By the definition, C(X) be the union of all fully cyclic sets, i.e., C(X)=iCi, and

C(X)X. If X∖C(X) is not empty, then R|(X∖C(X)) should be acyclic. Similarly, for any

A(X), there are at most n fully cyclic sets that are included in A. Remind that

C(A)=ifc(A)Ci. Then, if A∖C(A) is not empty, then R|(A∖C(A)) should be acyclic. 

Definition 2. Suppose there is a partition of fc(A) where each cell I of the partition has

the following property: if iI, then jI such that CiCj. Denote the partition of

fc(A) as {Ik(A)}, k=1, 2, .., , i.e., Ii(A)Ij(A)= and Ik=fc(A). Denote the set of

indices that constitutes the partition as fc*(A)={1, 2, .., }. Define a connected fully

cyclic set in A as C*i(A)=jIi(A)Cj. {C*i(A)}ifc*(A) is a partition of C(A). Denote the set

of connected fully cyclic sets in A as Ccon(A).

Proposition 1. (1) Suppose C*j is a connected fully cyclic set in A, i.e., C*jCcon(A).
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Then, for given xA∖C*j, either (x, y)R|A for all yC*or (y, x)R|A for all yC*.

(2) Let the set of all cyclic sets in A be C(A)=ifc(A)Ci=jfc*(A)C*j. For given

A(X), if xA∖C(A) and jfc*(A), then (x, y)R|A for all yC*j or (y, x)R|A for

all yC*j.

(Proof). (1) Suppose A∖C*j is nonempty and xA∖C*j. Then, either (x, y)R|A for any

yC*j or (y, x)R|A for any yC*j holds. Suppose not, i.e., there are some y, z C*j

such that (x, y), (z, x)P(R|A). Suppose C*j={a1, a2, …, ak}, a connected fully cyclic set.

Let Cj1={b1, b2, …, bl} and C j2={c1, c2, …, cm} be such that CjiC*j (i=1, 2),

Cj1Cj2 and (bi, bi+1), (bl, b1), (cj, cj+1), (cm, c1)P(R|A), i=1, 2, .., l-1 and j=1, 2, ..,

m-1. Then, there are two cases: (a) both y and z belong to the same fully cyclic set, (b) y

and z belongs to the different fully cyclic sets. Consider the case (a) first. Suppose y,

zCj1C*j. Take b1=y and bj=z. Then, {x, y, b2, .., bj-1, z} is another fully cyclic set in A

and it has the nonempty intersection with C*j. It contradicts the assumption that C*j is a

connected fully cyclic set in A. Consider the case (b) next. Suppose yCj1C*j and

zCj2C*j. Take b1=y and c1=z. Suppose bi=cj. Then, {x, y, b2, .., bi, cj+1, .., cm, z} is

another fully cyclic set. It contradicts the assumption that C*j is a connected fully cyclic

set in A. Hence, (x, y)R|A for all y C*j or (y, x)R|A for all y C*j. (2) Suppose A∖

C(A) is nonempty and xA∖C(A). Let Ci* be a connected fully cyclic set in A. Then,

xA∖C*i since C*iC(A) and xA∖C(A). Hence, by Proposition 1 (1), either (x,

y)R|A for any yC*i or (y, x)R|A for any yC*i holds. The same argument holds for

any ifc*(A).

Proposition 1 (1) shows that any alternative outside a connected fully cyclic set C*j in A

can be compared with any alternative in the connected fully cyclic set C*j unilaterally.

By using this property, Proposition 1 (2) states that any alternative that does not belong

to any fully cyclic set in A can be compared with any alternative in any fully cyclic set

in A unilaterally.

The following Proposition 2 shows the relation among connected fully cyclic sets by

using Proposition 1.

Proposition 2. Let {C*j}jfc*(A) be the set of all connected fully cyclic sets in A. Then,

for given A(X), if j, kfc*(A), then for given xC*j, either (x, y)R|A for any

yC*k or (y, x)R|A for any yC*k.

(Proof) Since C*jC*k=, for xC*j, either (x, y)R|A for yC*k or (y, x)R|A

for yC*k, by Proposition 1 (1). 
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Proposition 2 states that any alternative in a connected fully cyclic set in A can be

compared with any alternative in another connected fully cyclic set in A unilaterally, i.e.,

all disjoint connected fully cyclic sets in A can be ordered by using a preference relation

R.

By using Proposition 2, we can consider the most preferred fully cyclic sets.

Definition 3. A connected fully cyclic set C*i in A is one of the most preferred

connected fully cyclic sets in A if xC*i and yC(A)∖C*i, (y, x)P(R). Denote the

set of the most preferred connected fully cyclic sets in A by CM(A), i.e., CM(A)={xA|

xC*i and C*i is any one of the most preferred fully cyclic sets in A}.

Since the number of the connected fully cyclic sets in A is finite and they can be

ordered by Proposition 2, there exists the set of the most preferred fully cyclic sets in A.

Schwartz considered the optimization of choice alternatives O(A, P) by using the

following notion. For any A(X),

S(A, P)={B(A)| ((A∖B)B)P= and CB, ((A∖C)C)P}.

O(A, P)={xB| BS(A, P)}.

Since any element in B is not strictly preferred by any element in A∖B, S(A, P) is the

set of all non-dominated sets like B in A. Thus, O(A, P) is the set of elements in the set

of all non-dominated sets in A.

Denote the maximal set as M(A, R), i.e., for any A(X), M(A, R)={xA| (y,

x)P(R) for all yA}. Since R is complete, M(A, R)={ xA| (x, y)R for all yA}.

