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ABSTRACT

The Bayesian tests of serial correlation in a linear regression model
are shown and their power is compared with that of the Durbin-Watson
test through Monte Carlo simulations. The experiménts show that the
Bayes tests are superior to the Durbin-Watson test in many cases and
that the former can compete with the latter even when the latter is
uniformly most powerful. Moreover, the Bayes tests retain their power

when the power of the Durbin-Watson test 1s poor.



1. Introduction

Detection of serial correlation among error terms has been one
of the main concerns 1in econometrics. This is because autocorrelation
has adverse effects on the standard least-squares method in
regression analysis. For example, the true size of the conventional ¢
tests for regression coefficlients tends to be higher than the nominal
one when the explanatory variables are positively autocorrelated
(Johnston (1984), pp. 310-313). It 1s therefore relevant to detect
serial correlation before conducting regression analysis.

Many test statistics have been proposed and compared in this
regard (See King's (1987) survey). A result from such studies 1s that
no test can be uniformly most powerful. However, the Durbin-Watson
(DW) ratio, among others, 1is easy to compute and uniformly most
powerful under certain conditions (Sawa (1970) pp. 129-130).
Therefore, the test is frequently used in econometric research.

However, few work has been done on the Bayesian tests of
serial correlation. A reason for this is that Bayesian statisticians
have focused on estimation, not testing, in correlated-error models.
For 1instance, Zellner and Tiao (1969) deal with the posterior
probability density function (pdf) of the autocorrelation parameter to
calculate the posterior pdf of regression parameters. Griffiths and
Dao (1980) use the posterior probability of the null hypothesis of
uncorrelated errors and the alternative hypothesis of aﬁtocorrelated
errors as welghts for the Bayeslan pre-test estimator. On the other
hand, O'Brien (1970) and Tsurumi and Kan (1991) 1ndicate a
possibility of using the posterior pdf as a test for dependent errors,

and yet they do not compare the Bayesian procedures with the DW test.



The aim of this paper is to compare the power of the Bayeslian
tests with that of the DW ratio through Monte Carlo simulations. In
the next section, we outline the Bayesian tests of autocorrelation in
a linear regression model. In Section 3, the design of our experiments
is described. Section 4 evaluates the results of the simulations. Some

concluding remarks are made in the final section.
2. Bayesian Tests of Serilal Correlation
2.1 Model

Consider a linear regression model with the first order
autoregressive (AR(1)) errors,

y =X8 +u, (1)
where y is an (nxl) observation vector, X is an (nxk) matrix of non-
stochastic variables, B8 1s a (kxl) coefficient vector, and u is an
(nxl1l) error vector, each elements of which follows an AR(1l) process,

Ut = p ut-1 + Vi, vt~ NID(O, o 2), |p |<1. (2)
Using Jeffreys' non-informative prior pdf,

p(B ,0 ,p ) « (1-p )" '72, (3)
and integrating out A and o‘, we obtain

T(p |ly) « [(y -Xb ) (y =Xbv)]-tn-kIs2|x-tx|-172,(4)

where
y* =Py, X =PX, and b =(X" "X )" !X 'y (5)
with
¢ 0 0 0
-p 1 0 0
P=] 0 -p 1 and c=(1-p 2)172 (8)



(Judge, et al. (1984), pp. 291-293). The posterior pdf of p given by
(4) plays a key role in testing serial correlation in a Bayeslan
approach. For one thing, 1t yields the posterior odds to test
autocorrelation. For another, it provides the highest probability
density (HPD) region to detect serial dependence in disturbances. The

details of these formulae are shown 1n the rest of this section.
2.2 Hypothesis Testing

We denote the null and the alternative as follows.

He: p =0 (7)
He: p>0 (8)
H-: p < 0 (9)
He-: p # 0 | (10)

Since negative correlation is unlikely in economic data, H- will not
appear 1n the remainder of this paper.

From a Bayesian vilewpoint, the test for correlated
disturbances can be constructed by the posterior odds or the posterior

par.

