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ABsTRACT. This paper considers optimal resource use of a forest which
provides two types of beneficial goods, timber and service of removing car-
bon dioxide from the atmosphere. Using a variation of forest program
model developed by Mitra and Wan (1985, 1986), some properties of max-
imal program of the forest are examined.

The results are the following: 1) There is some real positive number less
than one such that when a discount factor greater than or equal to the
number is used for utilization of the forest, there exists a maximal programn
starting from every initial forest stock. 2) In undiscounting case, for every
maximal program starting from any initial forest, all trees are necessarily
harvested in the long run. This implies that the forest is not utilized as a
stock yard of carbon, but as an apparatus for absorbing atmospheric carbon
dioxide. Also some turnpike properties are examined for both discounting
and undiscounting cases.

1. Introduction

It is well known that the global climate is potentially affected by small change of
atmospheric contents of some substances, so called greenhouse gases(GHGs). GHGs
are observed to have been concentrating in the atmosphere since pre-industrial times
(about 1750). Among the substances, carbon dioxide is assessed to be the most
important cause of anthropogenic climate change(IPCC, 1996). Forests are the
largest reservoir of carbon among terrestrial ecosystems. Forests also absorb the
atmospheric carbon dioxide thorough the process of photo-synthesis accompanying
growth in volume. Nowadays, in context of the issue of global warming, how to
create and utilize forests is a great concern.

This paper considers optimal resource use of a forest which provides two types
of socially beneficial goods, timbers and service of removing carbon dioxide from
the atmosphere. Using a variation of forest program model developed by Mitra
and Wan (1985, 1986), some properties of maximal forest program are examined.

1



Mitra-Wan model is a discrete time model and we also consider a discrete time
model.For a continuous time model of forest program, see Heaps(1984).

This paper is constructed as the following: First, a single stand problem is es-
tablished when a forest provides timbers as well as absorbs the atmospheric carbon
as its growth. Then we show a forest program model and discuss some features of
the model relating to multi-sector economic growth models. These two sections also
introduce notation and assumption used in this paper. The existence of stationary
maximal forest program is proved in the third section. The proof makes use of a
technique developed by Mitra and Wan (1985, 1986), which exploits the relation
between a single stand model(the Faustmann formula) and a forest program model
and constructs relevant support prices. The forth section focuses undiscounting
case. So called von Neumann facet of a stationary maximal forest program and
turnpike property is examined. The fifth section turns to discounting case. It is
shown that our model has the neighborhood turnpike property in generic.

2. A modified Faustmann formula

We start with the classic of optimization problem in forestry, which is initiated
by Martin Faustmann, a German forester in the 19th century. Consider a even-aged
forest such that the age of every tree in the forest is same and the area covered with
the forest is one, measured by some unit. The problem is choice of harvesting ages
of trees under the special program where every trees is cut at same time and every
tree is planted at once. This is preliminary for studying more general model after
this section. Notations and assumptions below are used throughout this paper.

Denote age of trees by ¢ = 0,1,2..., where i = 0 means that the tree is a seedling
just planted. Let F; ({ = 1,2,...) stand for net value of timber harvested when all
trees on the unit land are cut at age i. G; (i = 1,2,...) stands for total amount
of carbon accumulated in trees whose ages are 7 and which stand on a unit forest
land. Define g; (i =1,2,...) with g, = G,,9; = G; — Gy_, for i = 2,3, ..., that is, g;
denotes absorption rate of carbon by the forest. Let a represent a multiplier with
which the value of removing one unit carbon from the atmosphere is translated into
value of timber. It might be possible to interpret a as the Pigue subsidy.

Until harvesting is carried, growing trees continue to absorb atmospheric carbon
dioxide. Suppose that when trees are harvested, timbers are supplied to society as
well as a portion of carbon accumulated in the trees is released into the atmosphere.
Assume the ratio of released carbon to so far accumulated carbon is exogenously
fixed and denote the ratio by 8. Since timber may be used as a durable good
such as material of housing, it is natural to think that there is time lag between
harvesting and release of carbon. But to introduce the time lag make the model too
complicated to analyze. So we do not explicitly deal with the time lag. Interpret
B as a parameter reflecting some time schedule of carbon release idiosyncratic to
the society we consider. As final notation introduced in this section, p denotes the
discount factor used in the forest program.

We use following assumptions:



[A.1] There is some positive integer N such that F, = Fn,Gi=Gy foralli> N.
[A2] Fy > 0.

[A-3] g: 2 0, all ¢ with at least one strict inequality.

[A4] a € (0,00).

[A5) B € (0,1).

[A.6] p € (0,1].

[A.1] implies that the biological equilibrium exists about the forest and that
within finite time, the forest reaches the natural steady state. By (A.2], we suppose
that the forest in the biological equilibrium is profitable in terms of timber produce.
[A.3] implies that trees can grow in some ages. The rate of carbon accumulation in
a tree is approximately proportional to the growth rate of biomass of the tree(for
example, FAO, 1995 regards half of the biomass as carbon). |A.4] means that to
remove carbon dioxide from the atmosphere is socially beneficial. Regarding [A.5],
if 8 = 1, it implies that all carbon fixed in trees is released into the atmosphere
when the trees are harvested. It is the case where one completely burns down all
of timbers. One might think that sooner or later timber becomes waste and waste
is burned out or decomposed, so all accumulated carbon is virtually released into
the atmosphere in the long run. But it seems plausible to think that some residual
of carbon is left and it is reallocated to somewhere such as the soil or the bed of
the sea. If not so, fossil fuel could not exist on earth. From this, it would be
allowed that B is assumed to be less than one. On the other hand, if 8 = 0, none of
carbon fixed in trees harvested is released into the atmosphere. Obviously the case
seems unrealistic.[A.6] shows that we plan to consider discounting case as well as
undiscounting case.