Proposition 3 (Schwartz(1972)). Suppose P=P(R). Then, for any A(X), M(A,

R)O(A, P). If A does not include any fully cyclic set, then M(A, R)=O(A, P).

(Proof) This proposition is a combination of Theorem 7 and Theorem 8 in

Schwartz(1972). These relations are easily checked by using Theorem 1 and Proposition

5 in this paper. (For detail, see Remark 3 below.) 

To consider another characterization of the set of optimal elements, the following notion

is introduced.

Definition 4. For A(X), Tq(R) is the quasi-transitive closure of R|A if and only if

Tq(R|A)=T(P(R|A))I(R|A).

This notion is different from the transitive closure of R|A, i.e., T(R|A). The difference is
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shown in the following example.

Example 1. The quasi-transitive closure of R|A is different from the transitive closure

of R|A. Let A={x, y, z}.

(1) Suppose R|A={(x, x), (y, y), (z, z), (x, y), (y, z), (z, x)}. Then,

Tq(R|A)=T(R|A)=R|A{(y, x), (z, y), (x, z)}.

(2) Suppose R|A={(x, x), (y, y), (z, z), (x, y), (y, x), (y, z), (z, y), (x, z)}. Then,

Tq(R|A)=R|A. T(R|A)=R|A{(z, x)}.

(3) Suppose R|A={(x, x), (y, y), (z, z), (x, y), (y, z), (z, x), (x, z)}. Then, Tq(R|A)=R|A.

T(R|A)=R|A{(y, x), (z, y)}.

Although T(R|A) is different from Tq(R|A), both operations replace cycles with

indifferent relations. Tq(R|A) is different from R only when R includes cycles. Note that

the difference between T(R|A) and Tq(R|A) is vanished if I(R|A) were transitive. The

content of a quasi-transitive closure is given by the following formula.

Proposition 4. (1) Tq(R|A∖(C(A)C(A)))= R|A∖(C(A)C(A)).

(2) There is a permutation function  from fc*(A) to fc*(A) such that for all x in C*i and

for all y in C*j, (x, y)R|A if and only if (i)(j). For given A(X),

Tq(R|A)=R∖(C(A)C(A)( i, jfc*(A),(i)(j)(C*(i)C*(j))).

(Proof) (1) Let A be A={x1, x2, .., xn+1}. Consider the following three cases. (a) If (xi,

xi+1)P(R) for i=1, 2, .., n and (x1, xn+1)P(R), then Tq(R|A)=R|A because

P(Tq(R|A))=P(T(P(R|A)))=P(R|A). (b) If (xi, xi+1)P(R) for i=1, 2, .., n and (xn+1, x1)

I(R), then Tq(R|A)=R|A because P(Tq(R|A))=P(T(P(R|A)))=P(R|A). (c) If (xi, xi+1)

P(R) for i=1, 2, .., n and (xn+1, x1)P(R), then Tq(R|A)R|A because

P(Tq(R|A))P(R|A). This result can be extended to the following: Tq(R|A)R|A only

when A include fully cyclic sets. Proposition 1 (2) showed that any alternative that does

not belong to any fully cyclic set can be compared with any alternative in a cycle

unilaterally. Such comparisons also do not belong to cycles. Thus, Tq(R∖(C(A)C(A)))=

R∖(C(A)C(A)).

(2) Proposition 2 showed any two connected fully cyclic sets can be ordered unilaterally,

i.e., if j, kfc*(A), then for xC*j , either (x, y)R|A for yC*k or (y, x)R|A for

yC*k. Hence, there exists a permutation function  from fc*(A) to fc*(A) such that

for all x in C*i and for all y in C*j, (x, y)R|A if and only if (i)(j). Since (1) in this

Proposition holds, Tq(R|A∖(C(A)C(A))) = R|A∖(C(A)C(A)) for any A(X). By

Proposition 2, i, jfc(A), (i)(j) (C*(i)C*(j))R|C(A)=R(C(A)C(A)). Since i, jfc*(A),



8

(i)(j), (i)(j)(C*(i)C*(j)) is acyclic, i,jfc*(A), (i)(j), (i)(j)(C*(i)C*(j))Tq(R|C(A)).

By the definition of quasi-transitive closure, Tq(C*iC*i)I(Tq(R|C(A)) for any

ifc*(A). Thus, i,jfc*(A),(i)(j)(C*(i)C*(j))=Tq(R|C(A)). Tq(R|A)=R|(R|A ∖

(C(A)C(A))) Tq(R|C(A)))=(R|A∖(C(A)C(A)))(i, jfc*(A),(i)(j) (C*(i)C*(j))). 

By using the notion of quasi-transitive closure, the following notion of ‘maximum’ is

compatible with preference cycles.

Definition 5. For given A(X), M(A, Tq(R|A)) is the quasi-maximal set if

M(A, Tq(R|A))={xA| (y, x)Tq(R|A) for all yA}. Denote a quasi-maximal set by

Mq(A, R), i.e., Mq(A, R)=M(A, Tq(R|A)).

Remark 2. Generally, the quasi-maximal set is different from both the maximal set and

the maximal set with the transitive closure of a weak preference.

Consider the case of Example 1. Let X={x, y, z}.

(1) Suppose R={(x, x), (y, y), (z, z), (x, y), (y, z), (z, x)}. Then, M(X, R)=, and M(X,

Tq(R))={x, y, z}=M(X, T(R)).