2.1.1 Posterior 0dds

First, the posterior odds (P[He |y]/P[Hx Jy]l, x= +,%* ) can be
regarded as a test statistic. The higher the value, the more plausible
the null hypothesis is. The ratio is given by the following equation.

m o [(y-Xb)'(y-Xb)]-¢r-¥i-2|xrx|-i-2

Kox = ( ) ( ), (11)
T ox cx f tux1T(p |¥)dp

(prior odds) '(Bayes factor)
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where 7 x is the prior probability of Hx,

b=(X'X)-'X'y, (OLS estimator) (12)

ex =z (for x = +), n /2 (for x = +-), and (13)

[Bx] = (0, 1) (for x = +), (-1, 1) (for x = +-) (14)
(6riffiths and Dao (1980), pp. 390-392). If we assume that type I and
type 1I errors cause an equal loss, the reference value Kex=1 (x=+,% )
produces a minimum  expected loss (Suzuki (1978), pp. 149-152). It
Tollows that when. the posterior odds is less than unity, the null is
rejected. In addition, according to Jeffreys (1961, p. 246), it is
acceptable to assume the prior odds to be unitf since we suppose a
non-informative situation about autocorrelation. Consequently, the
null is rejected when the Bayes factor is less than one.

Before explaining‘ the second test, we point out the
connection between the posterior odds and the DW ratio. Consider the
point alternative hypothesis, 7

H: p=p-r. | (15)

After some algebra, we have the posterior odds of He against H-,

)(1-p c2)"172

[(y-Xb)'(y-Xb)]-¢n-kys2|x'x|-1~-2
* , (18)
[('y'.—x".br.)'(.Yr'“Xr'br')]“n-k)/ZIxr- D }'1/2

where yr°, X°, and br* are obtained by (5) and (8) with p =p . The
Bayes factor in equation (16) coincides with the necessary condition
for ‘the locally most powerful invariant test of He against H..
Moreover, this factor 1eéds to the DW test (Durbin and Watson (1971},
p. 10, and Kariya (1979), pp. 132-136). This can is shown as below.

First, we note

(ye " =Xe*be" Y ' (yr"=Xe*br*)={y-Xbe")'Pr 'Pe (y-Xbr ") (17)
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where Pr 1s given by (6) substituted p - with p . Next, P-'Pr can be
rewritten as

Pr'Pr = (1~p ¢ )21 + pcA + pc(1l-p )L, (18)
where A 1s a matrix such that z'Az = 3 (2zt-2t-1)2 and L is a matrix
that has one in its top-left and bottom-right, and zero elsewhere.
Following Durbin and Watson (1971, p. 9) and Kariya (1979, p. 129), we
ignore the last term on the right-hand side of (18). Also, we assume
that pr 1s in the neighborhood of p =0. According to Durbin and
Watson (1971, pp. 10-11), this means that b.* is close to b. Thus, we
obtain

(¥e" =Xe"be" ) ' (ye* =Xe"be* )/ (y=-Xb) ' (y-Xb)

5 (1-p )2 + pcd, | (19)

where d is the DW ratio (Durbin and Watson (1971), p. 10).

Substituting (19) into (18) ylelds

T e [ Xe® "Xe - |12
Ker = ( ) [(1-p r)2 + p rd)tn-k)-2
T (l-pc2)172|X'X[t1-2 (20)
or
1 Ko« (1-p r2) | X" X]
d = (e )2 J17enk) - (1-p )2},
' P r Ler IXr"Xr’l (21)

where Ler= 7z o/7 r, the prior odds of He against H:.

In consequence, from a Bayesian viewpoint, the DW test differs
from the. posterior odds in two ways.

First, a statistic for the point null against the point
alternative is applied to the composite alternative. While (11)
contains the posterior pdf of p within (-1,1), (20) and (21) use the
posterior density at p =p r. As a result, the DW test does not cover
the whole information about p obtained from data.

Second, even when the point alternative (15) is 1in concern,



Non-Bayeslans examine the sample distribution of (21) under the null
hypothesis whereas Bayesians evaluate the posterior odds (20). For
this reason, even though they are related by (20) or (21), the Durbin-
Watson test and the posterior odds might lead to the opposite

conclusions.
2.1.2 Posterior Distribution

The second Bayeslan test of AR(1) errors in a regression model
is based on the posterior pdf. In the case of the size-a one-sided
test against positive correlation, the null hypothesis 1is rejected
when the upper (l-a ) quatile of the posterior bdf given by (4) does
not contain p =0. Similarly, in the case of the a -size two-sided
test, the null is rejected when the (1-a ) HPD region does not include

the origin.

