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Abstract

We consider a type of monetary economy inhabited by a representative
agent with perfect foresight. Particular characteristic of our model is that
the consumer receives utility directly from the money holdings. Following
the framework of Matsuyama(1991) and Fukuda(1993), we give a sufficient
condition for the existence of period two cycle of optimal real balances.

We also give an example which is capable of generating chaotic motion
in the framework of our model.

The result suggests that we can explain volatile fluctuations of mone-

tary economy without recourse to exogenous stochastic shocks.
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1 Introduction

Recent theories of deterministic economic dynamics have successfully shown
that the chronic and seemingly volatile fluctuations of an economy may emerge
from optimization behavior of economic agents. One of the most interesting
branches of this field is the research into the effect of money on the dynamic
movement of the economy. The primary purpose of this paper is to construct
a deterministic model of dynamic monetary economy which exhibits cyclical or
chaotic fluctuations.

In the literature of optimal dynamics of monetary economy, two different
approaches coexist. One is the overlapping generations model and the other is
the model with money in t'he utility function. The latter approach, initiated
by Brock (1974), offers the simplest way to study the dynamic movement of
the monetary economy and there are several outstanding papers on the subject
along this line. The fundamental framework of this paper is that of Matsuyama
(1991) and Fukuda (1993). Matsuyama showed that there exist optimal cyclical
paths and chaotic paths of real balances under a specified utility function which
leads to a logistic type return map. Fukuda has given a sufficient condition for
the existence of a period two cycle if the utility is represented as the sum of
utilities from consumption and money. He also gave several examples of utility
functions which lead to cyclical or chaotic paths.

In this paper we give a general condition for the existence of the period
two orbit without specifying utility functions. This is a generalization of the
results of Matsuyama and Fukuda. We also show that our model is capable of
generating chaotic paths by giving a numerical example.

The construction of this paper is as follows. After presenting a fundamental
framework of the model in Section 2, we show that there exists a unique return
map for optimal dynamic paths of real balances in Section 3. In Section 4,
we state our main proposition on the existence of period two cycles. Section 5

is devoted to an example which exhibits cyclical and chaotic movement. Brief



concluding remarks are given in Section 6.

2 The Model

Consider a representative consumer who receives utility from consumption and
real money holdings. The money is deflated by the price level of consumption
goods. The objective of the consumer is to maximize his utility over the infinite
discrete time horizon given the price level of consumption goods and the initial
endowment of goods and money. The goods are perishable and therefore not
storable. To construct a concrete description of the model, we assume that the
consumer has a constant utility function and maximizes the discounted sum of
utilities over infinite time periods.

Let ¢ denote the quantity of consumption goods, the price of which is written
as p. Let M be the quantity of money and m = M/p as real balances. We rep-
resent ¢ and m with nonnegative reals. Utility function u(c, m) of the consumer

can take only nonnegative values and is bounded by a positive number.!

Assumption 1 u: R?,_ — R is a continuous funclion. u is twice continuously

differentiable on R, and satisfies the following conditions.

ui(c,m) > 0, uz(c,m) >0, (1)
U11(C,m) < 0: u??(c7 m) < 0: (2)
U12(c,m) = un(c, m) >0, (3)

for (c,m) €RZ .

Let ¢;, M;, and p; denote the consumption, money held and price level at

1Take any nonnegative utility function v{c,m) and define bounded function u(c,m) as
u(e,m) = v{e,m)/(1 4+ v{e,m)) < 1. If v satisfies Assumptions 1 and 3 below, then u satisfies
those Assumptions. Because u is an increasing transformation of v, we can think of u as
another utility function which represents the same preference as v. This guarantees that we
can restrict our attentions to bounded utility functions.



~ period t, respectively. Define undiscounted utility u, at period ¢ as
ur = u(er, M1y /pe).

This means that in period ¢ the consumer receives utility from the money hold-
ings at the beginning of period ¢ deflated by current price level and from con-
sumption of that period. This kind of construction is needed to obtain dynamics
of money demand. Let p be a constant discount rate and 0 < p < 1. The ob-
jective function of the consumer is

oc

Z P tu(er, Mioy /pe).

