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Abstract

This paper models the evolution of attitudes towards risk in a finite
capacity setting. It will be shown that non-expected utility maximiz-
ing behavior will evolve if risk is correlated, while expected utility
maximizing behavior will evolve if risk is idiosyncratic. In the case of
correlated risk, the fraction of the population that is simultaneously
affected by a shock determines the dominant attitude. The dominant
attitude converges to the expected utility maximizing behavior as the
fraction approaches to zero. These results provide a new evolutionary
foundation with mixed strategy. Further, the specific model we use
suggests that costly thinking behavior will emerge even if its cost is
higher than its benefits from the viewpoint of individuals. The result
also offers a possible explanation to the seemingly extraordinarily high
degree of risk aversion reported in the empirical literature.
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1 Introduction

Expected utility theory is regarded as one of the central pillars of economic
theory. However, severe criticism has been voiced against it by Allais[1]
and others. Many researchers have reported the results of their attempts
to test its validity both in laboratories and in the field. The experimental
evidences has been mixed, with some authors expressing serious doubt about
the validity of the theory!. Those who believe that the theory had been
falsified by the experiments looked for alternatives and many new theories
were proposed. Some of them gained popularity, but none of them succeeded
in outperforming expected utility theory convincingly in the laboratories. In
fact, it is repeatedly reported that expected utility theory fits better, at least
in some contexts, than any of the newly proposed theories®>. On the other
hand, the field data, which it is more difficult to falsify the theory, reports
‘anomalies.’ For example, we need to accept an extraordinarily high degree of
risk aversion to reconcile the data on portfolio selection with expected utility
theory®. In this paper, we do not try to judge which is the right theory nor to
add another new theory to the already long list of ‘theories’ on the decision
under risk. Rather, we ask why expected utility theory is so capricious. Why
does the expected utility theory serve as a good approximation to people’s
behavior in some contexts and not in others?

Robson[6] investigated the problem using a model motivated by biology.
He concluded that an expected utility maximizer will be dominated by a par-
ticular type of non-expected utility maximizer when risk is correlated across
the population, while the expected utility maximizer becomes dominant when
risk is independent across all individuals. However, the model assumed that
the size of the populations of all types diverges to infinity to exploit some of
the nice results of branching process. This paper will investigate the same
problem as Robson but with a finite capacity model, which is more realistic
both in the biological and socio-economic settings. It will be shown that the
type which dominates the population in the Robson’s model will evolve in
our finite population setting if risk is correlated and simultaneously affects
the whole population. The size of the correlated risk is crucial to the result,
and other attitudes may evolve if only a certain fraction of the population is

!See Mashinal5].

2See Camerer(3].

3Rust[9] contains a survey on the issue and offers an explanation of the so-called risk
premium paradox.
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affected by a correlated risk.

The following section explains how we build a relation between expected
utility theory and biological fitness. Section 3 summarizes the Robson's
model and the derivation of his main results. In section 4, a discrete finite
population model which captures truly idiosyncratic risk is introduced and
its long-run implications are examined. In section 5, a continuous population
model with a capacity limit which deals with correlated risk is introduced
and its long-run behavior is analyzed. Section 6 discusses some of the im-
plications of the results obtained in the previous sections. In particular, we
compare two attitudes towards risk: following rules of thumb (or biological
instinct) and conducting costly thinking before taking an action. Section 7
concludes the paper.

2 Biological Interpretatibns of Expected Util-
ity Theory

Utility as Biological Fitness. Recent developments in evolutionary theory
allow us to reinterpret some economic concepts which were originally derived
using an axiomatic approach. For example, the Nash bargaining solution
is given an evolutionary foundation by Young[10]. Expected Utility theory,
which has a firm axiomatic foundation, deserves the same treatment. Why
do people behave as though they have a utility function and maximize its ex-
pected value? In particular, why would a von Neumann-Morgenstern utility
function, in particular, evolve? We follow Becker and others in considering
the biological basis of preference represented by a von Neuman Morgenstern
utility function. The following view expressed by Robson(7] is persuasive, “it
is hard to see why preferences would be fixed at all if biological evolution did
not fix them.” We adopt this hypothesis and assume that the utility level of
each individual can be directly related to his biological fitness.

