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Abstract

In this paper we consider a model of an economy with a common pool resource.

Under decreasing returns to scale, it is well-known that no Nash equilibrium attains
Pareto efficiency. We examine whether it is possible to achieve Pareto efficiency and
avoid the tragedy of the commons through cooperation among players. For that
purpose, we use the notion of a game in partition function form. Whether or not the
core exists depends crucially on the expectations of each coalition regarding the
coalition formation of the outsiders. If each coalition has pessimistic expectations, then

the core always exists, while if it has optimistic expectations, the core may be empty.
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1. Introduction

The “tragedy of the commons,” in which common-pool resources are overused is a
crucial problem in modern societies (see Hardin ,1968) . Notable examples of this
phenomenon include recent decreases of fish stocks and the rapid deforestation taking
place in tropical countries. Consider a society of fishermen who fish on a commonly
owned lake. If they behave non-cooperatively, each will choose his labor input to
maximize his own income given the labor inputs of the others. When there are
decreasing returns to labor the total amount of labor inputs in any Nash equilibrium is
larger than the Pareto efficient level. In other words, the lake is overfished and the
tragedy of the commons occurs.

However, do fishermen always behave non-cooperatively? If sufficient
communication is feasible, it may be possible for cooperation to arise. In this paper, we
examine whether it is possible to achieve Pareto efficiency and avoid the tragedy of the
comunons through cooperation among fishermen when free negotiations are possible.

Suppose that after sufficient discussion, fishermen in group S agree to
cooperate. They will then coordinate their labor inputs to maximize the sum of their
incomes and share the quantity of fish they catch. As there is a negative externality
present, both the labor input decision of coalition S as well as the income that S can
obtain depend on the behavior of the fishermen who do not belong to S. Hence it is
important to specify the coalitions formed among fishermen as a whole. There are
many possible cases. For example, fishermen outside S may act non-cooperatively.
Alternatively, they may cooperate and form a single coalition. Another possibility is
that several coalitions may form and coexist.! We use the concept of a conlition

structure, that is, a partition of the set N of all fishermen, in order to describe which

1 When examining the core of an economy with environmental externalities, Chander and Tulkens (1997)
assume that if the members in a group S< N form a coalition, then those do not belonging to S will act

non-cooperatively and play only individual best reply strategies. They do not consider the possibility that
players outside S may form coalitions and take coalitional actions.



coalitions are formed.

If a coalition structure P = {5,,5,,...,5;} is formed, then in equilibrium each
coalition S in P will choose the total amount of labor input to maximize the sum of
members’ incomes, given the total labor inputs for the other coalitions in P. The total
income that the coalition S obtains in equilibrium under the coalition structure P is
defined as the wortl that S can obtain by cooperating. Notice that the worth of
coalition S under one coalition structure may be different from that under another
coalition structure. Because of this feature, we cannot employ the usual definition of a
game in characteristic function form to describe the model. Here we apply the concept of
a game in partition function form due to Thrall (1962) and Thrall and Lucas (1963): a
partition function assigns a non-negative value to each pair of a coalition and coalition
structure which includes that coalition.

In this paper, we investigate whether it is possible for all fishermen to agree to
form a “grand coalition” to coordinate their labor inputs. In order to reach such an
agreement, there should exist an income distribution such that any coalition S cannot
be better off by redistributing the income that S can get by itself among its members.
The set of such income distributions is called the core. However, as mentioned above,
the income that coalition S can obtain by itself depends on the coalitions which the
players outside S form. Therefore, we cannot use the ordinal notion of the core of a
game in characteristic function form. Instead we introduce several different core
concepts for a game in partition function form. These will depend on the expectation
of each coalition S regarding the coalition formation of outsiders should coalition S
break the agreement and operate on its own.

Imagine that the members of coalition S pessimistically expect that the
coalitions of outsiders form in the worst possible way for S. In the present mode), this
corresponds to the case in which every player outside S acts independently and non-

cooperatively. We prove that the core exists if every coalition has these pessimistic



expectations. In particular, equal division of total income belongs to the core.
Therefore the grand coalition is formed and Pareto efficiency is achieved; the tragedy
of the commons can be avoided. On the other hand, the core is empty if each coalition
5 optimistically expects that all players outside S will form the largest possible
coalition, which is best for § in our model. Whether or not the core exists depends
crucially on the expectation of each coalition regarding the coalition formation of the
outsiders.