The above-mentioned Bayesian tests of serial correlation do
not depend on the repeated sampling principle. However, to make a
comparison with the DW test possible, we undertake‘a Monte Carlo study

in the next section.
3. Monte Carlo Study
3.1 Aim
The aim of this section is to compare the power of the

Bayeslan tests with that of the DW test via Monte Carlo analysis. The

DW test can serve as a bench mark because its power is scrutinized by
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many authors, such as Kuriyama (1972a) and Xuriyama (1972b).
Therefore, 1t 1s of interest to examine power of the Bayes tests,

given the performance of the DW test.
3.2 Design
3.2.1 Method of Comparison

We compare the power of the Bayes tests with that of the DW
test by completing a table whose format is shown in Appendix. N.. is
the number of iteration. N.p and N.x (Ne. and Nx.), respectively, show
the number of cases where the Bayesian (the DW) test accepts He and Hx
(x=+,% ). Ni;j shows the number of cases in which the DW test accepts
Hi while the Bayesian test accepts H; (i, j=0,x). The diagonal elements
(Nea and Nxx)‘figure the number of cases where the two tests accept
the same hypothesis whereas the off-diagonal elements (Nax and Nxeo)

account for cases where they accept the opposite ones.
3.2.2 Parameter Values

In model (1) with the error structure (2), we set ¢ 2=1.0 and
B =0 in all trilals. However, this particular setup of parameter values
is 1irrelevant to the power functions of the Bayesian tests and the DW
test (See Breush (1980)). The autocorrelation parameter p 1is set at
0.0, 0.2, 0.4, 0.8 and 0.98 since positive correlation is 1likely to

occur in economic analysis.



3.2.3 The Independent Variables

The sample size (n=21) and the number of independent variables
(k=4, including the constant term) are common in all experiments.
The selected cases of independent variables are:
1) X¢v (The DW ratio achieves its lower bound, and its power
is maximum against H..);
2) X¢u (The DW ratio attains its upper bound.);
3) Xte (The power of the DW test is minimum against H..); and
4) The independent variables of the consumption function in
Klein Model I (the current corporate profit, its lagged
value, and the sum of personal wage‘payments).
The first three cases are artificial but substantial because
the DW test functions as a bench mark in our Monte Carlo study. The

variables concerned are given as follows.

Xet: X=[1 an an-1 *+ an-x+21], . (23)
Xeu: X=[1 az az - ax], and . (24)
Xee: X=[1 az+an az+an-1 *+ ak+an-k+21], (25)

where
aj; "={cos{(ji-1)m /2n} cos{3(ji-1)n /2n} -
cos{(2n-1)(j-1)x /2n}], j=1,2, ,n. (26)
As to effects of these variables on the DW test, see Kuriyama (1972b,
p. 26).
The last case, on the other hand, is a sample from empirical
studies. This may be helpful to examine the Bayeslan tests in a

practical situation.



3.2.3 Critical Values

We try to hold the significance level 5.0% in our simuiation
study. However, since Bayesian inference does not rely on the sampling
theory, we cannot control the size {(the probability that a test
rejects the nul; when it 1is true) of the Bayes tests a priori.
Nevertheless, we aim at the size 0.05 throughout our experiments. The
critical values for the DW test, the posterior odds test, and the
posterior pdf test are as follows.

We use 5.0% and 2.5% critical values of the DW ratio for a
one-sided and a two-sided test, respectively. These figures are
obtained by means of the (a+bdu) approximation proposed in Durbin and
Watson (1971). Note that a two-sided test with the 2.5% critical value
does not always convey the size 0.05.

Both the prior odds and the reference value for the Bayesian
tests based on the posterior odds are set at unity for the reason
mentioned in the previous section. Notice that this may have the size
of the Bayes tests depart from fhe target level (5.0%). However, we
have no choice but finding the size of the Bayesian tests through
Monte Carlo simulations because the sampling theory does not explain
the critical values for the Bayesian tests.

In dealing with a one-sided test based on the posterior pdf,
we reject the null if P[p >0[y]>0.95. In conducting a two-sided test,
He 1s rejected when the 0.95 HPD region does not contain p =0.
However, the size of these tests may differ from 5.0%, and it should

be investigated by our Monte Carlo experiments.



3.2.4 Computation

The program is coded with Quick BASIC Ver.4.5. The DE formula
(Mori (1987), pp. 168-188) is employed to carry out numerical
integration. The normal random variables are stocked in a file and
picked up at random from there to generate disturbances. The number of

iteration is a hundred in all experiments.
4. Results and Discussion

Tables 1 to 4 report the results for Xe., Xeu, Xce, and the
consumption function in Klein Model I, respectively. For the sake of
space, only the cases of uncorrelated errors (p =0.0), moderately
correlated errors (p =0.4) and highly correlated errors (p =0.8) are
tabulated. The rest of the outcomes is available on request.