The problem we consider in this section is to choose the cutting ages which
maximize land rent acquired from one unit bare land if harvesting and planting are
repeated infinitely. When this problem is set up with infinite time horizon under
stationary assumptions, the situation at the time when harvesting just has finished
is same to the initial one no matter how many times harvesting and planting occur
so far. This implies that the set of optimal cutting ages, if it exists, is same for
every round. Therefore the problem can be written as the following.

i
(2.1) sup R(i;a) = lp‘Fs +a (‘; plg. — p‘ﬂGf)] 117,%

This problem was formulated by Martin Faustmann (Faustmann, 1849), so it is
called the Faustmann formula (for the comprehensive economic interpretation, see
Samuelson, 1976). In order that the problem (2.1) is meaningful, it is needed that
there is some ¢ such that R(i) > 0, which guarantees that planting is profitable so
that planting and harvesting are necessarily repeated infinitely. From [A.2], [A.3],
and [A.6],



> 0.

1-p

N
(2:2) R(N)> |p"Fy +a) (1-B)Gw %

1
This confirms that the maximum value of R(:) is positive.

Since the optimal cutting ages, the solutions of the problem (2.1), are needed to
exists independently of values of « and to be less than or equal to NV in this paper,
we establish the sufficient condition.

Proposition 1. There is some p(8) such that for every p € [p(B), 1], the solutions
of problem (2.1) exists and they are less than or equal to N.

Proof. If R(M) — R(M + 1) > 0 for every M > N, it is sufficient for the existence
of solutions less than or equal to N.

Set p(B) = YN (< 1) and let p € [p(B),1]. Then, from [A.1], [A.2], and [A.3],

M N (.t
PM[Fn + ay,i (0t — Bg)

2.3 RM)-RM+1) =
(23) (M) = R ) (I+p+ 4 pM) (L4 p+ .-« + pM-T)

S pM|Fy + C"Eciil(PN = B)a.

T (Lot pNY A+ p - 4 pMY)

>0
The first inequality holds with strict inequality when p € [p(5),1) . When p = 1,
the second inequality holds with strict inequality. So R(M) — R(M + 1) > 0, all
M>Nifpelp(f),1]. O

Throughout the rest of paper, following assumption is used:
[A.6'] p € [p(8),1]

3. Maximal program of a forest

Although number of useful economic implications can be drawn from the Faust-
mann formula (see Johansson and Liéfgren, 1985, for example), the forest program
is quite special, i.e. the intermittent forest program. The proposition 4.1 of Mitra
et al. (1991) shows that when a forest program is formulated as a linear control
problem, the Faustmann formula can be applied to more general forest program
where all trees are not necessary cut down at once. On the other hand, linearity
is not so plausible assumption when one consider management of a forest across
broad area such as water basin, state, region across different nations, continent,
and the globe. For example, as issues ignored in the Faustmann formula or a linear
forest program, Dasgupta (1982, Chapter 9) pointed out the employment issue and
intermittent timber supply. So we turn to a non-linear forest program.

The model is a simple version developed by Mitra and Wan (1985, 1986) and
further analyzed by Mitra et al. (1991), Wan (1989, 1993, 1994). The major
difference is that they consider a forest as the source of timber, whereas this paper
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consider two functions of a forest, i.e. timber produce and carbon absorption. In
spite of the difference, technique developed by Mitra and Wan is so powerful to be
applicable to our model and the following consideration is strongly owed to tools
they developed.

3.1. Additional notation and assumption. In order to show the model, we
need to introduce additional notation and assumptions.

Let z;,i =0, 1,..., N denote the area of land occupied by the trees whose age are
i. Here z, represents the area just planted and xy represents the area covered by
trees whose age are greater than or equal to N. Recall that by [A.1], we can identify
the trees whose age is greater than N with the trees whose age is N. Suppose that
available land to forest management is bounded above and standardize the total
area as unit. Let us refer to z = (20,1, ...,zy) € RY*! as a forest resource. Denote
by v the N 4 1 dimensional vector with all the elements being one. Then the set of
feasible forest resources is represented by

(3.1) X={z|z e RY*' and vz < 1}.
Define N + 1 x N - 1 matrix A and N x N + 1 matrix B by

[ 0]

1 0 ... 0 oL 0.0
(3.2) A=fo - . i, B=|" 0 .

. T |

DL 000

0 ... 0 1 1 00 .. 01

Denote time by t = 0, 1,.... We refer to time interval between ¢t — 1 and ¢ as ¢-th
period. The period is taken as trees become old by 1 by each period. Let input,
z € X, be a forest resource at the begin of a period and output, y € X, be a forest
resource at the end of same period. If B(Az —y) > 0, then the pair (z,y) is feasible.
Denote the set of feasible input-output pairs by D, i.e.,

(3.3) D = {(z,y)| z,y € X and B(Az — y) > 0}.

When sequence < z, >, satisfies o € X, and (z;_,,2,) € D, all t = 1,2,..., we
refer to < x, > as a forest program starting from z,. In particular, for z such that
(z,z) in D, we call z a sustainable forest and refer to the program z; = z, all ¢ as
a stationary forest program. Define the set of sustainable forests, A, with

(34) A = {z| (z.z) € D}.
Pick up an age m and consider a unique sustainable forest, £ € A such that
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1/m t=0,1,..,m—-1
35 — ) 1Ly 1
(35) i { 0, i=mm-+1,..,N.

We refer to this forest resource as the sustainable forest with cutting age m.

Using the notation in previous section, we define FF = (P, F,....,Fy) € RN,
G = (G1,Gy,...,Gn) € RY, and g = (9,02,...,9n,0) € RN*'. Suppose that at
the end of each period, forest practice is carried. Denote value of timber produce
and amount of net fixed carbon in a period by ! and ¢, respectively. Then { and ¢
acquired from a feasible input-output pair (z,y) is expressed as

(3.6) | = FB(Az —y),
(3.7) ¢ =gz — fGB(Az ~ y),
respectively.

Let w(l, c) be a one period social welfare function. As for w, we assume that,
[A.7] w: R* — R is a continuous, strict increase, and strict concave C? function.