There are at least two ways to put utility functions on a biological basis.
One approach is to define utility function as a mapping from consumption
space to the expected number of offspring. Another approach is to interpret
the function as a mapping from consumption space to the expected survival
rate. Throughout this paper, we assume that each type of individual is char-
acterized by the choice they make over actions vis-a-vis risky situations. An
action corresponds to a lottery over consumption goods. We will identify the



dominating behavior which evolves in the long-run by tracing the evolution
of the population mix of types.

The Expected Number of Offspring Interpretation. Robson(6] relates
the maximization of offspring to the maximization of expected utility by the
following argument. Suppose that each individual has to choose a lottery
over commodity bundles. Denote the consumption space of comumodities
by R" and a bundle by z € R} (hence we assume that there are n kinds
of commodity). Bundle z} is obtained in the gamble taken by type 1 with

. 5
probability i € [0,1], where> ¢ = 1 and {1,2,...K} is the finite set
k=1

of commodity bundles?. The outcome of the gamble is independent across
those who choose the same gamble. Further, a realized bundle induces for
each individual of any type a distribution over the number of offspring, which
may vary between 0 and B. The distribution is represented by po(z), 21 (2). .-,

B
ps(z) > 0, wherey. p;(z) = 1. The outcome is also independent across
=1

individuals given consumption. Having consumed the realized bundle (a
realization of the gamble chosen), each individual generates offspring (the
number of offspring is a realization of another lottery). In short, each type
takes a particularly simple gamble over commodities and the result of the
gamble determines the probability distribution of the number of its offspring.

Remember that each type is characterized by the choice it makes on
the lotteries over commodity bundles. Define a function ¢ : Rf — R. by

B
W(z) =% j p;(z) € (0,00). Then, the value of ¥(z) is the expected nwmber
j=1

of offspring when an individual consumes the bundle z.
If we interpret ¥(z) as utility function, the type which behave as though
it maximizes

K B K .
SN gk pila) =2 gk Ylak) (1)
k=1j=1 k=1

corresponds to expected utility maximizer. In this case, choosing a lottery
which maximizes the expected number of offspring translates into expected
utility maximizing behavior.

The Expected Survival Rate Interpretation. Another biological foun-

1Each bundle is represented by a n-tuple vector.



dation of expected utility theory is given by reading utility as the expected
survival rate.> The same argument as above establishes the link between the
two concepts. Individuals are to choose a lottery over commodity bundles.
The realized commodity bundle determines the expected survival rate, which
is interpreted as ‘utility’. All we need to do is to replace the expected num-
ber of offspring given a consumption bundle by the expected survival rate
given the bundle. In this case, expected utility theory will be given another
vindication if the type which maximizes the expected survival rate becomes
dominant. Our finite capacity model adopts this interpretation, while Rob-
son’s infinite population model relies on the expected number of offspring
interpretation.

3 Infinite Population Model

This section summarizes the results of the infinite population model by Rob-
son. The most important result is that the type which eventually dominates
the population depends on the nature of the risk. Having classified risk into
two categories (idiosyncratic and aggregate risk), Robson[6] concluded that
non-expected utility maximizing behavior will evolve under aggregate risk
while expected utility maximizing behavior will be dominating under idio-
syncratic risk. We follow the essence of his argument with some examples
taken from the paper.

Idiosyncratic Risk. Suppose that each individual chooses a lottery from a
set of lotteries over commodity bundles. Attitudes towards risk are charac-
terized by the choice each type makes over these lotteries. As in the previous
section, denote the probability that bundle z; is obtained when lottery 7 is
chosen by g.. The outcome of the chosen lottery generates a probability
distribution over the number of the offspring. Denote the probability b that
offspring are born when bundle zj is consumed by pf. We call risk idiosyn-
cratic if both of the two lotteries generate outcomes independently across all
individuals. In other words, a dice which has one-to-one relation to a con-
sumption bundle is thrown independently for each individual to determine
the outcome b. Therefore the number of offspring they leave may be different
among those who consume the same bundle z, while the expected number
of offspring is identical among those who consume the same bundle. This

5Karni and Schmeidler?? adopt this interpretation.



case corresponds to the situation in which each individual who consumes
an identical consumption bundle throws an identical dice. The dice has »
faces, and face b turns up with probability p,. We now try to characterize,
through an example, the fittest attitude towards risk when risk is not cor-
related across individuals. Which lottery should individuals choose if they
want to maximize the number of their offspring?