The paper is organized as follows: Section 2 describes our basic model of an
economy with a common pool resource. In Section 3, we define an equilibrium
concept under a given coalition structure and examine the properties of equilibrium
labor inputs and incomes. The following section studies the core when each coalition
has a pessimistic view regarding outsiders’ coalition formation. Section 5 investigates
the core when some coalitions have optimistic expectations regarding outsiders. In the
final section, we offer concluding remarks and some speculations on possible future

research.

2. The Model

We consider the following model of an economy with a common pool resource as
examined by Weitzman (1974) and Roemer (1989). There are n>2 fishermen
employed on a commonly owned lake. Let N ={1,2,..,n} be the set of fishermen, with
generic element j. Initially there are no fish. Let x ;j 20 denote the amount of labor
fisherman i expends to catch fish.2 The total amount of labor is givenby xy =) jen X -
We represent technology by a production function f which specifies the amount of fish
caught for each value of the total amount of labor xy . We assume that f(0)=0,
f'(xN)>0, f"(xN)<0,and |im f'(xy)=0; thatis, there are decreasing returns to

XN —0

labor. The distribution of fish is proportional to the quantity of labor expended among

2 Our main results hold independent of whether fishermen are initially endowed with labor.



fishermen, since the input is homogeneous and all fishermen are equally likely to catch
a fish per unit of time. In other words, the amount of fish for fisherman j is given by
(xj/xn)f(xn) . Notice that the distribution of fish is not a result of negotiations
among fishermen; it is simply a reflection of our technological assumptions. We
normalize the price of fish as one and denote the personal cost of labor by q. Further,

suppose:
(1) 0<g<f0).

As we will see below, assumption (1) guarantees that an interior solution is obtained.

The income of fisherman j is given by

x.
M;(Xq,22,00,%y) =¢f(x~) - qx; (j=12,..,n),

where (0,0,...,0)=0.

First of all, we consider the case in which all fishermen behave non-
cooperatively. A list of labor inputs (x],%3,...,x}) is said to be a Nasl equilibrium if for
all j eN and all X; 20,

m(xG,xZ;) 2 mi(x;,x;5),
where x7; = (x1,..,Xj-1,%j41,.-, %) and x; 20 forall jeN . In other words, each
fisherman chooses his labor input to maximize his income, given the labor inputs of
the other fishermen. Under the present assumptions, a Nash equilibrium exists (see
Theorem 1). Furthermore, in any Nash equilibrium the total amount of labor input is
larger than the Pareto efficient level (for example see Roemer, 1989). Each fisherman
exerts a negative externality on the others which he does not take into account in his
own utility maximization, and he therefore fishes too much; the lake is overfished and

the tragedy of the commons occurs.3

3 Roemer (1989) shows that when the technology exhibits either decreasing or increasing returns, a Nash
equilibrium is not Pareto efficient. Only under constant returns to labor is a Nash equilibrium Pareto



3. Cooperation and Coalition Structures
It is commonly assumed in the literature that each agent behaves independently and
non-cooperatively. But with sufficient communication is it possible that some kind of
cooperation may arise and the tragedy of the commons somehow be avoided? In an
attempt to answer this question, we consider the case in which cooperation among
fishermen is possible.

Suppose that after sufficient discussion, the fishermen in some group S = N
agree to cooperate. It is natural to assume that they would choose their total labor

input, xg = Z}. esXj/to maximize the sum of their incomes
_ XS oo .
nig =zjesmj =};f(AN)—q15 ,

given the labor input of the fishermen outside S. We first investigate how group S
chooses its total labor input xg. In the next section, we discuss the question of how to
distribute the income mg among the fishermen in S.

The decision on the total amount of labor chosen by the group S depends
crucially on the behavior of fishermen outside S. There are many possible cases.
Fishermen outside S may act non-cooperatively, or they may cooperate and form one
coalition. Alternatively several coalitions may formed and coexist. We use the concept
of a coalition structure to describe the coalitions formed among fishermen. A coalition
structure is a partition of the set N of fishermen, P = {5,,5,,...,5,.}, where 1<k<n,
Si#@fori=1,.,k, 5;NS;=@ fori,j=1,.k, i#j,and $u...uS; =N. Anelement
of a coalition structure, S; € P, is called an admissible coalition in P.