As the reduced form of w(l,c), we will also use the function ©: D — R defined
with

(3.8) u(z,y) = w[FB(Az - y), gz — SGB(Az — y)]

3.2. The model. We consider the following problem:

T
(39) V('TO) =S“p(li,1..nli‘2fzpt[u(mt—hmt) - utl)!
t=1
subject to (z;_1,%¢) € D, all t and zo € X is given,

where supremum is taken over feasible forest programs starting from x, and u* is
some real number with which V(z,) comes to be bounded above and below for
every Zo in X. In the case of p < 1, choice of u* is arbitrary. On the other hand, in
undiscounting case( p = 1 ), we need to verify the existence of such v*. It will be
done later, but here premising the existence, let us state some basic remarks about
this problem.

Remarks:

1. A forest program realizing V (xo) exists for every xo in X.

Choose zp € X arbitrarily and take a sequence of forest programs, < z; >,
starting from same initial state, zo, such that the sum of social welfare realized
by < x{ > converges to V() as s — co. Since the set of feasible input-output
pairs, D, is compact, sequence < z{ > has a limit point, z}, such that (z,,2}) € D,
and we can choose the sub-sequence of < mf’ > in which z{ converges z}. By D’s
compactness, from this sub-sequence, we can also pick up the second sub-sequence
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< 22" > where the sequence 3 is converged to some point, say x3 such that
(z,z3) € D. Continuing this operation for ¢ = 3,4, ... yields the sequence of limit
points, < z; > . Notice that < z; > generales V(z,) since wlen a sequence
converges to some point( V(xzo) ), the every sub-sequence converges {o same point.
Also notice that every (z;_,,z;) is in D and z§ = zo. Therefore < x; > is a forest
program starting from zp and it realizes V (zy).

2. A forest program realizing V (xo) is mazimal program.

Let < 27 > be a forest program realizing V() and pick up arbitrarily a forest
program starling from z, say < z, >. Let u, = u(z;_,,2}) and u} = u(z,_y,z,). If
V(zo) is bounded, by construction of V (2,), the following incquality holds.

02 liminl)" p*(u; — v*) - lim inf )~ pH(uy — u)
= liminf ) p*(u; — u*) + Limsup > Pt (ue—u’)
> liminf )" pt(u — uy).
This inequality implies that there is no forest program which starts from the same
initial stale and overtakes < z; >. That is, < z; > is a maximal program. Par-
ticularly, in discounting case( p < 1 ), by the boundedness of D, u is bounded
and every ;le p'(uy — u*) converges. Hence the inequality is rewritten as 0 >
limr_o0 34y (1 — 1), This implies that < z} > is optimal in the sense of that
the program catches up every forest program starting from the same iuitial state.

(The terminology such as overtake, catch up, maximal, optimal follows McKenzie,
1986.)

3. The forest model is similar to standard multi-sector optimal growth models but
not same.

The model is constructed on a compact convex production set D and an additive
and concave one period felicity u. This set up is common with standard economic
growth models. Fortunately, the model evades difliculty caused by non-convexity,
which typically appears in one stale variable bio-economics models(see Dechert
and Nishimura, 1983 for the complete characterization), because we regard age
distribution of trees as controllable. On the other hand, unfortunately, the model
lacks an important assumption frequently used in economic growth models, that is
{ree disposability. The reason why free disposability is violated in the forest model is
simply that land avaijlable to forest management is bounded. Since free disposability
is used almost everywhere in order to derive basic propositions on optimal economic
growth, the lack requires a special approach to examine the forest model. The
approach is to find support prices of stationary maximal forest program in heuristic
way, which is developed by Mitra and Wan (1985, 1986). We will study our forest
model along same line to Mitra and Wan.

4. Existence of a stationary maximal program and the supporting prices

In this section, we prove the following claim:
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Proposition 2. There is a stationary mazimal forest program of the problem (3.9)
for each p under [A.1] to [A.5], [A.6°], and [A.7].

Proof. Throughout this proof, fix discount factor p at some value satisfying [A.6'].
First, we derive dual prices supporting some sustainable forest.

Choose arbitrarily a sustainable forest = in A and consider a stationary forest
program < z, > such that all z, = z. The unique (/,c) in R? is given by this
program, that is = FB(Az — z), and ¢ = gz — SGB(Az — z). Therefore forest
program < z > provides the unique w,(l,c) and w,(l, c), where w, (I, ¢) and w,(l, c)
represents dw(l, c)/dl and Bw(l,c)/dc, respectively. By [A.7], both w, and w, are
positive and bounded, so we can define a in R, as

(4.1) a = wyfw.

Also we can define a map W : A — R, which corresponds z € A to a € R,,.

Given some positive real number «, we consider the Faustmann formula (2.1).
Under [A.1] to [A.5] and [A.6"), there is the set of maximizers of (2.1) for each a.
Denote the set by M(«a) and let M be a correspondence which corresponds o € R,
to M(a), a subset of {1,2,..., N}. Denote by z(m) the sustainable forest with
cutting age m and let A,, be any non negative real number satisfying 2meM(a) Am <
1. Denote by A(M(«a)) a subset of A such that

(42) AM@)={alz= Y Anz(m)}.

meM(a)

Then we have a correspondence ® : {1,2,..., N} — A which corresponds M(a) to
A(M(c)).

Now consider the correspondence o M oW : A — A. What we going to show
is that this correspondence is upper hemi-continuous.

Let Z € A be a sustainable forest arbitrarily chosen and suppose that < z* > is
any sequence of sustainable forests converging to Z. Since the map W is continuous,
af = W(z*) converges to W(z). Denote W(z*) and W(Z) by o, &, respectively.
Then take m® € M (a*) for each s and consider a sequence < m?® >. Since M(a*) is
a subset of {1,2,..., N}, there is a limit point, i, of < m* >. It holds with each s
that R(m%,a®) > R(i,a°) for all i € {1,2, ..., N}. Therefore, R(",&) > R(i,a) for
all i € {1,2,..., N} must hold. That is, m € M(&). This is valid no matter how to
choose m* and to choose the limit point. Therefore we have

limsup M (a®) C M(&).
S—00

Then choose y* € & o M o W(z*) such that y* converges to § as s — co. By
taking nonnegative numbers A}, such that m* € M(a®) and 3., M) Mme < 1,
y* can be represented as



y'= Z ALLz(m?).

m2eM(a’)

Then taking enough large s’, we have

Y = Z A x(mn), s> .

meliminf,_, o M(a?)