(2) Suppose R={(x, x), (y, y), (z, z), (x, y), (y, x), (y, z), (z, y), (x, z)}. Then, M(X,

R)={x, y}=M(X, Tq(R))M(X, T(R))={x, y, z}.

It is possible that the elements of the set of the most preferred fully cyclic sets are

preferred to any other alternatives in A.

Definition 6. Define the set of maximal connected fully cyclic sets (in A) as

C*M(A)={xCM(A)| (y, x)T(P|A) for all yA}.

By the definition, C*M(A)Mq(A, R). But, C*M(A) might be empty since the elements

of the most preferred connected fully cyclic sets might be preferred by some other

alternatives in A, i.e., CM(A)Mq(A, R)=. By using the notion of the set of maximal

fully cyclic sets, the content of a quasi-maximal set is given by the following formula.

Theorem 1. For given A(X), Mq(A, R)=M(A, R)C*M(A).

(Proof) Remind that C*M(A)Mq(A, R). Thus, if xC*M(A), then xMq(A, R). If

xM(A, R), then there is no yA such that (y, x)P(R). Thus, (x, y)R for all yA.

Then, (x, y)Tq(R|A) for all yA, i.e., xMq(A, R). Hence, if xM(A, R)C*M(A),

then xMq(A, R). Conversely, if xMq(A, R), there is no yA such that (y,
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x)P(Tq(R|A)). Then, (x, y)Tq(R|A) for all yA. If xC(A), then Mq(A, R)=M(A, R).

Thus, xM(A, R). Since C*M(A)Mq(A, R), if xC(A), then xC*M(A). Hence,

xM(A, R)C*M(A). 

Theorem 1 shows that an element of the quasi-maximal set Mq(A, R) is either an

element of the maximal set M(A, R) or an element of the set of the maximal connected

fully cyclic set C*M(A). This formula gives us a new view of ‘maximum,’ if A includes

a fully cyclic set.

Deb(1977) considered a maximal set with respect to the transitive closure of a strict

preference restricted to a set A, i.e., M(A, T(P|A)), and he showed that for any A(X),

O(A, P)=M(A, T(P|A)). The following is substantially the same result as Deb’s theorem

although the proof is different.

Proposition 5 (Deb(1977)). Let P=P(R). For any A(X), O(A, P)=Mq(A, R).

(Proof) Define B=M(A∖C(A), R). B is the maximal set of A∖C(A), i.e., the maximal set

of the set in A that does not include any fully cyclic set. By Proposition 1 (2), for any

xB and either (x, y)(R|A) for any yCM(A) or (y, x)(R|A) for any yCM(A) holds.

Suppose (x, y)P(R|A) for any xB and any yCM(A). Then, ((A∖B)B)P(R|A)=

and BB, ((A∖B)B)P(R|A). Hence B=O(A, P(R|A)). In this case, M(A,

Tq(R|A))=B. Suppose that (y, x)P(R|A) for any xB and yCM(A). ((A∖CM(A))

CM(A))P(R|A)= and BCM(A), ((A∖B) B)P(R|A). Hence CM(A)=O(A,

P(R|A)). In this case, M(A, Tq(R|A))=CM(A)=C*M(A). Suppose (x, y)I(R|A) for any

xB and for any yCM(A). Then, ((A ∖ CM(A)B)CM(A)B)P(R|A)= and

CCM(A)B, ((A∖C) C)P(R|A). Hence, CM(A)B=O(A, P(R|A)). In this

case M(A, Tq(R|A))=CM(A)B=C*M(A)B. Therefore, for any A(X), O(A,

P(R|A))=M(A, Tq(R|A)). 

Remark 3. By using Theorem 1 and Proposition 5, Proposition 3 can be easily shown.

By Proposition 5, for any A(X), O(A, P)=Mq(A, R). Then, for any A(X), M(A,

R)O(A, P) because Mq(A, R)=M(A, R)C*M(A). If A does not include any fully

cyclic set, then Mq(A, R)=M(A, R)=O(A, P) because C*M(A)=. 

3. The conditions for a revealed preference theory with preference cycles.

At first, define a choice function as follows. A choice function f is a function from

(X) to (X) such that f(A) and f(A)A for every A(X). This function can be
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considered as the decision-maker’s choice behavior. By using the notion of

quasi-maximal set, we would like to consider the conditions of a choice function to

induce a revealed preference relation satisfying several desirable properties. In other

words, it is considered a form of rationalization of the choice function satisfying several

appropriate conditions.

Define a revealed (weak) preference R* by the following: For some x, yX and some

A(X), (x, y)R* if and only if xf(A) and yA. The binary relations P* and I* are

defined by P*=P(R*) and I*=I(R*). Also define a revealed (weak) base preference Rb

by the following: For some x, yX and some A(X), (x, y)Rb if and only if xf({x,

y}). Similarly, Pb and Ib are defined by Pb=P(Rb) and Ib=I(Rb). By the definition, both

R* and Rb are complete. Although it is possible to consider incomplete preferences, we

restrict our attention to the cases in which they are complete in this paper. (See

Oginuma(2010) for the analysis of incomplete preference.)

The following properties in Sen (1971) are standard conditions to rationalize choice

functions.

Property : For A, B(X) and for x, yA, if xf(B) and AB, then xf(A).

Property : For A, B(X) and for x, yf(A), If AB, then xf(B) if and only

if yf(B).

Property : Let M be a set of sets in X, let B be the union of all sets in M. If xf(S)

for all SM, then xf(B).

Property : For A, B(X) and for x, yAB, if x, yf(A), then {x}f(B).