Suppose that a coalition structure P = {5;,5,,...,5;} is formed. Total labor
input for an admissible coalition §; in P is denoted by x5, = 3. jes;%j (=L k). A

vector (xg1 ,x_'gz ,...,x_'gk) is an equilibrium under the coalition structure P = {S;,5,,...,5;}

efficient.

wm



ifforall i=1,..,k and all x5, 20,
* * *
mS,' (xSi Ix-Si ) 2 mS,‘ (xS,' Ix-S,‘ ) ’

where xlg; = (¥5, .., X5;_y /X5;,1 %5, ) and x5, 20 forall i=1,..,k. In other words,
each admissible coalition chooses its labor input to maximize the sum of its members’
incomes, given the total amounts of labor inputs for the other admissible coalitions. If
k = n, then this reduces to the definition of a Nash equilibrium. Moreover, if k = 1, then
it reduces to the definition of Pareto efficiency.

We now characterize equilibria under a given coalition structure.

Theorem 1. For any coalition structure P = {S,,...,Sy), there exists a unique equilibrium

under P, (xg1 ,...,xgk ), which satisfies

() fran)+(k=1)f(xn)/ xn =kq,
(3) xg, =xy /k forall i=1,...,k, and
(4) x_;,. >0 forall i=1,...,k,

where x) Ez:’;l X3, .
Proof. We first prove (2) and (3). The first-order conditions for all coalitions S; are

B, (x5, ;o0 x5,) (XN = X5) f(xN) + 35, % f'(xN) .
(5) . k= — —g=0 (i=1,..k).
Oxs; (xn)

By summing up these equations, we obtain

sk OMs; (% o) _ (k=i feh) + () (k)
= oxs; (xN)?

-kq=0,



which implies (2). Using (2) and (5), we obtain (3):

o M fOR) | seh - feR)
boanflan) = fxn)  kexn = (k=1)f(xN) - f(xn) K

(i=1,.,k).

Next we prove that there exists a unique value xy satisfying (2) and x5 >0.

Let
§(x)=f'(x)+(k=1)f(x)/ x.
We will show that lim g(x) > kg, lim g(x) =0, and that g is strictly decreasing in x if
x>0 X—®

x>0, which together imply the existence of a unique value xy satisfying (2) and
xy >0. First, we prove that lim g(x)>kq. By L'Hopital's rule, lim g(x) =

. x—0 x—0
F' Q)+ (k-1)f'(0) = kf'(0). Since kf’(0)> kq by assumption (1), lin?)g(x) >kq . Now it

X=>

is true that

(6) g'(x)= fr(x)+ (k=1)[xf(x) - f(x)]/x2 <0 if x>0.

By our assumptions, f"”(x)<0 and k>1. Moreover,
(7) xf'(x)- f(x)<0 if x>0,

since xf'(x}— f(x)=0 if x=0 and d—‘i-(xf’(x)-f(x))=xf”(x)<0 if x>0. Hence,
8'(x)<0 if x>0. Finally, we prove that lim g(x)=0. By L'Hopital's rule and our
X—p0

assumption on the production function,

®  limg(x)= Em(f()+(k=1)f ()= lim kf(x) =0.

Turn to the proof of (4). Since xj >0, it follows from (3) that xg'. =xyn/k>0 foralli=
1,...k.

Finally, we check the second-order conditions. By twice differentiating g,



with respect to x5, and using (3), we have

Oms; (55 %) _ [ (xi) , 20k RS i) = £G4

axs,-z k k(x;\’)z

. k).

Since xy >0, f"(xn) <0, k21, and (7) holds, the second order conditions are

satisfied with strict inequalities: — <0fori=1,.. k. Q.E.D.

Equation (2) in Theorem 1 indicates that the total amount of labor input in this
economy is determined by the cost of labor 4 and the number of coalitions k. From (3),
the total labor input for each coalition is the same independent of coalition size.
Moreover, expression (4) shows that interior solutions are obtained: each coalition
expends a positive amount of labor to catch fish.