As a result, there are some \,, > 0 such that Y mcliminf M(as) Am < 1 and

7= Z Amz{m).

meliminf, oo M(a?)

Since liminf M(a’) C limsup M (a*) C M (&), we can rewrite § as

g= > Anz(m).
meM (&)
This implies § € ® o M o W(&). Therefore the correspondence oM oW : A — A
is upper hemi-continuous.

By construction, A and ® o M o W(z) (z € A) are convex and compact. Also
A contains ¢ o M o W (z). Hence by the Kakutani's fixed point theorem, there is a
fixed point, z € A, such that z € ®o M o W(z).

Using 2 (a fixed point of oM oW : A — A), let us introduce the following
notation:

' = FB(Az - 2),

¢ =gz — BGB(Az — z),

o' = W(z),

R’ = R(m*,a"), where a* = W(z) and m* € M (o),
po =0,

i
pi=p"(1=pY1=p)'R - "y plgy| fori=1,2,..,N,
J=1

p= (pOapli "'1pN)'

Notice that m* is a solution of the Faustmann formula (2.1) under a = a* and
straightforward calculation yields

(4.3) p; > Fy— a’fG;, alli = 1,2,..., N,

where the equality lolds if and only if i € M(a®).
Then, for any (z,y) € D,



(4.4) FB(Az — y) + o’[9z — BGB(Azx — y)) + py — p~'pz
=(F - 8G)B(Az —y) +a'gz+ py — p~'px
<p(Az—-y)+a’gz+py— p'px

(equality holds iff z;_, — y; = 0 for all i ¢ M(a"))
=(pA++a*g— p7'p)x
<p 'R'vz (equality holds iff zy = 0)
<p~'R" (equality holds iff vz = 1)
=FB(Az - z) + a’|92 — BGB(Az — 2)| + pz — p~'p2.

Denoting ! = FB(Az — y) and ¢ = a*|gz — BGB(Az — y)), we have

(4.5) l+a'ct+py—plpz<I'+a'c +pz— plpz

On the other hand, by strict concavity of w, we have

(4.6) u(z,y) — u(z,2) = w(l,c) — w(l*,c")
<wi[l+a%e) - (I + a*e”)]
(equality holds iff (Z,c) = (I*,c")),

where w} denotes dw(l*,c")/8l.
Define ¢ = w]p and combine (4.6) with (4.5) and we have

(47)  ulz,y) +py — p'pz < w(z,2) + pz — p~'pz for any (z,y) € D.
Here the equality holds if and only if the following all conditions meet:
a. (l,e)=(I*,c"),

b. T 1 — yi =0 forall: ¢ M[a‘l,

C. TN = 0,

d vr=1.

Now we show the existence of a stationary maximal program using support prices
g derived above.

1) Undiscounting case
Set u* = w(l*,c"). For any z, in X, any forest program < z, > starting from zo,
and every T,

T
(4-8) Z[‘U(ﬂ?t—h z) — '] £ q(z7 — 20).
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Hence V(z,) is bounded above. Since the sustainable forest z is reachable within
finite time from every initial forest Zo, V(2o) is also bounded below. Also we can
claim that for every z € A, u(z,z) < v°. Otherwise, there is some y € A such
that u(y,y) > u* and since y is reachable within finite time from every initial state
z € X, V(z) diverges to infinity, contradicts (4.9). So we can write

(4.9) u’ = max u(z, z).

Also notice that (I*,¢*) realizing u* = w(l*,¢*) must be unique since w is strict
concave,

The existence of a maximal program is proved along the line of Lemma 9.2 in
McKenzie (1986). Let A* represent the set of fixed points z € & o M o W {(z) when
p = 1. As mentioned just above, every z € A* must satisfy [* = FB(Az — z) and
¢ =gz — fGB(Az — z) so that A* is a compact subset of A. Then there is some
2" such that

(4.10) pz" = min pz.

Suppose that a stationary forest program < z* > is not a maximal program. Then
there is some forest program < z; > starting from z° and some positive integer 7™
such that

T
(4.11) Z[u(a:t_,,a:t) —u'|>e>0forall T> T,

i=1

Now define a sequence < kp_,, kp >= (23;1 x4 /T, E;F:l z,/T). By convexity
of D, (kr-1,kr) € D for all T = 1,2,... and by compactness of D, there exists an
limit point (k*,k*) € D. Notice k&* € A, so that u(k*,k*) — u* < 0. Since u is
concave,

1 T

(412) u(k’l‘—l)kT) 2 "':f» glu(mt-llxt)'
Therefore, we have
(4.13) 02 u(k* k") —u"

> li,;‘n inf u(kp_y, kr) — v*

1 T
> liql,l_l_’ig;f T ;[u(mt—la z) — u’)
2 lim ¢/T
T—+00

=0.

Hence k&* € A*.
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On the other hand, from (4.9) and (4.11), for all T > T,

T
€< Z[u(x,_,,:tt) —u'] € pz’ — pzyp.
t=1

Therefore, for T > T,

T
T
(4.14) e< pz’ — T
z_TZ-n r-rT

= pz" - z(p””‘)(T T.)+2T”j°§,,.

Taking inferior limit of (4.14) with T — 0o and we have

(4.15) € < p” — limsup Z(B—‘)( )

<p2° —P’» .

T-T

That is, pk* < pz*. Since k* € A* and z* minimizes pz over z € A*, a contradiction
appears. Therefore, a stationary forest program < z* > is a maximal program.

2) Discounting case

As shown by Weitzman (1973), (4.7) is sufficient condition for the forest program
< 2> to be a maximal program. For u(z, z) and any program < z, > starting from
z’

(>0

(4.16) D lPtu(@eor, 2} = plu(z,2)] < lim ptg=o0.

t=1

Therefore < z > is a stationary maximal program. [

In the proof of Proposition 2, some characteristics of a stationary maximal forest
program appear. We states them as corollary.