Sen(1971) showed the statements in the following remark.

Remark 4 (Sen(1971)).

(1) R*=Rb if the choice function f satisfies Property .

(2) A choice function f satisfies Property  and Property  if it is rationalizable by

complete and transitive R*, i.e., f(A)=M(A, R*) for any A in (X).

(3) A choice function f satisfies Property  and Property  if it is rationalizable by

complete and acyclic R*, i.e., f(A)=M(A, R*) for any A in (X).

(4) A choice function f satisfies Property , Property  and property  if it is

rationalizable by complete and quasi-transitive R*, i.e., f(A)=M(A, R*) for any A in

(X).

If we permit the possibility of preference cycles, a choice function f might not satisfy

Property . If we don’t suppose Property , R* should be distinguished from Rb

because they are not necessarily the same.
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Example 2. In general, Rb is different from R*. Let X be X={x, y, z}. Consider a choice

function such that f({k})={k} for k{x, y, z}. f({x, y})={x}, f({y, z})={y}, f({x,

z})={z} and f(X)=X. Suppose A={x, y} and B=X. Then, x, yf(B), xf(A), and yf(A).

Thus, (y, x)R* but (y, x)Rb. Denote  as ={(x, x), (y, y), (z, z)}. Actually, R*={(x,

y), (y, x), (y, z), (z, y), (x, z), (z, x)} and Rb={(x, y), (y, z), (z, x)}.

Consider the case in the former Remark 2 (1). If Rb includes a preference cycle, i.e.,

A={x, y, z} and (x, y), (y, z), (z, x)P(Rb), then the notion of the maximal set doesn’t

work , i.e., M(A, Rb)=. Because of this, the rationalization of the choice function f by

the revealed base relation Rb , i.e., f(A)=M(A, Rb) is impossible. However, it is possible

to consider a quasi-rationalization, i.e., f(A)=Mq(A, Rb). In other words, if we assume

that the decision-maker adopts quasi-rational behavior, i.e., choose an alternative in

Mq(A, R) if he or she has a preference R, then the choice function can been seen as a

result of his or her quasi-rationalization.

The notions that are defined in the former section, can be used in the following by

setting R=Rb. Thus, all fully cyclic sets {Ci}ifc(X) and all connected fully cyclic sets

{C*j}jfc*(X) can be treated as ‘observable.’ Therefore, all propositions in the section 2

are still valid in the following.

The following two conditions about choice functions do not contradict with

quasi-maximal sets. These two conditions are sometimes supposed for pseudo-transitive

rationalization. (For example, these two conditions are considered in Jamison and

Lau(1973), and Fishburn(1975).)

Define (x, y)PIP if there exists some v, wX such that (x, v), (w, y)P and (v, w)I.

A binary relation R is called pseudo-transitive if PIPP where I=I(R) and P=P(R).

Suppose R=PI. It is known that R is reflexive and pseudo-transitive if and only if P is

an interval order, i.e., for X, if (x, y), (v, w)P, then either (x, w)P or (v, y)P.

(See, for example, Lemma 1 in Aleskerov, Bouyssou and Monjardet(2002), pp59-60.)

WWARP(Weakened Weak Axiom of Revealed Preference): If x, yX and there is

A(X) such that xf(A), yA∖f(A), then there is no B(X) such that yf(B),

xB∖f(B).

IIA(independence of irrelevant alternatives): For given A(X), if BA∖f(A), then

f(A)=f(A∖B).

Example 3. Let X be X={x, y, z} and f a choice function defined on (X).
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(1) Suppose f({x, y})={x}, and f({y, z})={y}. Then, WWARP and IIA requires that f({x,

y, z})={x} or {x, y, z}. If f({x, z})={x}, then f({x, y, z})={x} or {x, y, z}. If f({x,

z})={z} or {x, z}, then f({x, y, z})={x, y, z}.

(2) Suppose X={x, y, z}, and (x, y), (y, z)Pb. Then, if (z, x)Pb, Mq(X, Rb)={x, y, z}.

If (x, z)Pb, Mq(X, Rb)={x}. Also, if (x, z), (z, x)Rb, Mq(X, Rb)={x}.

Comparing (1) and (2) in the example, it is shown that the combination of WWARP

and IIA is too weak to assure f(A)=Mq(A, Rb) for any A(X). Consider the case: f({x,

y})={x}, f({y, z})={y} and f({x, z})={x, z}. Then, f({x, y, z})={x, y, z} while Mq({x, y,

z}, Rb)={x}.

To exclude the cases such that f(A) Mq(A, Rb) for some A(X), we’d like to

introduce the following axiom.

NBDC(negative binary dominance consistency): For A(X) and xA, if there

exists yA such that {y}=f({x, y}) and zA, zf({x, z}), then xf(A).

Since we do not exclude the preference cycles, we need the following definition.

Definition 5. Let R be a binary relation defined on X.

(1) R|A is called acyclic transitive if and only if BA, R|B is transitive when it is

acyclic.

(2) R|A is called acyclic quasi-transitive if and only if BA, P(R|B) is transitive when

it is acyclic.

(3) R|A is also called acyclic pseudo-transitive if and only if BA, P(R|A) is

pseudo-transitive when it is acyclic.

Adding NBDC with WWARP and IIA, it assures that Rb|A is acyclic pseudo-transitive.

Proposition 6. Suppose that f satisfies WWARP, NBDC and IIA.

(1) If A(X), Rb|A is acyclic, then Rb|A is quasi-transitive.