The main results are summarized as follows.
4.1 Size

First, we examine the size of the Bayes tests. On the whole,
they reject the null at most 22 times out of 100 trials. In
particular, the size of those based on the posterior pdf is close to
5.0% (the minimum is 2 and the maximum 12). Moreover, the size of the
Bayesian two-sided tests are more stable, on the one hand, and
closer to 5.0% on the average, on the other hand, than the
counterparts of the DW test. These observations are remarkable since
the Bayesian tests have no foundations on the sampling theory.

It is worth noticing that when the size of the Bayesian tests
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1s much larger than that of the DW test (namely, In Tables 2 and 3),
the independent variables contain trended elements and hence reduce
the power of the DW test agalnst positive correlation. Froﬁ a Bayesian
point of view, it seems reasonable to be sceptical in judging p =0
when data does not contain enbugh information. In this regard, the
larger actual size in Tables 2 and 3 at p =0 could be thought of as a
safegurd against positive autocorrelation.

We may also point out that the DW test can be misleading when
used as a two-sided test. It 15 a common practice to reject the null
hypothesis when the DW ratio d falls in {d]d<da.2 or d>4-da.2}, where
de-2 1s the lower « /2 quantile of the DW ratio under the null. We
suppose that this procedure should provide a size-a two-sided test.
However, the size of the test may differ from the expected one,
depending on regressors. For instance, the size is lower than 1its
nominal value in part (A) of Table 1-2 (or 1-4), and larger in part
(A) of Table 2-2 (or 2-4). The reason for this ié obvious. Since the
DW ratio achleves its lower bound in Table 1, P{d|d<da- 2 }=a /2 but
P{d|d>4~do.2}<a /2, and the actual size is lower than the nominal one.
Likewise, it 1s readily shown that the same test strategy causes a
larger actual size in Table 2. While these two are trivial examples, a
heuristic case is iilustrated in Table 4, where the size of a two-
sided test'based on the DW ratio is larger than the expected one. A
larger actual size of the two-sided DW test might be common in
economic studies since, according to Kuriyama (1972b. P. 28), Xdiu
defined as (24) stands for trended variables observed as typilcal

components in economic data.
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4.2 Power

In most comparative tables, the Bayesian tests outperform the
DW test. This is shown by the off-diagonal elements in Tables 1 to 4
when error terms are serially correlated. In short, Nax 1s larger
than Nxs in 30 out of 32 cases for p =0.4, 0.8 in Tables 1 to 4. In
addition, in the two exceptions (parts (B) and (C) in Table 1-3), the
difference Nxo-Nax 1s at most 1 and hence negligible. Furthermore,
Table 1-3 deals with a condition which is the most advanfageous to the
DW test. As far as the independent varilables eiamined here are
concerned, we may conclude that the Bayes tests are superior to the DW
test in terms of power.

One of the most outstanding features from the comparison is
that' the Bayes tests can retain its power when the DW 1s the least
powerful (Table 3). When disturbances are strongly correlated
(p =0.8), the Bayesian tests reject the null hypothesis more than 80%
on the basls of the posterior odds and more than 58% on the basis of
the posterior pdf while the power of the DW test is less than 25%.
When errors are moderately correlated (p =0.4), the Bayesian
procedures reach the correct conclusion in 25 to 45 times out of 100
trials whereas the DW ratio detects autocorrelation at most 20%. The
difference Nox-Nxe 1is the largest when we refer to the one-sided test
based on the posterior odds (part (B) in Table 3-1). However, we
should not exaggerate this strength of the posterior odds Bayes test
because of its larger size than that of the DW ratio (part (A) in
Table 3-1).

To summarize, the Bayesian tests are more powerful than ﬁhe DW

test in the situations examined here. When the DW test 1is powerful,
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the Bayes tests can compete with it. When the power of the DW test is
poor, the Bayes tests maintain their power. In addition, the Bayes
tests may perform better than the DW test when we deal with economic
data. In consequence, we may use the Bayesian tests in place of the DW

test .1f we emphasize the risk of type II error.
5. Conclusion

We found that Bayesian inference can be powerful in detecting
serial correlation in a 1linear regression model. Our Monte Carlo
experiments proved that the Bayesian tests of autocorrelation can
compete with the DW test when.the latter échieves its maximum power,
and that the Bayesian tests remain powerful when the power of the DW
test 1s poor. Although we cannot control their size, the Bayesién
tests may compensate the power of the DW test.