Corollary 1. For everyx € X, there ezists a marimal forest program starting from
z.

Proof. We have seen in the proof of Proposition 2 that by standardizing social
welfare function » with u* = u(2*,2*), V(z) is well defined for all z € X. Therefore
Remark 1 is applicable to every z € X, so that a maximal program exists for all
initial states in X. O

Corollary 2. If < z > is a stalionary mazrimal forest program, then zy = 0 and
vz=1,

Proof. See the conditions a to d in the proof of Proposition 2 O
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Corollary 2 says that in a stationary maximal program, all trees necessary fells and
the land available to forest management is fully utilized. The former means that

the forest is not used as stock yard, but as an apparatus absorbing the atmospheric
carbon dioxide.

5. Turnpike property in undiscounting case

5.1. Convergence to the von Neumann facet. In this section, we examine the
turnpike property of maximal forest programs when discount factor is equal to one.
Firstly, we define a value loss function and the von Neumann facet corresponding
to a stationary maximal forest program < z* >.

A value loss function 6(z,y) : D — R_ is defined with

(5.1) 6(z,y) = u(z,y) + q(y — =) — ',

where ¢ is support prices which was derived in the proof of Proposition 2. From
(4.7), for all (z,y) € D, 8(z,y) is nonpositive.

The von Neumann facet C corresponding to a stationary maximal program <
z" > is a subset of D such as

(5.2) C = {(z,y)| 6(z,y) = 0 and (z,y) € D}.

Notice that C is not empty since it contains at least a point (2°, z*), where 2* is
a stationary maximal forest defined in (4.10). Also notice that if (z,y) & C, then
6(x,y) is necessarily negative. The following result is immediate.

Proposition 3. Every mazimal forest program is attracted to the von Neumann
facet in the long run when discount factor is equal to one.

Proof. Define a distance d between any two sets A, B in RVN+1 x RN+! a5

. ' !

(5.3) d(4, B) = el pl@ ) =@y,

where | - | denotes the Euclid norm. If d((z,y), C) > e, then there is some negative
real number, §, such that §(z,y) < 6. Otherwise, we have a sequence < (z*,y°) >
such that (z*,y°) € D, d((z*,3*),C) > € for each s, and 6(z*,y*) converges to
zero as s — 0o. By compactness of D, there is an accumulation point (z*,y*) of
< (z*,y°) > such that (z*,y") € D,(2*,y*) € C, and &(z*,y°) = 0. A contradiction
appears.

Suppose that a forest program < z, > such that

(5.4) lim sup d((z,_;,z,),C) = € > 0.
t—o0

Then there is a positive real number ¢ less than € and there is a positive integer T
such that d((zy_,2,),C) > ¢ for all t > T. This implies that there is a negative
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real number & such that 6(z,_,,z,) < & forall t > T. Therefore, for this program
< >,

T T
Y lulze-y,z) — v = > 8(zem1y2e) + q(zo — z7)
t=1 t=1

diverges to minus infinity as T — co. On the other hand, V(z,) must be bounded
below. Hence < z; > can not be a maximal program. In other words, if < z;, > is
a maximal program, then '

lim sup d(("ct—h 111;), C) =0
t—oo

By construction of d(-), lim inf,_,o, d((z,_,,x,),C) > 0. That is,

(5.5) 0 < lim inf d((y-1,%,),C) < limsupd((z,_,,2,),C) = 0.
—o0 t—oo

This shows lim,_,, d((z,-,,2,),C) =0. O

A forest program attracted to the von Neumann facet C is called a good program
(Brock, 1970). Notice that the set of maximal programs is a subset of the set of
good programs. The following corollary states some characteristics of a good forest
program.

Corollary 3. If < z, > is a good program, then z,n — 0 and vz, — 1 ast — oo.
Proof. Tt is immediate from Corollary 2 and Proposition 3. (J

So a maximal forest program requires utilizing the forest not as a stock yard of
carbon, but as an apparatus absorbing the atmospheric carbon dioxide in the long
time.

5.2. Convergence to the stationary maximal forest program. Now we focus
on the structure of the von Neumann facet C. First of all, we prove the following
claim.

Proposition 4. In general, the cutling ages edopted in a stationary maezimal forest
program are al most two for undiscounting case.

Proof. Recall that if < 2* > is a stationary maximal forest program, u(z*, z*) must
be maximized over A, which appears in (4.10). This can be paraphrased as the
following:

When (I*,¢%) is the outcome from stationary maximal forest programs, then
w(l*,c*) must be maximized over the set of outcome from a sustainable forests
€A,

Formally, the set , say O, is expressed as

(56) O={(l,c) e R*|l=FB(Az - z),c = gz — BGB(Az — z),x € A}.

14



Denote by z(0) N + 1 dimensional vector (0,...,0,1) and recall the definition
of the sustainable forest with cutling age m in the expression (3.5). Then each
z(m),m = 0,1,..., N is sustainable and linear independent of each other. Hence
any z € A C RN+ is expressed as

N
(5.7) z =" Anz(m),

m=0

where A, is a nonnegative real number such that TN oAm < L
Notice that the outcome from (z(m), z(m)) is

U,c) = (0,0) ifm=0
T (Fn/my, (1= B)G/m) ifm=1,2,..,N.
Hence the set O is rewritien as
N
(5.8) O={(lic) € B|1= 3" AnFu/m,
m=1

N
c=(1-5) Z AnGm/m,
m=1

N
Am 2 0 for all m, and Z An < 1}
m=1

This expression and strict concavity of w imply that the outcome (I*,¢*), which
corresponds to stationary maximal forest programs, lies on some line segment
spanned by two points, say (Fi,/m, (1 — B)Gp/m) and (Fpp/m/, (1 = B)G /).
The situation is illustrated in Figure 1.