=1
This series converges absolutely as long as u(c;, M;_1/p;) is defined for ¢ =
1,2,..., because u is a bounded nonnegative function and 0 < p < 1. Let M}
denote the supply of money. The government controls nominal money supply
through lump-sum tax or transfer denoted by 7;. The budget constraint of the

representative consumer at period t is given by
M +pree = Mooy — i + peye.

We assume y; > T; for any t so that the feasible set will not be empty. The

problem of the consumer is as follows.

o0
max =lu(e,, My 4
(CHM')EP (e, Mi—1/pt) (4)
subject to ¢, + % +T = M-y +y.

We assume that the government pursues the policy of the balanced budget at

each period. The budget constraint of the government is given by
el = My, — M.

The price of consumption goods at period ¢ is determined to clear the de-
mands for goods and money. The equilibrium conditions for goods and money
are given by

cc=y and M, =M;. (5)



If the above conditions are satisfied, the budget constraint for the government

is automatically satisfied.

3 Maximization and Equilibrium

By solving problem (4) and putting m; = M;_,/p,, we have the first order

condition,

uglce, m
g( t t) = p {Ul(ct+l)m‘+1)+ u2(63+1,mt+1)} * (6)
Pt Pi+1

for internal solution.2

To simplify the analysis, we assume that the growth rate of the nominal

money supply is fixed, i.e.,
Assumption 2 M{ = aM;_,, where a is positive and constant.

For simplicity we assume that y; is constant over time and denote the quan-

tity as e, that is y, = e for all 2. In equilibrium, we have M; = M. Thus,

_ M:_l _ Mg _ aMt..l
Dt = y Bt41 = -
my

, and ¢, =e. (N
Myt Myt

2Let {\} be sequence of Lagrangian multipliers. Lagrangian form of (4} is.

[--] -~
L= Zp"" ulce, Me—1/pe) + Z/\:(M:-X/P: +ye — ¢t — Mefpe — T).

t=1 t=1

Diffrentiating £ with respect to ¢¢, ¢c41 and M, and letting them equal to zero, we have

P Yur(er, Me—1/pe) = A,

Pfur(ces1, Me/peg1) = Aes,

4
p A A
—“—uz(cest, Me/peg1) - — + =22 = 0.
Pe+1 Pt Petl
Substitution of the former two equality into the last one yields,

pt p‘—l
—uz(ce+1, Me/pes1) ~ uy(ce, Me—1/p:) +
P41 t

t
p

u1(ce41, Me/pes1) = 0.
Pe+1

Putting m: = M,;_, /pe, we have (6).



Substitution of (7) into (6} yields,

uy(e, meyy) | ua(e,meg1)
sl )} ®)

my = Smt+1 {

In equilibrium, real money sequence {m;} must satisfy the above equation.
The right hand side of eq. (8) is a function of m; and m;;;. Thus eq. (8)
describes implicitly a relationship between m; and m,;;. Unfortunately, we
cannot in general expect the existence of global implicit function m,4; = f(m,)
which solves eq. (8). Thus, as often done, we consider using the backward

system m; = g(m4+1). To secure the existence of g, we need several technical

Assumptions.
Assumption 3 We assume the following conditions:

1. ua(e,m) is bounded with respect to second ergument m > 0, which assures

the ezistence of +00 > limp o u2(e,m) = s2 > 0.

2. a > p, i.e., the growth rate of nominal money supply is larger than the

discount rate.

. . Ugle, m 5
3. limmyo u1(e, m) = 53 > 0 and limpyg ﬁe,_m} = 311 > %- 1(>0).
4. For any n > 0, supgemen U12(€, m) < +00, infoemen u22(e, m) > —co.

Before stating the existence result, some comments on Assumption 3 are in
order. Condition 1 means that the marginal utility of money at ¢ = ¢ approaches
its least upper bound as the real money holdings approach zero. This implies
that when the price of money is high enough relative to that of consumption
goods, the demand for money will vanish in a single period consumption pro-
gram. Note that in our model the relative price of real money to consumption
goods is always equal to unity and thus the budget line moves parallelly on
(¢,m) semiplane as p moves. This means if money is to be demanded by single

period maximization with ¢ = e, the marginal equality ua(e,mo)/ui(e,mp) =1



must hold for some positive my. This immediately leads to the inequality

2 _ g 220
s miou(e,m)

because uaz(e,m) < 0 and uyz(e,m) > 0.