(2) If A(X), Rb|A is acyclic, then Rb|A is pseudo-transitive.

(Proof) By the definition of a choice function, f({x})={x} for xA. Then, Rb|A is

reflexive. (1) Suppose x, y, zA such that f({x, y})={x}, f({y, z})={y}. If f satisfies

WWARP, IIA and NBDC, then f({x, y, z})={x} or {x, y, z}. f({x, y, z})={x} is

compatible with f({x, z})={x}, and f({x, y, z})={x, y, z} is compatible with f({x,

z})={z}. Thus, Rb|A is acyclic quasi-transitive. (2) Suppose w, x, y, zA such that f({x,
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y})={x}, f({y, z})={y, z} and f({w, z})={z}. Then, f({x, y, z})={x} or {x, z}, f({w, y,

z})={y, z} and f({w, x, y, z})={x} or {x, z} by WWARP, IIA and NBDC. Suppose f({w,

x})={w}. Then, f({w, x, z})={z} or {w, x, z}. If f({w, x, z})={z}, then f({x, z})={z}.

By Proposition 6 (1), it means f({y, z})={z} or {x, y, z} is a fully cyclic set. If f({y,

z})={z}, then it contradicts with the supposition: f({y, z})={y, z}. Thus, f({w, x}){w}.

Next, suppose f({w, y})={w}. Then, by Proposition 6 (1), it means f({y, z})={z} or {w,

y, z} is a fully cyclic set. If f({y, z})={z}, then it contradicts with the supposition: f({y,

z})={y, z}. Thus, f({w, y}){w}. Suppose f({w, x})={w, x}. Then, f({w, x, y})={w, x},

and f({w, y, z})={y, z}. This contradicts with WWARP because yf({w, y, z}), wf({w,

y, z}), wf({w, x, y}) and yf({w, y, z}). Hence, f({w, x})={x}. Thus, Rb|A is acyclic

pseudo-transitive.

Proposition 6 states that Rb|A is acyclic pseudo-transitive if a choice rule f satisfies

WWARP, IIA and NBDC. Note that (1) of Proposition 6, is an implication of (2) in

Proposition 6, because pseudo-transitivity implies transitivity, i.e., if (x, z)P, (z, z)I,

and (z, y)P, then (x, y)P. (Also note that in the former proof of Proposition 6 (2),

Proposition (1) is used. )

The following condition is one of the standard conditions to characterize choice

functions.

BDC(binary dominance consistency): If {x}=f({x, y}) for all y in A, then {x}=f(A).

BDC says that if x is chosen from x and any other alternative in A, then x should be the

chosen alternative from A.

Proposition 7. If a choice function f satisfies WWARP, IIA ad NBDC, then it satisfies

BDC.

(Proof) If {x}=f({x, y}) for all y in A, then xf(A) by WWARP. Let yA be yx and

{x}=f({x, y}). Then, yf(A). Because of IIA, yf(A) is possible when A=f(A).

However, there exists zA such that there is no wA such that {z}=f({w, z}). Then,

zf(A) by NBDC. Thus, yf(A) for any yx in A. Hence, f(A)={x}.

Proposition 7 says that if a choice function satisfies WWARP, IIA, NBDC, then it

satisfies BDC. By using these three propositions, we’d like to show the following

theorem.
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Theorem 2. A choice function f satisfies WWARP, NBDC and IIA if and only if

A(X), f(A)=Mq(A, Rb)=M(A, Rb)C*M(A), and Rb|A is reflexive and acyclic

pseudo-transitive.

(Proof) Firstly, consider the if-part of the theorem. Suppose f(A)= Mq(A, Rb).

WWARP: Suppose xC(A). If xM(A, Rb)Mq(A, Rb) and yA∖Mq(A, Rb), then (x,

y)Rb. Alternatively suppose xC(A). If xMq(A, Rb) and yA∖Mq(A, Rb), then

xC*M(A) and yA∖C*M(A). Then, (x, y)Rb. Thus, if xMq(A, Rb) and yA∖Mq(A,

Rb), then (x, y)Rb. Suppose B(X) and x, yB. If yMq(B, Rb) and x, yC(B),

then xMq(B, Rb) since (x, y)I(Rb). If yMq(B, Rb), yC(B) and xC(B), then

xMq(B, Rb) since (x, y)I(Rb). If yMq(B, Rb), and x, yC(B), then xMq(B, Rb)

since (x, y)I(Tq(Rb)). Thus, there exists no B(X) such that y Mq(B, Rb) and xB

∖Mq(B, Rb).

NBDC: For A(X) and xA, if there exists yA such that {y}=f({x, y}) and

zA, zf({x, z}), i.e., (y, x)Pb and (z, x)Rb for all z in A, then by the definition of

quasi-maximal sets, xMq(A, Rb). Hence, xf(A).

IIA: If BA∖Mq(A, Rb), then there exists yA∖B such that (y, x)P(Tq(Rb|A)) for any

xB. Any fully cyclic set Ci in A is either CiMq(A, Rb) or CiA∖Mq(A, Rb). Thus, if

xMq(A, Rb), then (x, y)Tq(Rb|A) for all yA. Thus, (x, y)Tq(Rb|A) for all yA∖B.

Then, xMq(A∖B, Rb). Conversely, if xMq(A∖B, Rb), then (x, y)Tq(Rb|A) for all

yA∖B. By the definition of B and xA∖B, (x, y)Tq(Rb|A) for any yB. Then,

xMq(A, Rb). Hence, Mq(A, Rb)=Mq(A∖B, Rb).