Figure 1(a) shows the case where the stationary maximal program is to sustain
unique z(mn) and the corresponding cutting age is unique m. Figure 2(b) shows the
case where the stationary maximal forest is also unique, expressed as Az(m) + (1 —
A)z(m') with some A € (0, 1). But in this case, two different cutting ages are adopted
in order to sustain the maximal program. Figure 1(c) shows the case where z(m) =
z(m') is a stationary maximal forest. In this case, every Az(m) + (1 — A)z(m'), ) €
[0, 1] is a stationary maximal forest. In the case of Figure 1(d), stationary maximal
forests lies on the convex combination of three different sustainable forests with
cutting age m, m', m”. In the case, also stationary maximal forests are not unique.

Among these four cases, case (c) and (d) is obviously not generic in the sense
that these situations disappear by small perturbation of F; or G;. So we conclude
that the claim is valid. []

From above observation, we also have the following corollary.

Corollary 4. In general, stationary mazimal forest program is unique for undis-
counting case.
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Next we investigate relation between properties of the von Neumann facet and
maximal forest programs in generic cases illustrated Figure 1 (a) and (b). We begin
with showing the sufficient condition under which every maximal program converges
to the stationary maximal program.

Proposition 5. If there is no sequence < ki-1,ky >15y such that each (k,_,, k) € C
and liminf [k, — 2°| > O (z* is the stetionary mazimal Jorest), every mazimal forest
program converges to the stationery mazimal.

Proof. Let < z, > be a maximal program starting from zo € X. From Proposition
3, it is satisfied that d((z;_,,2;),C) — 0 as ¢ — oo. Take a sequence of the
neighborhoods of C, < U*® >, such that

U* = {d((z,y),C) < €’}, ¢ > 0, and €* — 0(t — 0).

Then we can consider a time sequence < * > such that

(:Bt_.l,xg) € Us,t 2 t?

Define z? = 4., and make a sequence < &} > ,4>0 for each 7. Then by compactness
of D, there is some limit point x, for each 7 such that

(xr-1;z,) €C, all T2 1.

If < z; > does not converge to the stationary maximal program, z*, then there
is some € > 0 such that

liminf |2} — 2*| > ¢, all 5.
T—+00

Therefore the sequence of limit points, < z, >, must satisfies liminf,_,o |z, — z*| 2
€e>0. O

From this proposition, we immediately have the result for the case of Figure 1

(a).

Proposition 6. If the stationery mazimal forest has only one cutting age, i.e., if
it is the sustainable forest with cutling age m, then every mazimal forest program
converges to the stationary mazimal in undiscounting case.

Proof. Let a forest program < z, > satisfies (z,_;,z;) € C. In each period, the
forest program requires to cut all trees whose ages are just 7 and to keep all other
trees. Also it is required to amount of timber harvested is same in each period and
the amount is equal to F,,/m. These conditions are met if and only if

17



zy = (1/m,...,1/m,0,...,0) = 2*,
e —
m

where 2* is the stationary maximal forest. Proof is completed by invoking Propo-
sition 5. O

For the case of Figure 1 (b), we claim the following proposition.

Proposition 7. When the stationary mazrimal forest z* is represented as Az(m’) +
(1= M)z(m) with some A € (0,1) and m',m € {1,2,..., N}, it is generic that every
mazimal forest program converges to the stationary marimal in undiscounting case.

Proof. Let a forest program < z, > satisfy (z,_,,2,) € C, all £. Then the elements
of 2;, 3,7 > m must be zero. Therefore we can restrict consideration in the
sub-space R™ in R¥*!, Define y, € R™ with

(59) Ye = (-‘L'z.o - z(.): '")xt,m—l - z:n—-l)‘

Notice that vy, = 0, all ¢ since vz, = vz* = 1, all &.
In each period, < 2, > and < 2* > must yield same amount of timber and the
ages of trees harvested are just m’ and/or m. Therefore

Fo(Yic1,mi—1 — Yem?) + Fo(y-1m) =0

This implies that the sequence < y, > can be described by a linear system
Y, = Ly,_,, where L is defined with

(0 ot 1~ Fp/Fo]
10 v, 0
01 0 .oovennennn. 0
R TR

L=1| ... ) T Fn/F,, | < m+1stline.
........... | R
P 1 0 |

Since |z¢; — 27| = |y3| < 1, all ¢,4, y, must be in direct sum of the eigen spaces
corresponding to the eigen value whose absolute value is less than or equal to one.
If L has an eigen value whose absolute value is equal to one, we can get < ¥, > such
that y, does not converges to zero and |y,4| < 1, all ¢,4. This implies the existence
of < xy_y,%, >€ C such that liminf,_, |z, — 2°| > 0. Then we check the existence
of eigen value, u, such as |p| = 1. The characteristic polynomial of L is

18



um -+ um'(j;‘m/Fm') - (1 + Irm/};‘m’) =0.

Taking 4 as cos@ -+ isin 8, where “ 1 ” is the imaginary number, yields

pt = [1 + Fm/Fm' - (Fm/Fm’) cos(m’0)| - il(Fm/Fm') Sin(ﬂlle)],

and

(5.10)
™ P = 1= 14 2(Fn/ Fr')}* + 2(Fn/ Fws) = 2(1 + Fi/ Fyy)(Fi/ Fe) cos(1m'8).

Arranging (5.10), we have
(Fin/Fae + 1)(1 = cos(m’6)) = 0.

Therefore sin(m'0) = 0 and ™ = 1. Substitute these into (5.9) and we have
#™ = 1. As a result, an eigen vector belonging to x such as || = 1, say y(u), must
satisfy

(5.11) y(p) = L™y(r) = L™ y(u).

In other words, the linear system L has m'- and m-period when it starts at y(p).
Hence possible period is common measure of m’ and m.

Period-1 is always a common measure and this implies p = 1. Simple calculation
yields a corresponding eigen vector,

(14 Fp/F\

14+ Fyp/Fy
y(1)= [ 15/

\ 1
But y(1) also satisfies vy(1) = 0 since y(1) must satisfy (5.9). Thereflore y(1) = 0.
This implies that when m' and i are mutually prime, every maximal path converges
to the stationary maximal.