Lemma 1 Under Assumptions 1, 2, and 3, if eq. (8) has at least one solution
(meymyqq) € R2++, then there exists one and only one continuously differentiable
globel implicit function m; = g(my41), g : R} — R, which solves eq. (8). That

s

_P uy(e,m) ua(e, m)
g(m) = =m { mie,g(m) ‘U2(8,§(m))}

for m = myyy and g(m) = my. Moreover, every solution (m;, myy,) € R: . of

eq. (8) is represented by this function.3

Proof. See the Appendix.

4 Behavior of Equilibrium Paths

We first investigate the asymptotic behavior of the function m; = g(m.41).

Lemma 2 Under Assumptions 1, 2. and 3,

lim g(m) = 0, (9)
},i‘rl%y'(’n) > 1 (10)

Proof. See the Appendix.

Now consider stationary point g(m*) = m*. From eq. (8), this point is

w {14 el

3Note that the usual implicit function theorem assures only locally the existence of an

characterised by

m* =

Qv

implicit function. To secure the result, we need a theorem on the extension of a function over

to the closure of its domain.



or equivalently

~1(>0). (11)

The stationary point m" is uniquely determined because uz(e, m)/u;(e, m)
is a decreasing function of m. Fig. 1 depicts the situation in two cases and Fig. 2
is its counterpart for forward dynamics. In case (i), the graph G, intersects the
45° line at point m;, where the curvature of G; is positive. In this case any
equilibrium path {m.} which starts from a point mq €]0, m;[ converges to zero
ast — oo (Fig. 2). In case (ii), G intersects the 45° line at point mg, where the
curvature of G5 is negative and has large absolute value. In this case, cycles of
period two or three may emerge. Using condition (11), we can derive a sufficient
condition that there exists an equilibrium path with a period two cycle.

(Insert figures 1 and 2 about here.)

A general condition is as follows.

Lemma 3 Let I C R be a compact interval and g : I — I be a continuous
mapping with fized point m* = g(m*). If g is differentiable at m" and ¢'(m~) <
—1, then dynamical system (I,g) has at least one periodic orbit of period two

{z*,y"} suck that
rT<m' <y, or yy<m"<z". (12)

Proof. Without loss of generality, we can set I = [0,a], @ > 0. Divide the
square I x I into four regions A, B, C, and D by the diagonal line connecting
(0,0) and (e, a), denoted by Ly, and the line through (m*, m*) with gradient —1,
denoted by L, (See Fig. 3). L, is a segment of the line defined by the equation

z+y=2m", or y=2m" ~z. (13)
So,
A = {(m,y)GIxI|z'2y and z+y>2m" },
B = {(z,9)€lIxl|z<y and z+y>2m"},



C = {(z,y)eIxIIz:Sy and x+y§2m‘},

D = {(z,9)€Ix]|z>y and z+y<2m™}.
Define continuous maps G and F from I to I x I as

G(z) = (z,9(2)), F(y) = (9(3),9)-
Because g’(m) < —1, there exists a neighbourhood N of m™ in I such that

zeEN z<m" = (g(z)-m")+(z—m") >0, and
zeN, z>m" = (g(z)-m")+(z-m") < 0.

Using superscript o to denote open kernel in I x I, the above conditions can be

written as

z€N, z<m" = G(z) € B®° and F(z) € A°, (14)
z€N,z>m" = G(z) € D° and F(z)€e C°. (15)

Let K be the set of all fixed points of g. K is closed in I, and since I is
compact, K is compact. Take 2o € N, 29 < m", and consider compact set
Kz = KN{0,z0). If Kz, =@, then G(z) cuts diagonal L, for the first time at

z = m" from (14) because xo € N. Since G is an injection, the set
1={(0,9) | 02y< g0} uG0o,mPU{(z,2) [0Sz <m"}

is a closed curve in I x I (See Fig. 4). From (14), G(zg) € B® and thus
G(j0,m*[) N (AU D) = 0 because X N[0, m"[= @. From (15), F(y) connects the
interior of Jy with F(a) which lies on J; or in the exterior of J;. In the latter

case, by the Jordan curve theorem F(Jm*,a]) N J; = 0.* Since K N[0, m"[= 0,

iLet Hy, Ha be the interor and exterior open connected regions of R2 defined by J;.
Then hnHinH, =R2and -inH =6 by Jordan curve theorem. Let F(Jm*®,a]) = Ay
‘and FiNHy # 0, i NHy # 0. F is connected. f R NJ; =8, then /1 = L nR? =
An(MHVHIUH)= (AAnh)u(AnH)u(FinHz)=(FRA nH)u(F N H;). Because
Hy N Ha = @ and both are open, this contradicts the connectedness of Fj.