Example 1 There are two types in the population. Assume that each type
chooses a lottery, say lottery 1 and 2. The outcome of the lotteries (realized
consumption) leads to a probability distribution over the nwmber of offspring.
Type 1’s choice produces 1 offspring with probability 1 —p > 0 and 3 offspring
with probability p > 0, and these outcomes are independent across individuals.
Hence, the mean number of offspring produced by each type 1 individual is
my = 14+2p. The mean m, is larger than 2 when p > 1/2. Type 2 consumption
leads to 2 offspring for sure. Hence, its mean my = 2. Each type is assumed
to breed true. Suppose there is only one individual of each type initially and
let zr(i) be the population of each type i = 1,2 at generation T. Then,
z7(2) = 27 and 20(1) = oo as T — oo, and zp(1)/(m))T = W as T — o
for some non-negative random variable W. Hence, zr(1)/27(2) > c0 as T —
oo with probability 1. Type 1 dominates the population in the long run

This example suggests that, if two types are in-competition, the type which
produces a higher expected number of offspring in dominates the other in
the long run. Robson showed that the result survives in an expanded model
where a finite number of types are competing and mutation is introduced.

Theorem 2 The type which mazimizes (1) dominates the population with
probability one unless the type is extinct.

Proof. See Robson [6]

If the risk is idiosyncratic, (i.e. the outcome is independent across the
individuals within the same group) the type that chooses the lottery which
leads to the highest expected number of offspring dominates the population.
The discussion in the previous section implies that this result translates into
the domination of the type which maximizes expected utility.

Aggregate Shock. What would happen if the independence of outcomes is
not satisfied and there is correlation across individuals? We refer to such a



case as aggregated risk. In the previous example, the same type of individuals
face the identical risk, but the consequence of the risk is independent across
the individuals who choose the same lottery. In the case of aggregated risk,
the consequence of the shock is correlated across the individuals in the same
group. In other words, a dice is thrown only once for each group by an
individual who is chosen to represent the group and everyone in the group
consume the identical bundle determined by the face that turned up.

Example 3 Suppose that the environment has two states, 1 and 2. Each
state occurs independently in each generation T = 0,1,.... Type I produces
2 offspring in state 1 and 1 offspring in state 2, while type 2 produces 2 or 1
offspring independently with probability 1/2 each. If there is 1 individual of
each type initially, the asymptotic behavior of the populations is described by

20(2)/(3/2)T = W asT — oo for some non-negative random variable W.
This implies that (1/T) In(z7(2)) — In(3/2) with probability 1 as T — o

On the other hand, type 1 population growth is described by

zr(1) = 29T where ny(T) is the number of periods in which state 1 is
observed in T periods.

Since ny(T)/T — 1/2  with probability 1 us T — oo, (1/T)In(zr(1)) —
In(v/2) with probability 1 as T — oo

(1/T)In(zr(2)/2r(1)) — In(3/2v2) > 0  with probability 1 as T — oo
27(2)/zr(1) — o0 with probability 1.
Hence, type 2 dominates the population.

Long run performances of the two populations are entirely different while
the expected sizes of two populations are identical at eny given date. This
result indicates that the type which has the highest expected number of
offspring may be dominated by other types. In particular, the example above
suggests that a particular type which maximizes the expected value of the log
of the mean will be the candidate for the dominating type under aggregate
shock. The following theorem by Robson confirms this intuition.

Theorem 4 Denote the state realized at period t by €, € {€',€%,...,€°} and
define m*(€°) as the number of offspring produced by a type i individual in
environment £°. Then the type which maximizes the following expression dom-
inates the population with probability one unless the type is extinct:

% : 1 e If8
5 = Jim [? S In( (e ))]

t=0



Proof. See Robson [6]

This result implies that the type which maximizes average growth rate dom-
inates the population under aggregated shock. Robson also showed rhat his
result survives when mutation is introduced.