What we have to examine next is the case where 1’ and m have a common
measure greater than one. Suppose that the existence of such a common measure
and denote it by n. Consider an eigen vector, ¥, corresponding to an eigen value,
K, such that p™ = 1 and g # 1. Decompose y to two vectors, ¥, and y,, such that
Ym' + Ym = y, every tree on y,, is cut al age m', and every tree on y,, is cut at
age m. Using n dimensional vectors ' = (r{,r},..,v,_ )/ and r = (v, 71, ..., Pacy )/,
then y,+ and y,, are represented as
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ym‘ = (r”"‘lr,’oi‘ """ 70),’ ymz (7‘,......,1‘,0,...,0)!,

m’/n times m/n times

where prime “/” expresses transportation.
If (z4_1,2;) € C, then

9%,y — BGB(Azy_, — ;) = gz° — BGB(Az" — z*).

(See the condition e in Proposition 2.)
From this condition about carbon, the following equation must hold:

m’ xn matrix
T l BN

To Ta1 see Ty

'] ’

TNty ... Th

' ! !

r T «e T
n—1 n-2 - 0
(gh wa9m-19m — ﬁGm') r! r r
0 n—-1 *°° 1

] ' !
_7'“__] rn—2 sea T‘OJ

m Xn matrix
N,

To Ta-1 ... T
™ To ese To

.

TRt Tp—2 ... 7o
+ (gl’ s 3 9m-119m — ﬁGm) o Tpot ... T

=0.

This equation can be rewritten as
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where G/

o
(70 (7o)
™y ™
! . H
nxm’ P + anm . = 0,
n—1 Tn—1

i) ey

nxm: 81d Gpxm are defined as

nxm’ matrix
(g1 i, Im' 1 It — BGonr
G2 ceveeinnn. N It — OGon '
el
OIn—1 ceveverenansan R I T In-2
On 9 =BG g gn-1
nxm matrix
(g1 el cerreeenes Om—1 Im — BGy,
G2 tiieieiriinnrnanrane 9m —ﬁGm g1
anm = O3 et ressettcstateerronttcennrrons g2
In—1 cecrtetiettcionensitinccnnnnnsanns In—2
| On 9m —BGm o1 In—1

This equation is collapsible as the following:

(5.12)

!
where G}, .

!
ann

™ + Gpxat = 0,

and G,x, are defined as
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nXxn matrix
A

r m'/n ’ ot
Ei='1/ FGE-1)n41 see E:';{n gst—l)n-f-n - ﬁGm'
m/n
Zi:] Gi-1)n+2 soe 2:n={n 9Gi-1n+1
G:’IXYI = E E ’
l/ ?
E,/g";l " G- 1n+(n-1) e ):;';1/ " Gi-1n+(n-2)
m’/n 4
_zi:] g(i—l)n+n - ,BGm’ LR Zi";{n g(i—l)n+(n—l)
nxn matrix
[ Z;’%{' Ii-1)n+1 D DA WIRTY. e 2y
m/n
Zi:l G(i-1)n42 v EI‘;’{' 9G-1n+1
Gmm =
5;:;/1" 9@-n+(n-1) v Zf%;" 9(i-1)n+(n-2)
.E;‘:l g(i—l)n-i-n - ﬁGm e 2;'_‘—_1“ .‘?(i—l)n-}-(n—l) .‘

On the other hand, from the condition about timber, i.e. FB(Az_, —z,) =
FB(Az" — z°) for (x,_,,x,) € C, we have for each i,

(5.13) Flpl 4 Far,=0
Combine (5.13) with (5.12) and we have

(5.14) [Grxn — (Fin/Ft)Gaxnlr = 0.

[Gaxn = (Fin/ Fm')Graxy| is a circulation matrix and the elements are

m/n m/n

Zg(i—-l)n+j - (Fm/Fm’) Z.Wi—l)n%-s‘:j € {1’ ceeg W — 1}
i=1 i=1

m/n m/n

and (zgin - ,BGm) - (Fm/Fm’)(z 9iin) — 6Gm')-
i=1 i=1

Obviously the determinant of [Gnxn — (Fin/Fm')Grxn| depends on F, G, and 3.
In other words, if |Gpxn — (Fin/Fim)Grxn| = 0, small perturbation of G or F breaks
the equality. Therefore we can conclude that in generic, there is no r which satisfies
the equation (5.12).

By gathering the results when the stationary maximal program has just one
cutting age and just two cutting ages, we complete proof. []
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6. Turnpike property in discounting case

Now we turn to discounting case. Since it is known that the forest program
model does not have the global asymptotic stability for every discount factor less
than one( Mitra et al., 1992 and Wan, 1989, 1993, 1994), we restrict consideration
to the neighborhood turnpike property in this section.

Proposition 8. Our forest program model generically has the neighborhood turn-
pike property. That is, for any e > 0, there is some p* such that if p € (p*, 1), every
mazimal program starting, < z,(p) >, from any ¢ € X salisfies

limsup|z(p) — z,(p)| < ¢,

where 2(p) represents a stationary mazimal program when discount factor is p.
The proof has three steps.

Lemma 1. Denote by 2* a stationary mazimal program in undiscounting case. If
z* is unique, then for any € > 0, there is some p' < 1 such that ifp>p,

2(p) - 2| < €.

Proof. Suppose that the claim does not hold. Then there is a sequence < z(p*) >
converging to some point Z such that [2—2*| > 0 as p* — 1. As seen in the proof of
Proposition 2, if a fixed point of the correspondence & o M o W is given, then the
support prices satisfying (4.7) are uniquely determined. Denote by g(p*) the vector
of prices supporting the stationary maximal forest 2(p*). Since the support prices
are bounded as shown in the proof of Proposition 2, we can take a sub-sequence of
< p* >, < p* >, such that z(p*') converges to z and q(p*’) converges to some § as
p* — 1. Since every z(p*) and g(p*') satisfies the dual equation (4.7), Z and § also
must satisfies (4.7). Therefore % is a candidate of a stationary maximal forest in
undiscounting case. But the stationary maximal forest is unique so that z = 2*. A
contradiction appears. O

Lemma 2. Let < z,(p) > denote a mazimal program starting from z under the
discount factor p. Then for any € > 0, there is some p” < 1 independently of z such
that if p > p”, for every z € X,

sup lz.(p) — ze(1)| < €.