Next, consider the only if-part of the theorem. Define Rb, Pb, and Ib as follows: (x,

y)Rb if xf({x, y}), (x, y)Pb if {x}=f({x, y}), and (x, y)Ib if {x, y}=f({x, y}).

Proposition 6 shows that Rb|A is acyclic pseudo-transitive if f satisfies WWARP, IIA and

NBDC. Let C(A) be the set of fully cyclic sets in A. Suppose xA∖C(A) for some

A(X) and xf(A). Then, there exists no yA such that {y}=f({x, y}) by WWARP

and IIA. Remind that if yf(A) contradicts with {y}=f({x, y}) by IIA. Then, xM(A,

Rb). Let CM(A) be the set of most preferred connected fully cyclic sets in A. Suppose

xC(A) for some A(X) and xf(A). Then, xCM(A) by Proposition 1 and

Proposition 2. If f(A)CM(A), then CM(A)=C*M(A). Thus, xC*M(A). If xf(A),

then either xf(A)C(A) or xf(A) ∖ C(A). Hence, if xf(A), then xM(A,

Rb)C*M(A). 

By Theorem 2, f(A)=Mq(A, R)=M(A, R)C*M(A), and Rb|A is acyclic psudo-transitive.

If you would like to get acyclic transitive Rb, the conditions for the choice function must

be strengthened. One candidate is the following.
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RWARP(Restricted Weak Axiom of Revealed Preference): Suppose x, yX, and

A(X). Suppose f(A)C(A)=. If xf(A) and yA∖f(A), then there is no B(X)

such that yf(B) and xB.

RWARP means that, if x, an element chosen from A, does not belong to a cycle in A

and y is not chosen from A, then y is not chosen in any set B if x is an element of B.

Proposition 8. If a choice function f satisfies IIA and RWARP, then it satisfies NBDC.

(Proof) If x, yA and {y}=f({x, y}) and zf({x, z}) for any zA, then x does not

belong to any fully cyclic set in A because there exists no wA such that {x}=f({x, w}).

Then, for A(X) such that x, yA, xf(A) by RWARP. Thus, xf(A).

Theorem 3. A choice function f satisfies WWARP, RWARP and IIA if and only if

A(X), there exists a preference relation Rb such that f(A)=Mq(A, Rb). For

A(X), Rb|A is reflexive and acyclic transitive.

(Proof) Since Proposition 8 holds, Theorem 2 shows that A(X), f(A)=Mq(A, Rb)

and Rb|A is acyclic pseudo-transitive. If {x, y}=f({x, y}), then by RWARP, there is no A,

B(X) such that AC(A)=, xf(A) and yA∖f(A) and yf(B) and xB. Thus, if

{x, y}=f({x, y}), and {y, z}=f({y, z}), then {x, y, z}=f({x, y, z}). Thus, {x, z}=f({x, z})

by RWARP. Similarly, if {x}=f({x, y}), and {y, z}=f({y, z}), then {x}=f({x, y, z}). Thus,

{x}=f({x, z}). If {x, y}=f({x, y}), and {y}=f({y, z}), then {x, y}=f({x, y, z}). Thus,

{x}=f({x, z}). From Proposition 6 (1), Pb|A is transitive when it is acyclic. Hence, Rb|A

is acyclic transitive.

Since Rb|A is acyclic transitive, f(A)=Mq(A, Rb) satisfies WWARP, IIA and NBDC by

Theorem 2. Furthermore, if xf(A) and yf(A) for AC(A)=, then (x, y)P(Rb) for

all yB and B(X). Hence f(A)=Mq(A, Rb) satisfies RWARP. 

Note that the transitivity of Rb|A is not assured if {x, y, z}BA and B is a fully cyclic

set in A. RWARP only requires that if x is at least as good as y and y is at least as good

as z, then x is at least as good as z when x does not belong to any fully cyclic set in A.

4. Resolute choices and a top-cycle rule: a special case

Top-cycle rules are choice functions that can be compatible with preference cycles.

Thus, we’d like to consider a characterization of top-cycle rules as a special case.
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A binary relation R is tournament if R is both complete and asymmetric, i.e., if (x,

y)R, then (y, x)R.

Definition 5. Given tournament R on X and A(X), the top-cycle of R in A, denoted

t(R|A) is the set of maximal elements of T(R|A) in A: xt(R|A) if and only if xM(A,

T(R|A)), i.e., (x, y)T(R|A) for all yA∖{x}.

Definition 6. A choice function f is a top-cycle rule if there is a tournament R on X such

that f(A)=t(R|A) for all A(X).

Ehlers and Sprumont(2008) give us a characterization of a top-cycle rule by using the

following conditions.

WWARP(Weakened Weak Axiom of Revealed Preference): If x, yX and there is

A(X) such that xf(A), yA∖f(A), then there is no B(X) such that yf(B),

xB∖f(B).

BDC(Binary Dominance Consistency): If A(X), xA, and f({x, y})={x} for all

yA∖{x}, then f(A)={x}.

WCC(Weak Contraction Consistency): If A(X), and |A|2, then f(A)xAf(A∖

{x})

Note that NBDC is independent with BDC and WCC.

Remark 5. (1) NBDC is different from BDC. (2) NBDC is different from WCC.

(Proof) (1) Suppose that f({x, y})={y}, f({y, z})={z} and f({x, z})={x, z}. Then, NBDC

implies xf({x, y, z}), while BDC is compatible with xf({x, y, z}). (2) Suppose that

f({x, y})={y}, f({y, z})={z} and f({x, z})={x, z}. Then, NBDC implies xf({x, y, z}),

while WCC is compatible with xf({x, y, z}). 