Non-Expected Utility. We now ready to introduce Robson’ main result
that theorem 4 implies that non-expected utility maximizers may domninare
the expected utility maximizer using the following argument. So far. we
have employed a two-stage lottery to relate biological fitness to utiliry. First.
each type chooses an action which corresponds to a lottery over commod-
ity bundles. Then, the realized commodity bundle generates a probability
distribution over the number of offspring. When we dealt with idiosvncratic
shock, the independence of the outcome is assumed for both the first and
second-stage lotteries. We introduce correlation by dividing the first-stage
lottery into two parts. First each type choose an action indexed by i. bur
this action alone does not specify the probability distribution over commod-
ity bundles. Nature throws a dice to determine the environment indexed
by s, which is common to all individuals. The combination of the action ¢
and the environment £* generates a probability distribution over conunodity
bundles. Denote the probability that bundle z};” is attained in environment
€ by type i by g;° € [0, 1]. The outcome of this lottery is independent across
the individuals within the same group. given the environment. Theorem 4
implies that the type which maximize the following expression dominates the
population. Notice that each type is characterized by q

k=1j=1

S
o
s=1
S K ]
= > m'lh LZ qlf%b(z}f)]
s=1

.=1

K B g
*In [ZZ e iCr }

Example 5 All individual are assumed to select one of two gambles. The
first gamble yields a wealth level of either wy or wy, where wy > ws. Wealth
level wy occurs with probability p and we with probability 1 — p independently
across individuals. The second gamble also entails w, or ws but the conse-
quence 1s the same for all individuals at a given date with a probability of 1/2
each. Suppose p =1/2 then Jensen’s inequality yields that



In[(1/2)%(wn) + (1/2)¢(w2)]
> (1/2) In(¥(w1)) + (1/2) In(P(w))

given that ¢ is strictly monotonic. Individuals are selected to opt for the first
gamble. Since the inequality us strict, it still holds if p is less than 1/2 but
sufficiently close to 1/2.

This example indicates that evolutionarily induced attitudes to risk need not
conform to individual rationality. An attitude which is not consistent with
expected utility theory may well evolve when the consequences of any given
risk is correlated across individuals.

4 TFinite Capacity: Idiosyncratic Risk

In this section, we model the situation where only one individual in the
population is eventually affected by any given shock. Suppose the world is
inhabited by two types of rabbits and two types of their predators. The rabbit
types are Panic and Fear. Predator types are Fox and Wolf. The environment
can sustain only N rabbits. In each round, one rabbit is randomly chosen to
give a birth. The birth process is asexual and subject to mutation (mutation
rate is A). Over-population is solved by one of the /V + 1 rabbits being killed
by a predator.

Each type of rabbit takes one of two evading actions when it recognizes
that a predator is coming: Hide or Run. A rabbit’s type is characterized by
the evading action it takes. A panic rabbit only knows that the predator is
a wolf or fox with probability one half each. It panics by randomly choosing
one of the evading actions with probability one half each. Fear rabbits, on the
other hand, follow “Wait and See” strategy when they recognize a predator
is approaching. It can identify the predator’s type correctly with a higher
accuracy:probability o > 1/2, but pays a cost k. (Waiting is costly as it
leaves less time to take evading action.).

A predator randomly chooses one of the rabbits as his target. Survival
probabilities of the target depends both on the evading action they take and
on the predator’s type. We assume that the probabilities are represented by
the following matrix.



Panic

Fox | Wolf
Hide | a b where0<a<b<l
Run| & a
Fear
Fox | Wolf
Hide |a—k| b—k where 0 < k£ < min[b — a.q]
Run|b—-k|la—-k

If the rabbit being targeted survives the ordeal, the predator changes its
target and repeatedly attacks until a rabbit is killed . Once a predator kills
a rabbit, it goes away. Then the surviving rabbits live in peace for a while
until one of them gives a birth and causes over-population. The assumptions
made allow us to model the evolution of the population mix as a birth-
death process. Hence, we can explicitly calculate the stationary distribution
of the stochastic process easily. The following proposition characterize the
stationary distribution of the process after taking two limits.

Proposition 6 Of the two types of rubbit, that which maximizes its expected
survival rate dominates the population as A\ — 0 and N — .

Proof.