Next we examine how the equilibrium labor input, the average income per
head, and the equilibrium income of a coalition depend on the number of admissible
coalitions in a coalition structure. Given a coalition structure P = {5;,...,5;}, let
(x5, (P),.., x5, (P)) be a unique equilibrium under P and let x(P) = Zf:l x5, (P).
Moreover, let mg,(P) = mg, (g, (P),..., x5, (P)) be the equilibrium income of coalition
S; for i=1,..,k and therefore my(P) = Z;‘;l mg, (x5, (P),-..,x5, (P)). Then the

following result holds:

Theorem 2. Consider any two coalition structures Py ={S,,...,S;} and P}, ={51,...,5}}

such that k<k’. Then
9) xN(Py) <xn(Phe) s
(10) mn(Py) /n>my(Pio)/n; and

(11)  if SePy and S €P}., then mg(Py) > ms(Py).



Proof. First, we prove (9). Since xjy depends only on the number of coalitions in a

coalition structure as we saw in Theorem 1, it is sufficient to show that d;N >0.

Let h(x,k) = f'(x)+(k-1)f(x)/ x—kq. By (2), h(x) k)= 0. Therefore,

" ah(x?\,,k%
(12 2N Gk

dk Oh(xn k)
exyn

It is easy to see that

(13) ah(xN k) f“( k -1) le( ) f(x;\l)<0

3
XN (xN)

since f"(xn)<0, k21, xj >0, and from (7), xN f'(xN) - f(xN) < 0. Further, itis

true that
ah(xiy k) _ FeR)
ok XN
By (2) and (7),

ay oM LJEN oo,

XN XN
Thus, 6]1(3‘;};: ,k) >0. This inequality, (12), and (13) together imply d;;(\l >0.

Looking now at (10), since my /n=[f(xn)-gxn]/n depends only on the

number of coalitions in a coalition structure, it is sufficient to show that &i;’—k/i) <0.

Differentiating the function my /n with respect to k, we can show that

(15) d(m;\;k/n) le (Fix /n.

By (2) and (14),



16 frieh)-q=(k-1)q-LEN)

N

(15) and (16) that M;% 0.

Finally, to show (11), since m5 depends only on the number of coalitions in a

coalition structure, it is sufficient to show that %’(S— <0. By (3), ms =(f(xn)-qxn)/k .
Thus,

dmg _ dmg dxy N amg
dk  oxy dk Ok

*

By the above argument, dd_k >0. In order to prove that ddk <0, it remains to show

that "is <0 and 611;5 <0. Partially differentiating mg with respect to xjy and using
AN
(16), we have
omg 1, .
=2 (f(xh) =) <0.
axN

Moreover, partially differentiating mg with respect to k and using (14), we obtain

z’ﬁ xN(f( ) )<0
ok k2 xN

Q.E.D.
Theorem 2 shows that as the number of coalitions decreases, the total amount
of labor input decreases, while average income increases. Further, if the number of
admissible coalitions in one coalition structure is smaller than that in another coalition
structure, then the total income under the former structure is larger than that under the

latter.

10



4. The Core of a Game in Partition Function Form
This section considers the final income distribution which fishermen can agree upon.
For this purpose we introduce the notion of a TU(transferable utility) game. An ordinal
TU game is represented by the pair (N, v), where N is a player set and v is a characteristic
function which assigns a real number v(S) for each S in N. The real number v(S) is
defined as the worth, which members of S can obtain by cooperating. However, we
cannot use this type of TU game to analyze our model because there exists a negative
externality: 5's payoff depends not only on the labor inputs of members of S but also
on the Jabor inputs of outsiders. Instead, we employ a new approach based on games
in partition function form, introduced by Thrall (1962) and Thrall and Lucas (1963).
An n-person cooperative game in partition function form is defined by a triple (N,
7, {vp}per)- Here Nis a player set, /7 is the set of all coalition structures P of N,
and vp is a partition function that associates with each admissible coalition Sin P a
real number vp(S). The worth vp(S) depends on how players outside S form
coalitions; that is, vp(S) and vp'(S) may be different if P = 7'. In our model, the

value vp(S;) under coalition structure P is given by
vp(S,) = Z (x5, (P), x5, (P),..., x5, (P)) (i=1,..,k),

where (x; (P), x5 (P),..., x5 (P)) is an equilibrium vector of labor inputs under the
coalition structure P = {5;,5,,...,5;}.
Given a coalition structure P = {51, 5,,...,5;}, a payoff vector z eRN issaid to

be feasible under P if it satisfies

Djes, % S0p(5) (i=1,..,k).