Denote the cardinality of the set A as |A.| A choice function f is called resolute if

|f(A)|=1 if |A|=2.

Proposition 9. If a choice function f is resolute and satisfies WWARP, then f satisfies

IIA and NBDC if and only if it satisfies BDC and WCC.

(Proof) By Proposition 7, if f satisfies WWARP, IIA and NBDC, then f satisfies BDC.

By Theorem 2, if f satisfies WWARP, IIA and NBDC, then f(A)=M(A, Rb)C*M(A).
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Since f is resolute, i.e., |f(A)|=1 if |A|=2, either f(A)=M(A, Rb) or f(A)=C*M(A). For

given A, |f(A)|=1 when f(A)=M(A, Rb). Suppose |f(A)|=1. Then, xAf(A∖{x})=f(A∖

f(A))f(A). Hence, WCC holds. If f(A)=C*M(A), then xAf(A∖{x})=C*M(A). Hence,

WCC holds.

Conversely, suppose f is resolute and satisfies WWARP, BDC and WCC. If x, yA and

f({x, y})={x}, then yf(A). Because of WWARP, if yf(A), then xf(A). Since f is

resolute, |f(A)|=1 for f(A)C(A)=. If there exists yA such that {y}=f({x, y}) and

zA, zf({x, z}), then f(A)C(A)=. Thus, xf(A), i.e., NBDC holds. If |f(A)|=1

and {x}=f(A), then {x}=f(A∖{y}) for yx. By using this relation repeatedly, it is shown

that {x}= f(A∖B) for BA∖f(A). If xf(A∖B) for BA∖f(A), then f(A)B=. Suppose

xf(A) and xA∖B. Then, there exists yB such that f({x, y})={y}, contradiction.

Thus, IIA holds.

Theorem 4. Suppose a choice function f is resolute. Then, the following three

statements are equivalent.

(1) The choice function f satisfies WWARP, IIA and NBDC.

(2) The choice function f satisfies WWARP, BDC and WCC.

(3) The choice function f is a top-cycle rule.

(Proof) Since Proposition 9, the statement (1) holds if and only if the statement (2). By

Theorem 2, f(A)=M(A, Rb)C*M(A) for all A(X). Since f is resolute, Rb is a

tournament. Thus, for all A(X), f(A)=M(A, Rb) with |M(A, Rb)|=1 or f(A)=C*M(A).

Hence, the statement (1) holds if and only if the statement (3) holds. 

The equivalence between the statement (2) and the statement (3) is already shown by

Ehlers and Sprument (2008). But the proof is different from ours. Since Theorem 3 can

be seen as a special case of Theorem 2, f(A)=Mq(A, Rb) can be seen as a generalization

of a top-cycle rule.

5. An alternative model of choice and discussions.

In this paper, we considered the conditions for choice functions inducing revealed

preferences that are compatible with preference cycles. To “rationalize” such choice

functions, the notion of extended-maximal sets is introduced. There is an alternative

notion of maximal sets that “rationalizes” cyclic choices.

Definition 13. For given A(X), Me(A, Rb) is an extended-maximal set if and only if
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ME(A, Rb)=M(A, Rb) if M(A, Rb)

=C*M(A) if M(A, Rb)=

The extended-maximal set is a natural extension of the (standard) maximal set because

ME(A, Rb) equals to M(A, Rb) if M(A, Rb) is nonempty.

Example 4. The extended-maximal set is different from the quasi-maximal set. Suppose

X={w, x, y, z}, and R={(x, y), (y, z), (z, x), (x, w), (w, x), (y, w), (w, y), (w, z), (z, w), (x,

x), (y, y), (z, z)}. Then, Tq(R)={ (x, y), (y, x), (y, z), (z, y), (z, x), (x, z), (x, w), (w, x), (y,

w), (w, y), (z, w), (w, z), (x, x), (y, y), (z, z)}.

Thus, Mq(X, R)=M(X, Tq(R))={w, x, y, z} while ME(X, R)=M(X, R) ={w}.

Example 4 shows that the cycles are excluded from any extended-maximal set. Since

quasi-maximal set doesn’t have this property, quasi-maximal sets are different from

extended-maximal sets. This difference caused by the respective choice procedures.

The quasi-maximal sets can be seen as the following procedure: (1) Taking

quasi-transitive closure of the preference relation conditioned by A, i.e., treating the

elements of the same cycle in A as “indifferent”. (2) Based on the quasi-transitive

closure of preference relation, a choice is made by selecting one element in the maximal

set. Similarly, the extended-maximal set can be seen as the following procedure: (1)

Computing the maximal set. (2) If the maximal set is nonempty, then a choice is made

by selecting one element in the quasi-maximal set. (3) If the maximal set is empty, then

taking quasi-transitive closure of the preference relation conditioned by A, and selects

an element from the quasi-maximal set.

It is difficult to judge which procedure is realistic. Probably experiments or appropriate

observations are needed to answer the question. As for a formal difference, it can be

captured by the following condition.

PNCA(priority of non-cyclic alternatives):If f(A)∖C(A), then f(A)C(A)=

Theorem 5: A choice function f satisfies WWARP, NBDC, IIA and PNCA if and only if

A(X), f(A)=ME(A, Rb).

(Proof) Only-if part: Since ME(A, Rb) is either M(A, Rb) or C*M(A), A(X),

f(A)=ME(A, Rb) satisfies WWARP, NBDC, IIA. PNCA is a direct implication of the

extended-maximal set ME(A, Rb).