F(y) must cross Jy at its arc G(J0, m"(). If K., # 0, by compactness of K, we

have £ = max K;,. Then KN]Z, m"[= 0 and thus
J2=G(g,m DU{(z,z) | 2<z<m"}

is a closed curve. Since KNjZ, m*[= 0, an analogous argument assures that
F(y) must cross Jz at its arc G(]z,m*[). So in any case there must exist a
point (z*,y") € B U C such that z* # y~ and G(z*) = F(y*). This means
" <m" <y and 27 = g(y"), 9(z°) = ¥* and thus g(g(z")) = g(y") = 2",
which was to be proved. (QED)

(Insert figure 3 and 4 about here.)

This geometric proof of Lemma 3 upholds our previous observation that if
the curvature of the graph (m.q,g(mi41)) is negative with a large absolute
value at m* = g(m"), a cycle would emerge. To apply the result to our model,

we prove the following corollary.

Corollary 1 Let g: Ry — Ry be a continuous mapping. If g is differentiable
at m* = g(m*) > 0 and

g'(m*) < -1
then dynamical system (R4, g) has at least one periodic orbit of period two.

Proof. Because g is continuous on compact interval [0, m*], it has the maximum

value M on {0, m"). Let I = [0, M] and define h: I — [ as

h(z) =g(z) ifgz) < M
hz)=M ifg(z)>M

Then one can easily see that h is continuous on I. Because ¢'(m") < -1,

g(m") < M and thus h is diffrentiable at m~ and
K(m*)=g¢(m") < -1.

Thus (I, k) has period two orbit {2*,y*} which satisfies (12) by Lemma 3.
We have to prove g(z*) < M and g(y*) < M. If g(z") > M, then h(z")= M =

10



y". Since y* = M # z*, " < M. Thus by (12), z* < m" < y". But M < g(z")
means m" < z* by definition of M, which is contradiction. Thus g(z") < M.
The same holds for g(y*). So A(z*) = g(z”) and A(y") = g(v")- (QED)
Now we can use this Corollary noting that our g : R} — R has a continuous
extension § : Ry — Ry by Lemma 2.
Now let ¢ : R — RZ be the implicit function defined by Lemma 1 and let

g(m*) = m™. The implicit function theorem tells

() [va(m™) + v2(m”) + m" {v12(m") + v22(m™)}]

g'(m") =

p viz(m”)

;mm' {vi(m”) + v2(m”)

by eq. (8). Here v;(m) = uy(e, m), va(m) = uz(e, m),etc.
By eq. (11) we have

14 —F—v13(m") + vaa(m”)

. avy(m”)
g'(m*) = T
14+ m’ ——"lz(m, )
vn(m”)
Thus if the inequality
- 2a u1(e,m‘) P .
mﬂ&m)+a+p ——< a+pmﬂmm)

is satisfied, then g’(m*) < —1. This is equivalent to

a uiz(e, m") + uza(e, m")

1< =< .
2u,(e,m*
p uyz(e, m*) + -%.)

(16)

Thus, we have as our main proposition.

Proposition 1 Under Assumptions I to 3, if the inequality (16) holds for the
stationary poini m* of (8), then there ezists an equilibrium real money path

{m.} with period two orbit.

Note that the stationary point m* depends on a/p as well as on e (See
eq. (11)). In the next section, we will give an example which exhibits cyclical

and chaotic movement in the framework of our model.

11



5 Numerical Example.

In this section, we specify a utility function as®
u(c, m) = by tanh byc tanh by(m + a), (17)

400 > by, bo, b3, a > 0 for ¢, m < 0. One can easily see that (17) satisfies
Assumption 1 and 3. For this utility function, (4) takes the form of

> ]
max Y _ p*~*b; tanh byc; tanh bs(m; + o) (18)
t=1
subject to ¢, + IZ—! +Ti = Mis +y (19)
t t

Solving this problem and letting ¢; = e(constant) from the equilibrium con-
dition of goods market, we have the following equation for an optimal dynamic

path for money balances.