Let I? be the set of all feasible payoff vectors under P and I = Upen! ?. Wenow

introduce a domination relation for two payoff vectors in I . Consider two payoff

vectors z,2' in J and a coalition S in N. We say z dominates z' via S and denote

11



z domg 7' if the following two conditions hold:

(i) ZjestS'U?(S) forall P»S;and

(ii) z; >2'; forall j with jeS.

Each member of S can get a larger payoff under the feasible distribution z than under
the present distribution z' independent of coalition formation among outsiders. In
other words, the members of S have a pessimistic view of the coalition formation of
outsiders. In addition, we simply say z dominates z' if there exists S N such that
2 domg 2', and denote z dom Zz'.

In order to find a reasonable final agreement vector, we consider payoff
vectors that are not dominated by any other vectors in J . The set of feasible payoff
vectors that satisfies this condition is called the core and is denoted by C. Formally the

core C is given by

C={zel| Az’ el st z' domz}.

The core is typically defined in the context of a TU game. We transform our partition
function form game to an ordinal TU game, and compare the core C and the core of the
TU game. To accomplish this we first consider a payoff vector that is not dominated
by any other vectors in I via N. Of course, the payoff vector in the core C satisfies this
condition. In our model, any feasible payoff vector z under P = {5,,5,,...,5;} other

than that under PN = {N} satisfies
k k
UpN (N)> Zi=1v’P(Si) 2 Z,‘:] ZjeS; Zjs

where the first inequality is implied by (10). Hence z is dominated by some feasible
payoff vector under PN via N. Further, any feasible payoff vector z' under

PN satisfying T jeN z'j< VN (N) is also dominated by some feasible payoff vector z

12



under PN satisfying Zj v Z; = Vpn (N) via N. The last equality corresponds to the
Pareto efficiency condition. Thus the core C is included in the following set E:
E=|z eIIZ}.Esz =v,n (N)}.
The core of an ordinal TU game is defined as the set of feasible payoff vectors
such that any coalition S receives a payoff not less than the corresponding worth v(5).
By the above argument, given a game (N, /7, {vp}ps7) in partition function form, if a

TU game (N, v) satisfies o(N) = v, (N), the core of the TU game C(v) should be given

by

(17) C(v)={z efEIZjeszj21)(5),VSCN,S¢N}.

We now give an equivalence theorem about the core C of a partition function form

game and the core C(v) of a TU game.

Theorem 3. Suppose UpN (N)> ZI:"‘:] vp(S;) forany P =(54,5,,...,S;) other than PV . If

we consider the transformation of (N, IT, {vp)perz) to (N, vpin) given by

(18) Vmin () = minvp(S) VSc N,
Pas

then C=C(Upnin) -

Proof. (a) CcC(vmn): Takeany zeC and suppose z € C(v,y;, ); that is,

> jesZj < Vmin (5) for someS < N. Then there is a payoff vector z’' € F that satisfies
Z}.eszj < Zje.;z; <Unmin(5) and zj > z; forall jeS. Hence 2’ domg z, which
contradicts the fact that zeC.

() C(vmin) € C: Take any z e C(v ;) and suppose z ¢ C; that is, there exists

13



Sc N such that z' domg z for some z' eZ. Hence it is true that Zjesz}- £ Umin (5)
and zj>z; forall jeS. Thisimplies 3, .cz; < ¥ 52 < Umin(S), which contradicts

the fact thatz e C(vy,p) - Q.E.D.
To determine Vmin (S) 1N (18), we provide the following lemma:

Lemma 1. Consider any coalition S N . Then vp | (S) > vy, (S) for any two coalition
structures Py ={Sq,...,5;} and Pi=1{51,...,5.} such that k<k’ and SeP  ~P'..