Last, we describe some points which need further research.
First, we employed Jeffreys' prior pdf given by (3) throughout this
paper, but did not try other types, such as a flat prior. Next, we
should control the size of the Bayeslian tests to make a comparison
meaningful. Finally, our simulation experience was simply
preliminary. First of all, the number of repetition was too small as a
reliable Monte Carlo study. Second, the normal random variables were

generated in a rather primitive way, and it should be improved.
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Notaion:

Ho :
Hx :
Niy:

Ni.:

Appendix

The Foramt of a Comparative Table

Bayes

He Hx |Total

DW
He [Nee Nex| No.
Hsx Nx o Nx x Nx -

Total N' "] N' X No *

The null (p =0);

The alternative (p >0 when X=+; p # 0 when x=% );
The number of cases 1in which the Durbin-Watson test
accepts Hi while the Bayes test accepts H; (1i,3=0,x):
The number of cases 1in which the Durbin-Watson
test accepts Hi (1i=0,x);
The number of cases 1in which the Bayes test
accepts H; (j=0,x); and

The number of iteration.



Table 1:

X¢i (The power of the DW test is maximum (n=21, k=4).)

Table 1-1: One-Sided Test Based on Posterior 0Odds
(A) p =0.0 (B) p =0.4 (C) p =0.8
Bayes Bayes Bayes
Ho H. [Total He H. |Total Ha H. |Total
DwW - DW DW
Ha |95 3 98 He (45 14 59 Ho 6 3 9
H+ 0 2 2 H- 0 41 41 H. 0 91 91
Total |95 5 100 Total |45 55 100 Total| 6 94 100
Table 1-2: Two-Sided Test Based on Posterior 0Odds
(A p =0.0 (B) p =0.4 (C) » =0.8
Bayes Bayes Bayes
He H.-|Total He H.- |Total Hoe H.- |Total
DW DW Dw
Ho |89 10 99 He |58 18 74 He |10 2 12
H:-| O 1 1 H.-| 0O 26 26 H--|] 0O 88 88
Total |89 11 100 Total |58 42 100 Total {10 90 100
Table 1-3: One-Sided Test Based on Posterior Distribution
(A) p =0.0 (B) p =0.4 (C) p =0.8
Bayes Bayes Bayes
Ho H+ |Total Ho He |Total He H. |Total
DW DW DW
Ho |98 0 298 He |59 0 59 He 8 1 9
H: 0 2 2 H+ 1 40 41 He ' 1 90 91
Total|98 2 100 Total |60 40 100 Total}l 9 91 100
Table 1-4: Two-Sided Test Based on Posterior Distribution
(A) p =0.0 (B) p =0.4 (C) p =0.8
Bayes Bayes Bayes
He H+- Total He H:- |Total He H.- |[Total
DW DW DW
He 90 9 99 He 62 12 T4 He 10 2 12
H:-| O 1 ‘1 H.-| O 286 26 H--} 1 87 88
Total |90 10 100 Total |62 38 100 Total |1l 89 100




Table 2: X4y (The DW ratio achieves its upper bound (n=21,k=4).)

Table 2-1: One-Sided Test Based on Posterior Odds
(A) p =0.0 (B) p =0.4 - (C) p =0.8
Bayes Bayes Bayes
He H. |Total He H. |Total "He H+ |Total
DW DW DW
He |78 16 94 Hoe |31 35 66 He [20 23 43
H. 0 6 6 H- 0 34 34 H- 0 57 57
Total |78 22 100 Total |31 69 100 Total |20 80 100
Table 2-2: Two-Sided Test Based on Posterior 0Odds
(A) »p =.0.0 (B) p =0.4 (C) p =0.8
Bayes Bayes Bayes
Hs H:+- {Total Ho H.- |{Total He H.- |Total
DW DW DW
He |48 7 55 Ho (40 27 67 Hoe |27 23 50
H+- |37 8 45 H+ - 8 25 33 He. - 2 48 50
Total |85 15 100 Total |48 52 100 Total|29 71 100
Table 2-3: One-Sided Test Based on Posterior Distribution
(A) p =0.0 (B) p =0.4 (C) p =0.8
Bayes Bayes Bayes
Ho H: |Total Ho H. |Total He H+ |[Total
DW DW DW
Hsa |90 4 94 He |49 17 66 Ha 130 13 43
“Hs 0 6 6 H. 0 34 34 H- 0 57 57
Total|{80 10 100 Total |49 51 100 Total {30 70 100
Table 2-4: Two-Sided Test Based on Posterior Distribution
(A} p =0.0 (B) p =0.4 (C) p =0.8
Bayes Bayes Bayes
He H.- |Total He H:.- |Total He H+-|Total
DW DW DW
He 48 T 55 Ha 45 22 67 Ho 30 20 50
H+- {40 S 45 H. - 8 25 33 H. - 2 48 50
Total |88 12 100 Total |63 47 100 Total {32 68 100