=P tanhbg(m,y; + )  bstanhbse sech® bs(mypy + @)
t = =My 2
a tanh b3(m; + «) ba sech” bye tanh b3(m, + «)

(20)

Hereafter we set b5 = 2, b3 = 5,0 = 0.01 and e = 1.5 as fixed and consider
how the orbits of (20) change as parameter p/a changes.
Taking account of 2 and 3 in Assumption 3, we set the range over which

parameter p/a moves as 0.01 < p/a < 1. Rewrite (20) as
m; = H(meyy1;p/e, mp), mp = inidtial value,

and write according to the values of parameter p/a,

Hy = H(my41;0.01,myg), Hy = H(m4q;0.1,mp),
Hy = H(m41;0.2,mp), Ha = H(myyy;0.3,my),
Hy = H(muy1;0.4,mg), Hs = H(myy; 0.5, mo),

5The following example is provided by Masanori Yokoo. We thank for his cooperation.

12



Hs = H(m41;0.6,mq), Hr = H(m41:;0.7,my),
Hs = H(mH_l;O.S,mo), Hg = H(m,H;O.Q,mo).

(Insert figure 5 about here.)

Fig.5 depicts those graphs. From this figure, we can see that the peak of the
graph becomes higher as we increase the value of the parameter p/ea.

In Section 4, we have shown that the periodic orbit of period two emerges
if the curvature of the graph is less than -1 at the point at which the graph
intersects 45° line. Then, at what values of parameter p/a does it happen, i.e.
at what values of the parameter is condition (16) satisfied ? Also, can a periodic
orbit of period three, which leads to the emergence of the chaos in the sense of
Li-Yorke, emerge as we change the parameter p/a?

A powerful tool for answering these questions is the bifurcation diagram (see
Fig.6).

(Insert figure 6 about here.)

Fig. 6 reads as follows. (i) As we increase p/a from 0.01, initially period
doubling bifurcation occurs. A phenomenon that the stable fixed point becomes
unstabilized and at the same time there emerges a stable period two, and if we
increase p/a still further, this periodic orbit of period two becomes unstabilized
and there emerges stable period four etc. (ii) Beyond p/a = 0.45, period halving
bifurcation occurs. A phenomenon contrary to period doubling bifurcation,
period four becomes period two and period two becomes fixed point etc. (iii) In
the neighbourhoods of p/a = 0.1 or 0.7, there exist stable periodic orbit of
period two. In fact, we can see from Fig. 7 that there exists periodic orbit of
period two at p/a = 0.7. (iv) In the neighbourhoods of p/a = 0.25 or 0.5, there
exist stable periodic orbits of period three. We can see from Fig. 8 that there
exists periodic orbit of period three at p/a = 0.5.

(Insert figure 7 and 8 about here.)
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6 Concluding Remarks

In this paper we have treated money according to classical definition, i.e.,
money is a good with the following three functions: unit of account, means of
payvment and store of value. Because money is used as a unit of account, the
price of nominal money was always equal to unity in our model. It is a means of
payment and thus one was able to exchange it for consumption goods. Money
can store value and thus one could hold money over to the next period for
prospective use. In view of our model, storable property is especially important
for generating the dynamics of prices. This property is eventually the essence
for any equilibrium dynamics model including that of overlapping generations.

We have seen that money with positive utility generates dynamic movement
of prices. And we have investigated a condition under which there exists a
cyclically oscillating equilibrium path of real balances. Finally, we have given
an example in which equilibrium paths behave chaotically. This example sug-
gests that nonlinearity of individual preference may give rise to a very complex
or unstable movement of monetary economy. This also implies that we can ex- -
plain irregular fluctuation of economic variables without recourse to exogenous
stochastic shocks, which of course is a vigorously studied theme of business cycle

theories nowadays.