Moreover,

1

_ * BS\ x5S
tin ()= g UG PN - g3y (P)

where |S| is the cardinality of S and P = argmin vp(S).
PsS

Proof. The first inequality v, (5)> vp,,(5) is implied by equation (11) of Theorem 2

because vp(S)=mg(P). Hence the number of elements in P° should be as large as

possible. Thus we have ?S; {Sy,5;,---,5

n-

i}, where §5;=5 and

[S|=1j=1,....n-|8], thatis,

1

. BSw e =S
=19 (fan@P ) -gxn(P7))- QED.

=0_5(5)

According to Lemma 1, when insiders of S entertain pessimistic expectations, they act
as though outsiders behave non-cooperatively. The following theorem shows that the

core in the case is non-empty:

Theorem 4. For the TU game (N, v,;,, ) defined by (18),

C(Omin) =9 .

14



Proof. First we show that Umin (N) > Ymin () for all 5 N ,where |S|=s4. Consider
n 5

any coalition S N with 5= N and set P - argmin ¢ (S). Then by Lemma 1, we
P>3S

have

VainN) _ Omin(S) _ SN @) - (@YY S @) - @)

n s n s(n—-s+1)
SN -an )[R @) -gxn(P)
B n s(n-s+1) ’

where the last inequality follows since x) (ZPN )<xN (?S) by (9) and f(x)-gx is

decreasing for x>0 by (16). Hence

vmi?I(N) zmm(s > (fah (@) - gxi (P ))(;*'S(Tlﬁ—l))
= P -gek P e 2o,

because f(xx(P"))-qxj(P")>0 by (14). Since it holds that 15|"mi:'—z(N)zvmin (S) for

any SQN, (Umin(N)’vmin(N)’m’Umil;(N)) eC(vmin)=C' QED

n n

The above proof demonstrates that the egalitarian distribution among the
grand coalition N always belongs to the core. With pessimistic expectations regarding
coalition formation among outsiders, we would therefore expect fishermen to make an

agreement dividing the total income equally among all players. In this situation, the

tragedy of the commons could then be avoided.

4 In fact, itis easy to prove that this condition is both necessary and sufficient for a symmetric TU game to
have a non-empty core.



5. The Core under an Optimistic Expectations

In this section, we consider the opposite case, where fishermen’s expectations about
outsiders’ coalition formation are optimistic. We modify the definition of the
domination relation dom and introduce a new domination relation dom as follows:

GivenSin N, and z, 2'e’,
z domg z2 < 3IP>S st (i) Z]-EsszD?(S);and
(ii) zj>z; forall j with jeS.

The insiders of S now suppose that the most favorable coalition structure occurs. Thus

we say coalition S has optimistic expectations. We also define; for z, z'e ],

z dom z' & 3ScN st z domg 7.

When all coalitions have optimistic expectations, we consider the core C

defined by this new domination relation. Formally we have:

C={zell Az’ el st z'domz}.

The following equivalence theorem holds for the core C:

Theorem 5. Suppose v.,n (N)> Zi.‘:l vp(S;) forany P ={5,,5,,...,S;} other than PV .

Under the transformation of (N, IT, {vp}perr) to (N,vmax) given by

(19) Umax (5) = maxvp(5) V5cN,
Pss

then C =C(Upmayx) -
Proof . The proof is similar to that of Theorem 3.

We will now prove the core given by C = C(v,a) is empty, which is opposite

16



to the result obtained under pessimistic expectations.

Theorem 6. Let n >4 . Then for the TU-game (N,v_, ) defined by (19),

Clv,,)=9.

max

Proof. We will show that Vnax(N) <0,..(R) forall Rc N with |R|=1, which implies
n

emptiness of the core of symmetric TU games. Set P = argT n;ax v5(R), and note that

Venax(N) = 0,0 (N) . Then, by equation (11) in Theorem 2, we have P = {R,N\ R} and

Urax(R) = 0p(R) = %(f (xy (B)) — g2y (D))

Then equation (2) of Theorem 1 implies
FEE@N=q and (5@ E)+ [P} = g33,(B).