Suppose the state space is represented by a straight line with a population
in which all rabbits are of the Fear type lies at the right end and a population
in which all rabbits are the Panic type lies at the left end. Every other state
corresponds to one of the points which equally divide the whole line into
N +1 segments. In such a case, we can derive the stationary distribution by
identifying the probabilities that the system moves one step left or one step
right at each state. We use the following notation:

F :probability a Fear type dies at the first draw

F}, :probability a Panic type dies at the first draw

G :probability that the rabbit who eventually dies is a Fear type

G, :probability that the rabbit who eventually dies is a Panic type

z! :Fear rabbit frequency in the whole population at time ¢
These four probabilities are directly calculated from the assumptions and
expressed as follows if the superscript ¢ is omitted.

2(2—a-0b)

Fy = 5

= (1-2){ab+ (1 -a)a+k}

10



Fy F,

- F,+F,,‘G" Fr+F,

Gy

Further, denote the probability that the system moves one step right from z
by R(z) and the probability of moving one step right from z by L(z). Then,

R(z) = {z(1 = A) + (1 — 2)A}G,

L) = (A + (1= 2)(1 - A)Gy

The probability mass attached to the state z in the stationary distribution
P(z) satisfies the relation below.

P(z) _ R(z+v) ,
PGto) - L@ whewu-—N

If we take the two limits, the ratio converges to a constant.

. _R(z+v) _2{a+ta(b—a)+k}
b L) (a+0b)

Since the probability mass ratio between any of two neighboring states
are constant, the all Fear (all Panic)state has the highest mass if and only if

(@ = b)(2a —-1)
5 .

k>(<)=

This implies that the process almost always stays in the states in which
almost all of the surviving are the type which has a higher expected survival
rate. @

This result should hold when there are more than two types in the pop-
ulation, while we cannot calculate the stationary distribution explicitly in
such cases. An intuitive argument can be made to support the conjecture.
Suppose that there are many non-expected survival rate maximizing types
and one maximizing type initially. Since the birth process is assumed to be
neutral to the evolution of the population mix, the evolution is dominated by
the survival rate difference. The higher the expected survival rate is, by def-
inition, the individual is more likely survive the ordeal than any of the other

11



types which has a lower expected survival rate in the population. Hence the
state is more likely to move from the current state to the neighboring state
in which there are one more a higher type and one less one of lower types
than to move towards the opposite direction. The system is always more
likely to move towards the direction to increase overall fitness of the popula-
tion. Therefore, the state in which all individuals are expected survival-rate
maximizer should have the highest mass in the stationary distribution of the
process.
Discussion in Section 2 allows us to interpret this result as follows.

Remark 1 The type which mawximizes expected utility will evolve if the fol-
lowing three conditions are satisfied.

Condition 1 The population size is sufficiently large.

Condition 2 The mutation rate is sufficiently small.

Condition 3 Only one individual is eventually affected by the risk.
(risk is idiosyncratic ex post)

Note that modelling risk as sequential arrivals of shocks allows each type
to diversify the risk across its own population. Hence each type is insured in
a sense as a group if not as an individual.

5 Finite Capacity: Correlated Risk

Large correlated risk. This section examines the case of correlated risk
in a finite population setting. Environment variables such as climate should
be modeled as large correlated risk, since the whole population is subject to
an identical shock simultaneously. In this paper, we call a shock “large” if
the whole population is simultaneously aftected by the shock. To analyze the
consequence of large correlated risk, we set a capacity limit on the environ-
ment in a different way and work on a continuous model. The upper limit of
the population is normalized to 1 and the whole population now lies in the
continuum [0, 1], rather than being set equal to a finite number V. In each
period, the whole population experiences the same type of shock or no shock
at all. Each population decreases its size when they experience a shock but
grows proportionally up to capacity limit when they do not suffer any shock.
We reuse the Fear and Panic story and assume that there are only two types
of shock represented by Fox and Wolf as in the previous section to explain
the essence of the argument with two simple examples. These assumptions

12



are dropped later in this section when we move on to a general model. The
first example considers a case in which there are only two types of rabbits;
Panic and Fear. In the second example, we studies a case there are three
types of rabbits; Panic-Run, Panic-Hide, and Fear.
Example 4: The Case with Two Types