If-part: If a choice function f satisfies WWARP, NBDC, and IIA, then A(X),
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f(A)=Mq(A, Rb) by Theorem 2. Since f satisfies PNCA, Mq(A, Rb)=M(A, Rb) if M(A,

Rb). It means Mq(A, Rb)=C*M(A) if M(A, Rb)=. Hence, A(X), f(A)=ME(A,

Rb). 

PNCA requires as follows: if an alternative that does not belong to any cyclic set in A

exists, then any alternative in a cyclic set in A cannot be chosen in A.

An extended maximal set can be seen as a model of procedural choice. Although the

conditions for Manzini and Mariotti’s model of “Rational Shortlist Method” have some

similarity with our model, they are rather different procedures.

Manzini and Mariotti(2007) formulated the following procedural decision method.

RSM(Rational Shortlist Method): M(M(A, R1), R2)={xA| (y, x)P(R2) for all

y{zA| (w, z)P(R1) for all wA} for all A(X).

Consider the relation between Manzini and Mariotti’s RSM and our choice based on

extended-maximal sets. The following two conditions are needed to characterize RSM.

WARP*: For all A, B(X), If {x, y}AB, and {x}=f({x, y})=f(B), then yf(A).

EXPANSION: For all A, B(X), if {x}=f(A)=f(B), then {x}=f(AB).

Remark 6. (1) WARP* can be derived from IIA. Suppose IIA, then if {x}=f(B) and {x,

y}AB, then f(A)=f({x, y})={x}. So, WARP* is a weaker condition of IIA.

(2) yx and yAB, then {x}=f({x, y}) by IIA. Hence, by NBDC implies

EXPANSION. Thus, EXPANSION is a weaker condition of NBDC.

Unique choice: Let f be a choice function defined on F. For all A(X), |f(A)=1|.

Although two conditions in Manzini and Mariotti(2007) are weakenings of our

conditions but they supposed that the range of f is a singleton, i.e., f(A)X for any

A(X). The assumption of unique choice might be too strong in some situations since

such choice functions also exclude the cases where multiple alternatives are chosen.

Finally, we’d like to consider the examples of cyclic revealed preferences.

Remark 7. Suppose the agent has multiple preferences on X, i.e., there are n valuations

that correspond to preferences for the same decision-maker. Denote Ri as a binary

relation that corresponds to i-th type of valuation. For any i=1, 2, ., n, RiXX. One
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interpretation of our model of revealed preference is as follows: Suppose that D=(D1,

D2, .., Dn) is an assignment of choice domains (or a system of rights)) on X, i.e., for any i,

DiXX and i{1, 2,., n}D
i=XX. Let R=i{1, 2,., n}R

iDi. Even if all Ri are complete and

transitive, then R is complete but not necessarily transitive. Such multiplicity of

preferences can be considered one source of cyclic preferences. The other source of

cyclic preferences is indecisiveness originated from shortage of information about

alternatives. This type of problem is considered in Oginuma(2010).
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Appendix: Money pump and preference cycles

One strong theoretical critique of preference cycles is the money pump argument.

If the decision-maker has a preference with cycles, then she suffers money loss by a

sequence of trade offers by some clever agent. Consider the following example.

Example A1: Let X be the set of alternatives such that X={x, y, z}. Suppose there are

two agents. One is the DM and another is the opponent. Let M be the set of money

quantity such that M={q|q0}. Suppose DM has the initial wealth (x, 10) at first.

Also suppose the DM has the following binary relation defined on XM: R={((x, k), (x,

k)) ((x, k)), (y, k)), ((y, k)), (z, k)), ((z, k)), (x, k)) for any  such that k0,

and for given >0 and for any  such that >0}. The opponent sequentially offers

the following. Assume >0 is a sufficiently small number, i.e., . (1) Offer (z, 0) in

exchange of (x, ). (2) If the DM has (z, 10), then offer (y, 0) in exchange of (z, ). (3)

If the DM has (y, 102), then offer (x, 0) in exchange of (y, ). The DM can respond to

the offers by “yes” or “no”. If the response is “yes”, the offer by the opponent is

executed while it is “no”, the offer by the opponent is not executed and keep the status

of that time.

We can formalize this idea as the following description of sequential choice.

As for the last game,

Y Y Y

    (x, k3)

N N N

  

(x, k) (z, k) (y, k2)

In the last decision node x the decision node N must be dominated by Y, i.e., ((x, k3),

(y, k2)). Similarly, if the previous node is at the second, then the choice between G

and N depends on the magnitude of 2. Suppose Y is chosen. Then, N must be chosen

because (x, k) is preferred to (x, k3). Thus, the DM is not vulnerable to the sequential

offers by the opponent. Suppose N is chosen. Then, the DM’s wealth is (z, k). Thus,

either (N, Y, Y), (Y, Y, N), or (Y, N, N) can be the subgame perfect equilibrium. (It is

also the solution of backward induction.) This result cannot be seen as one kind of

“money pump.” Hence, even if the decision-maker has a preference with a cycle, she
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might not suffer by “money pump” trade offers by the opponent. If the DM recognizes

the total sequence of the trade offers, she does not accept all of the offers by the

opponent.

Repetition of “money pump” trades might awake the DM and she recognizes the

sequence of trades. If she adopts the backward induction reasoning, then she is difficult

to be applied money pumping. Thus, it might be possible that the DM who has a

preference with cycles can survive for not a few moments.
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