Hence,

?

tanN)_, gy = ORGP 5 (B) - (@)
1

n 2

= {2 (M) - £ (P (M)
—n(f(x (P) = 1/2(x3 () f (0PN + f(xn @)}
= AR P =5 (P 65PN -1 (53(B) - 33 () f (B}

Here, 0 < f(xy(P")) = 23 (P") f1(xu(PM)) < f(x}(P)) — x5 (P) f (23 (D)) holds
because f(x)-xf'(x)is increasing for x>0 (see the proof of (7) in Theorem 1) , and

x5 (PY) < x5 (P). Thisand n >4 together imply v”“"T(N)— v,..x(R)<0. QED.
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Theorem 1 states that the core of any game with 4 or more players is empty if
every coalition has the optimistic expectations. On the other hand, the core exists in
the case of a 2-person game. For 3-person games, it is possible to find examples both of
the existence and non-existence of the core. Indeed, it is easy to see that the core of
(N,v,,,) is empty if the production function is given by f(x) = x*°, while it is non-
empty if f(x)=x"2.

The existence or non-existence of the core depends on insiders’ expectations
about the behavior of outsiders. Thus the possibility for a resolution of the tragedy of

the commons also depends on these expectations®.

6. Concluding Remarks
We interpret the difference between v,;,, (S) and v,,,,,(S) as based on differences in
the expectations of coalition S about the coalition formation of outsiders. If the
expectations of the members of S are optimistic, then the core is empty and hence the
tragedy of the commons cannot be avoided. In other words, if we could find a way to
change these expectations from optimistic to pessimistic, the tragedy might stili be
avoided. However, our analysis in this paper has proceeded under the assumption of
given expectations. In order to study how players form these specific expectations, it
would be necessary to investigate a dynamic or repeated non-cooperative game based
on our model. This important and interesting problem is left for future research.
Another interpretation of the difference between v, (S) and v,,,,(S) exists.
In non-zero-sum games in strategic form, von-Neumann and Morgenstern (1953)

introduce a method for deriving »(S) using maximin strategies between the two

5 We have focused on the two extreme cases of pessimistic and optimistic expectations of coalition
formation: For intermediate cases, it is easy to construct examples of both existence and non-existence of
the core. Therefore it is not necessary for the existence of the core that all coalitions have pessimistic
expectations. Similarly, it is not necessary for the non-existence of the core that all coalitions have
optimistic expectations.
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coalitions 5 and N\S. We will now apply this method to determine (S). The strategy
of 5 (respectively N\ S) is to partition the coalition S (N\S) itself. That is, the strategy
set [1° (17 N\S ) is given by the set of all partitions of S (N\S). Like von-Neumann and

Morgenstern (1953), we define 9(S) as the maximin value:

AO)= s o U@S 2S) ()-
By (18) and Lemma 1, we have #(S) = v,,;,(S) for all S in N. That is, this case is
equivalent to the pessimistic expectations case.

It is possible to apply the notion of Nash equilibrium instead of maximin
strategies. Under the same strategy sets as above, if we define #(S) as a Nash

equilibrium value, we have:

9(8)=vp* 2N\
such that v, N5 2 5 penns (5) forall 5 en1®

U('P'S,T*N\S)(N \S)2 ?’(?'S’TN\S)(N\S) forall P¥YS emMs,

In this case there is a unique Nash equilibrium which is also a dominant equilibrium.
Using (11) and (19) we can show that T(S) = v, (S) . This case is equivalent to the
optimistic expectations case.

Our results in this paper offer ample scope for possible future research. When
an individual’s utility function is not linear with respect to his or her income, we
cannot use the concept of a game in partition function form based on a TU game.
Lucas and Maceli (1978) propose the concept of a game in partition function form
related to an NTU (non-transferable utility) game. However, they assume that players’
payoff vector of all players is uniquely given for each coalition structure, and did not
discuss its determination. Therefore their approach would not be useful to analyze our

model.

In the tragedy of the commons literature, the proportional solution is often
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employed (c.f. Roemer, 1989, Roemer and Silvestre, 1993). However these authors do
not consider implications for the core. In our model, since fishermen’s abilities are
identical, the proportional solution implies equal labor inputs and an equal division of
total income. This income distribution is always in the core of a game in partition
function form under pessimistic expectaions because the game is symmetric. It would
be interesting to examine the relationship between the proportional solution and the

core under cases involving an asymmetric distribution of income.
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