A large shock corresponds to the situation in which all rabbits in the popu-
lation face an attack by the predators of a same type. To simplify the calcula-
tions, assume that the population of each type shrinks deterministically once
the type of shock is revealed. We keep the assumnptions made in the previous
section. The survival rates of each type are represented by the same matrices
and each type of shock occurs with equal probability. Then. if the shock is
the appearance of a Fox, the density of Panic shrinks from z, to “%”xt, while
the density of Fear shrinks from (1 — ;) to {ab+ (1 —a)a—k}(1 —z,). The
Wolf shock has the same effect on the population as the Fox shock. When no
shock oceurs, the population grows proportionally up to the environment’s
carrying capacity. We use the following notation:

z, :the ratio of Panic in the whole population at ¢

n’/ :the number of periods they experience Fox up to ¢

n¥ :the number of periods they experience Wolf up to ¢
Then the population mix at period ¢ is described as follows.

Iy (QT.H’ Zo

1-z, {ab+(1=-a)a— Kk} +2"(1— )

)nf +nW

In the limit, the ratio should diverge to infinity or converge to zero since

T

. ca+b
‘l_lglol_mt = 001f-—2—<ab+(1—a)a—k

b
- Oif%>ab+(1—a)a—k

This result suggests that, in the long Tun, the type that mazimizes the
expected survival probability dominates the population. Intuitively, this result
holds, since the mixed strategy followed by the Panic plays the role of insur-
ance for the type. In other words, mixed strategies transform correlated risk
into idiosyneratic risk. If a particular type is evolved to play a mixed strat-
egy which maximizes the expected value of the survival rate, the type should

13



dominate even if risk is correlated across the whole population. The next
example examines what would happen once we exclude mixed strategies.
Example 5: The Case with Three types

Suppose that there are two types of Panic; Panic Run and Panic Hide.
The former chooses Run, whenever it recognizes a shock, and the latter
chooses Hide. As the death-rate matrix is symmetric and the two types of
shocks occur with the same probability, the two type of Panic has the same
survival rate in the expected term. We change the notations to

2, :the rario of Panic Hide in the population

¢ :the ratio of Panic Run in the population

2; = 1 — z; — y, :the ratio of Fear in the population
Then, the evolution of the population mix is described as follows.

Tio Tzt
‘ Toy + Ty + {ab+ (1 — a)a — k}z,
yt+l _ "Tytyl
T + Ty + {ab+ (1 — a)a — k}z,
where
7z = aand m, = b if Fox type shock occur
e = band my = a if Wolf type shock occur

Taking the limit ¢ — oo leads to the following result.

. Ty
lim —
t—c0 z,

= lim an’bn‘”xo
— = {ab+ (1 — a)a + k" g

nf+aW
= lim Vab o
a + k}

t—o | {ab+ (1 -

.
lim =
t—cc 2,

: a™ b yo
= lim 7
t—oo {ab + (1 — a)a + k}+7" 2
! ",W
= lim vab o L0}
t—co | {ab+ (1 — @)a + k}

20
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. Ly .
lim — =lim =
l—oo 2, t—oc 24

= 0if Vab < {ab+ (1 — a)a — k}
= ooif Vab> {ab+ (1 - a)a -k}

since nf +n" — oo ast — oc and nf /nf + 2" — 1/2 almost surely as-
nf + n" — oo by the strong law of large numbers.
This result imnplies that Non-exzpected survival probability mazimizers dom-

inates when o and k satisfy the following condition [See Figure 1]
b
a-;— > ab+(1—a)a—k> Vab
- or
Vab—a k 1 k
+ <=
b—a b—a < @ 2 T b-—a

This example shows that the type which does not maximize the expected
survival rate may dominate the population if we allow only a pure strateg
for each type.

Generalization. So far, we have dealt with a rather special setting in the
two examples (i.e. There are only two types of shocks and they occur with
equal probability). The question now arises; does the result above survive

15



in more general cases? To answer this question, we expand the model as
follows. Suppose there are S types of shocks (predators). Each type of
shock is indexed by s € {1.2...5}. An environment is characterized by a
probabxlm dxatnbutlon over thc shocks. This distribution is represented by

(plap'% 1p5) where Z Ps = 1.