Appendix

For the proof of Lemmata 1 and 2, some notational convenience is of great help.
Write, as in Section 4, u;(e,m) = vi(e,m), ua(e,m) = va(e, m), etc. Setting
m; = Z,Mey = m in eq. (8), define C* function f: R, — R as

2a(m) + vp(m)

(A1)

14



Then eq. (8) is equivalent to
f(z,m) =0. (A2)
Write
fiz,m) = —(:c m), fo(z,m) = a—f(a: m)
dm'
Simple calculation yields

v12(z)

(v1(2))*’
fa(z,m) = ( )[v1 (m) + va(m) + m {vi2(m) + va2(m)}].

filzsm) =142 {uy(m) + vy(m))

By Assumption 1,f;(z,m) > 0 for any (2,m) € R.H, and thus we can define

continuous function

—fao(z, m)
o= Tem )
over R? .
Next note that
51 = 'l’{xi% v1(0) = oié‘i v1(m) > 0 and
s2 = lim va(m) = sup v2(m) < +c0, (Aq)
mlo o<m _

from Assumption 1 and 3.
Proof of Lemma 1. We first prove the uniqueness of the solution (zp,mg) €
R% , of eq.(A2) with respect to mq. Let (z1.mo) be another solution of eq. (Az)

and let zo < z). since fi(z,m) > 0 for any (z,m) € R, this means
0= f(x0, mo) < f(z1,m0) =0,

which is contradiction. Thus we have proved the uniqueness of solution and of
implicit function.

Existence proof is divided into six steps, (a)-(f). Let (xo,mg) € R3, be a
solution of eq.(Az) stated in the lemma. For fi{zo,mg) > 0, implicit function
theorem guarantees the existence of local implicit function go of class C! such
that

go Jmy, mg[— Ry, mi <mg < my (1)

15



f(go(m),m) =0, go(mo) = zo.

We make C? extension of this function as the unique implicit function of eq.(A)

over to RY.
By (As)
go(m) = ¢(go(m), m). (ii)
(a) For any mg > 0, ¢ is bounded on R, x]0, mol.
Proof. Let

a(m) = 5 [vi(m) + v2(m) + m {v12(m) + v22(m)}].

Then —fa(z,m) = a(m)/vi(m). By (1) and (2) in Assumption 1 and 1 in
Assumption 3, we have 0 < v1(m) < v;(mg) and 0 < va(m) < sy for 0 < m <
myp. By (2), (3) and 4 in Assumption 3, there exist

B= sup |vz(m)|, y= sup |up(m)|.
0<m<my 0<m<my
Thus
lo(m)] < £ {ui(mo) + 55 + mo(B+7)} = 6

for 0 < m < mg. Then, for 0 < x and for 0 < m < mg, we have

l6(z,m)| < |falz, m)| = 12 S

[oa(z)] 81
Thus (a) holds.0
(b) There exist
dm go(m) = 21, lim go(m) = 22 (iii)
in R.
Proof. Let
L= sup  |¢(z,m)

0<z,0<m< M2
for my defined above. We embed the final set R} of go naturally into R by

inclusion and treat go as a function from Jm;, mo[ to R. By (ii) and (a),

sup  |go(m)| < L.

m;<mdm,

16



Thus by the theorem of mean value

IA

5o(m) = go(m)| < [m—m'|_sup |gi(w)

m<n<m

S Im - mIILy

for all m, m’ €}m,, ma[. So go is Lipschitz continuous and thus uniformly contin-
uous. Because R is a complete metric space, uniformly continuous mapping from
a subset of metric space is extended uniform-continuously over to the closure of
its domain. Thus (b) holds.0

(c) z1 = go(m1) > 0 and z2 = Jo(ma) > 0, where Jo : [m1, m2] — R is the
extension referred in the proof of (b).

Proof. If not so for z;, then #; = 0 by the continuity of §,. Then by the

uniqueness of the limit and 3 of Assumption 3, we have
lim v;(go(m)) =5 > 0.
mlm;
Thus by continuity of v, and v,, we have from definition of g,
0= lim go(m) = lim £ ualm) + va(m)
mim, mim Q vl(go(m))

v1(my) + v2(m;) >
5

0,

= Eml
a

which is contradiction. For x3, the argument is completely analogous.O

(d) f(z1,m1) = f(z2,m2) = 0.