Proof. Pick up z € X arbitrarily. Suppose that, for this initial state, z, there is no
p < 1 satisfying above claim. Then there is some sequence, < z¢(p®) >, of maximal
programs starting from same initial state, z, such that < z,(p*) >—< %, > as
p* — 1 and < Z; > is not a maximal program in undiscounting case. On the
other hand, letting V(z, 0*) be sum of social welfare acquired from the program,
< z4(p*) >, it holds that
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T
V(z,p®) > HﬁmfZ(p’)‘[u(mt_,(1),:1:,(1)) —u'].

Therefore we have

T T
li'fr'lliolcl,f Zlu(:i:t_l,a‘c,) —u'| > ]%infz:]u(xt_l(l),x,(l)) —u’.
t=1 o t=1

But < z,(1) > is a maximal program, so that,

T T
H&Lr:f Z[u(i'g_l, ) - u']= liTnliorngIu(:c‘_,(l),:ct(l)) —u’).
=1 t=1

This implies that < Z, > is a maximal program. A contradiction appears. As a
result, for each = € X, there is some p(x) such that if p > p(z), then sup, |x,(p) —
.’1:,(1)| < €.

Next consider the problem

sup p(z).
zeX

Since X is compact, there is a maximizer of this problem, z*, and p(z*) < 1. Take
p(z*) as p” and proof is finished. O

Proof. (Proposition 7)

As seen in proof of Proposition 6, it is generic that the stationary maximal
program is unique in undiscounting case. Therefore in the generic case, by Lemma
1, for any € > 0, we can choose p' such as

(6.1) |2(p) — 2°| < €/3 all p> p'.

Also as seen in Proposition 6, in undiscounting case, every maximal program
starting from any initial state generically converges to the stationary maximal forest.
Therefore there is some 7* > 0 such that if ¢ > 7", then

(6.2) |£e(1) — 2°| < €¢/3 forevery x € X .

Further more, by Lemma 2, we can choose p” such that for every z € X and all
p>p,
(6.3) sup [z¢p) — (1) < €/3.
Define p* with
p" = max|p’, p", p(B)].
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"

Then we have for p> p* and t > T*

24(p) = 2(0)] < |zelp) — 2(1)] + [24(1) = 27| + |2 — 2(p)|
<e

This implies that for any ¢, in generic there is some p* < 1 such that when
discount factor p is greater than p*, for every maximal program, z4(p), starting
from any z € X, limsup,_,, |z(p) — zp)<e. DO

25



REFERENCES

1. Brock, W. A. (1970) On existence of weakly maximal programmes in a multi-sector
economy. Review of Economic Studies 37, 275-280.

2. Dasgupta, P. (1982) Control of Resources. Basil Blackwell.

3. Dechert, D. and K. Nishimura (1983) A complete characterization of optimal growth
paths in an aggregate model with a non-convex production function.Journal of Eco-
nomic Theory 81, 332-354.

4. FAO (1995) Forest resources assessment 1990 global synthesis. FAO Forestry Paper
124.

5. Faustmann, M. (1849) Calculation of the value which forest land and immature stands
possess for forestry. In M. Gane (ed.) (1968) Martin Faustmann and the evolution of
discounted cash flow. Commonwealth Forestry Institute Paper 42, Oxford University.

6. Heaps, T. (1984) The forestry maximum principle. Journal of Economic Dynamics and
Control 7, 131-151.

7. IPCC (1996) Climate Change 1995 The Science of Climate Change. Cambridge Uni-
versity Press.

8. Johansson, P. -O. and K. -G. Léfgren (1985) The Economics of Forestry and Natural
Resources. Basil Blackwell.

9. McKenzie, W. A. (1986) Optimal economic growth, turnpike theorem, and compara-
tive dynamics. In K. J. Arrow and M. D. Intriligator (eds.) Handbook of Mathematical
Economics. Vol.111, North-Holland, 1281-1355.

10. Mitra, T., D. Roy, and R. Ray (1991) The economics of orchards: an exercise in point-
input, flow-output capital theory. Journal of Economic Theory 53, 12-50.

11. Mitra, T. and H. Wan Jr. (1985) Some theoretical results on the economics of forestry.
Review of Economic Studies 52, 263-282.

12. Mitra, T. and H. Wan Jr. (1986) On the Faustmann solution to the forest management
problem. Journal of Economic Theory 40, 229-249.

13. Samuelson, P. A. (1976) Economics of forestry in an evolving society. Economic Inquiry
14, 466-492.

14. Wan, H. Jr. (1989) Optimal evolution of tree-age distribution for a tree farm. In C.
Castllio-Chaves, S. A. Levin, and C. A. Shoemaker (eds.) Mathematical Approach to
Problems in Resource Management and Epidemiology. Lecture Notes in Biomathematics
81, Springer-Verlag, 82-99.

15. Wan, H. Jr. (1993) A note on boundary optimal paths. In R. Becker, M. Boldrin, R.
Jones, and W. Thomson (eds.) Genemnl! Equilibrium, Growth, and Trade II The Legacy
of Lionel McKenzie, Academic Press, 4111-426.

16. Wan, H. Jr. (1994) Revisiting the Mitra-Wan tree farm. International Economic Review
35, 193-198.

17. Weitzman, M. L. (1973) Duality theory for infinite horizon convex model. Management
Secience 19, 783-789.

ScroolL oF SociAL SciencEs, WASEDA UNIVERSITY, 1-6-1 NISHI-WASEDA SHINJUKU-

Ku, Toxyo 169-50, JAPAN
E-mail address: akao@mn.waseda.ac.jp

26