Table 3: Xie (The power of the DW test is minimum (n=21,k=4).)

Table 3-1: One-Sided Test Based on Posterior 0dds
(A) p =0.0 (B) o =0.4 (C) » =0.8
Bayes Bayes Bayes
He H. |Total Ha H+ [Total He H+ |Total
DW DW DW
Hoe |82 13 95 He |55 27 82 He |11 64 75
H. 0 5 5 H. 0 18 18 H- 0 25 25
Total |82 18 100 Total|55 45 100 Total{ll 89 100
Table 3-2: Two-Sided Test Based on Posterior 0dds
(A) p =0.0 (B) p =0.4 (C) p =0.8
Bayes Bayes Bayes
He H.- |[Total He H:- |Total He H+- |Total
DW DW DW
He |83 10 93 Hoe |69 16 85 He |16 868 84
He- | 2 5 7 H.-| 2 13 15 He-| 1 15 16
Total |85 15 100 Total |71 29 100 Total {17 83 100
Table 3-3: One-Sided Test Based on Posterior Distribution
(A) p =0.0 (B) p =0.4 (C) o =0.8
Bayes Bayes Bayes
He H. [Total Ho Hs |Total He H: |[Total
DW DW DW
Ha |92 3 95 Ho {73 9 82 He |41 34 75
H. 1 4 S H- 1 17 18 Hs 1 24 25
Total|93 7 100 Total |74 26 100 Total|42 58 100
Table 3-4: Two-Sided Test Based on Posterior Distribution
(A) p =0.0 (B) p =0.4 (C) p =0.8
Bayes Bayes Bayes
He H:- |Total He H.- |Total He H.- |Total
DW DW DW
Hoe (88 5 93 He |74 11 85 He ({25 59 84
He« - 4 3 T H+ - 1 14 15 H- - 1l 15 16
Total |92 8 100 Total|75 25 100 Totall26 74 100




Table 4: Consumption Function in Klein Model 1 (n=21, k=4).
Table 4-1: One-Sided Test Based on Posterior Odds
(A) p =0.0 {B) p =0.4 (C) p =0.8
Bayes Bayes Bayes
He H+ |[Total He H+ |[Total He Hs |Total
DW DW DW
Ha (90 8 98 Hoe |38 31 69 He (12 11 23
H+ 0 2 2 H- 0 31 31 H+ 0 77 T7
Total |90 10 100 Total |38 62 100 Total|l2 88 100
Table 4-2: Two-Sided Test Based on Posterior 0Odds
(A) p =0.0 (B) p =0.4 (C) p =0.8
Bayes Bayes Bayes
Ha H.- |Total Ha H.- |Total Hse H.- |Total
DW DW DW
Hoe |74 1 75 He |60 15 75 He (19 13 32
H+- |22 3 25 He-| 1 24 25 H:-}| 1 67 68
Total |96 4 100 Total |61 39 100 Total {20 80 100
Table 4-3: One-Sided Test Based on Posterior Distribution
(A) p =0.0 (B) p =0.4 (C) p =0.8
Bayes Bayes Bayes
He H+ |Total Ha H+ |Total He H: |[Total
DW DW DW
He |96 2 98 Ho |55 14 69 He |21 2 23
H- 0 2 2 H- 0 31 31 H- 0o 77 7
Total |96 4 100 Total |55 45 100 Totall|21 79 100
Table 4-4: Two-Sided Test Based on Posterior Distribution
(A) p =0.0 (B) p =0.4 (C) p =0.8
Bayes Bayes Bayes
He H.- [Total He H.- |Total He H+- |Total
DW DW DW
He |74 1 75 Ha |59 16 75 He (21 11 32
H. - 122 3 25 H+ - 1 24 25 H+ - 1 67 68
Total |96 4 100 Total |60 40 100 Total |22 78 100
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