Proof. Immediate from continuity of f and the definition of z; and z,.0

(¢) For any m3 > mg, there exists unique C* extension of go over to 0, m3],
denoted by ¢™2, unique in that it is only one implicit function of eq. (A;) on
10, ms.

Proof. Let P; C R be defined as

P={me(0,m) [ go is uniquely extended

over Jm, m,[ as a C! implicit function of eq. (A,). }.

17



Because my € P, P, # 0. Let m,m’ € P,,m < m’ and let gm,gm' be the

functions corresponding to m and m’. Then by uniqueness,
9m = gm:|Jm, m'[ (testriction). (iv)

If not so, there exist two different extensions for m and contradicts m € P;.
For § # Py C R and P, is bounded, there exist ¢ = inf P,. We prove g € P
Apparently 0 < ¢ < m;. Because ¢ = inf Py, for any ¢ < n there exists m € P,
such that m < n. Let gm :]Jm, ma[— R} be the corresponding implicit function

for m and define g, :Jg, m2[— R, as
gq(n) = gm(n)forg < m < n < my, me P,.

By (iv), this value is determined without particular selection of m < n, m € P,
and thus g, is unique C? extension of gy to ]g,ms[ as an implicit function of
eq. (Az). Thus ¢ € P;. Next we prove ¢ = 0. If ¢ > 0, considering Jg, m,{ for
Jmy, ma[ in (b),(c) and (d), there exists

0<z,= '13‘13 gq(m) such that f(z,,q) = 0.

Because f(zq,9) = 0 and fi(z,m) > 0 for any (z,m) € RZ,, implicit func-
tion theorem tells that there exists an interval )¢,1[,0 < ¢t < ¢ < ! < m2 and
corresponding implicit function A :J¢,/[— R}. But by the uniqueness solution
(z,m) € RZ, with respect to m, which we have proved at first in a course of

proofs,
hllg, i[= gqllg. 1

must hold. Thus defining g; :Jt, mao[— R} as

gi(n) =h(n)fort<n <,

g1(n) = go(n) for I <n < my,

we have extension over to J,{[, which contradicts the definition of ¢ = inf P;.

Thus ¢ = 0. So we have implicit function g, = ¥ :J0, my[— R}.

18



For m3 > my, define P, C R as

P = { m € [my, mg] | 3 is uniquely extended

over ]0,m[ as a C' implicit function of eq. (A2).},

and make analogous argument for sup P».0

(f) There exists unique C? implicit function g : R} — R}.

Proof. By (e), for any. 0 < m there exists unique implicit function g™ :
0,m[— R}. So for 0 < m take m’ > n (e.g. m' = [n] + 1, [-] being Gauss

symbol) and let m = max {m’, m,} and define

g(n) = g™ (n).

By the uniqueness of solution of eq.(A3), this is well-defined.
This completes the proof of Lemma 1.0 (QED)

Proof of Lemmma 2.

1) Take my. Then for 0 < m < my, we have
vi(m) + vz(m)) <®m (Ul(mo) + 52
v1(g(m)) a 51
Letting m | 0, we have 1).0
2) We first prove

0<g(m)=§m( ) < o

lim fy(g(m), m) = 1. (v)

By 1), limp g g(m) = 0. Thus for an r > 0 there exist m; > 0 such that for
m>m>0,
0<g(m)<r.

From 4, for this r, there exists
sup vya(m) = 812 (> 0),
o0<m<r

and form; > m >0,

0 < v12(g9(m)) < 812,

19



because 0 < m < m, implies 0 < g(m) < r. Then

= 14 2 valg(m))
L= Alglm),m) = 14 )

S filg(m),m) =1+ £

for 0 < m < m;. Letting m | 0, we have (v). We next show
lim ~fa(g(m),m) > 1. ()
From 4 of Assumption 3, for the same r > 0 as above, there exists
o(igi;r vaa(m) = s22 (> 0).
Thus for0<m < r

msz < muja(m) + vaz(m) < msyo.

Letting m | 0 we have mvy3(m) + v22(m) — 0 and thus,

fiy ~Falatm)m) =y o oy () walm) + () + o)
— Ps5srtse

Pa+2)>1
a 81 a- 53

by 3 of Assumption 3. Because

—f2(g(m), m)
fl (g(m): m) ’

we have 2).0 (QED)

g'(m) = $(g(m),m) =

20
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