Suppose there are N types of individuals. Each type of individual (rabbit)
is characterized by the action it takes in the environment. Each action {(and
individual’s type) is indexed by 7 € {1,2,3,...N}. Given the type of shock,
each type of individual survives the shock with a given probability. Let us

denote the survival rate of type ¢ individual when the tvpe of shock is s
s

by o;s. The expected survival rate for type i is Z ps7is. The following

proposition asserts that the type which dominates the population will not be
the expected survival rate maximizer.

Proposition 7 The type which mazimizes the following expression domi-
'nate.s the population in the long run.

H oty orZ pslno;,
Proof Suppose that type 1 strict mazimizer of the above expression. Hence

s s
S pslnoys >> pslnois  for any i€ N\1

s=1 s=1

Denote the frequency of the type s shock until time t by n®. Then,

Tit Zi0 S ns ns
]-I ”i,s (Ti,s
s==1 s=1

s t
£
T al,s
l- — s=1
tlf(l;lo :1,_ - S —
— i »
IT a3
s=1

Since the actual frequency of the each shock converges almost surely to the
probability distribution. Further, as we assumed that N is finite, it follows
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Hence Type 1 dominates the population in the compelling sense. B

This result shows that the result Robson obtained in his infinite popu-
lation model survives under a finite capacity setting if the shock affects the
whole population. We now see if the result still survives when the shock is
correlated but only a certain fraction of the population is affected.Smaller

correlated risks. Suppose that only a given proportion of the whole pop-
ulation r (0 < v < 1) is affected by the shock (We refer r as the size of
correlated shock) The case of large shock we have examined corresponds to
the case r = 1 in the current setting. Further, we assume that fraction » of
each population of type is affected by the shock. Now the population ratio
of any of two types, say type a and b, evolve as follows.
S .
Zu _ Tad | o.[;[1 (1 =7 +4+7104s)

S
Tyt Zyo l—[ (1 —r+ Ta‘b,s)n’

s=1

The same argument as Proposition 7 leads to the conclusion that the type
which maximizes the expected values of In(1 — r 4 ro;;) dominates the pop-
ulation. This implies that the dominant attitude which evolves is not the
expected utility maximizer nor the maximizer of log of utility which is being
interpreted as the expected survival rate. However, in the limit as r — 0, an
equivalent of Proposition 6 holds in this finite capacity model.

Proposition 8 When the size of the correlated risk becomes vanishing small,
the type which dominates the population approaches expected utility maxi-
mizer. In the limit of + — 0, the type which maximizes expected wutility
dominates the population.

Proof. In the neighborhood of In1, In(1 —r+rays) = —r+ra;s. This implies
that the dominating type is the one which maximize the expected value of
—r + ra;,. Since this expression is an affine transformation of ;,, the type
that maximizes its expected value of utility dominates the population. B
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Intuition behind the result is simple. If only small fraction of the population
of any given type is affected by a shock simultaneously, and most of the same
type population is intact, the type as a group is insured against correlated
risk. In fact, such risk is not correlated from the viewpoint of the group
which shares the same preference.

This model with a capacity limit shows that a variety of non-expected
utility maximizing behavior may emerge through an evolutionary process.
The dominating type depends on the size of the shock and the results Robson
obtained in an infinite population setting hold as two extreme cases: the size
of shock is very large (r — 1) and the size is very small (r — 0).

6 Discussion

The previous section confirms that the type which maximizes the expected
value of the log of utility will evolve when risk is correlated across the whole
population even if a capacity limit is imposed on the population. This section
discusses what this specific form of risk attitude implies.

Mixed Strategy. Firstly, the result provides the concept of “mixed strat-
egy” with a new evolutionary foundation, although the situation we have so
far considered is not game theoretic. Mixed strategy can be justified only
if all the strategy in the support has the identical expected payoff in the
standard settings. However, when players play a game against nature which
is characterized by correlated risk, mixed strategies in which each strategy in
the support does not necessarily have the identical expected payoff are given
a rational. The intuition behind this somewhat bizarre result is the fact that,
as we have already seen, “mixing” serves as insurance for the type.

We reuse the story of Fox and Wolf. Suppose that Fox type shock occurs
with probability p > 3, and Wolf type shock occurs with probability 1 — p.
independently across time. Then Panic Run (the type which always to choose
Run) has the highest expected survival rate. Any type which is characterized
by a mixed strategy has a lower expected survival rate. Hence, if there
are only two types of shock, Panic Run and Panic (which independently
choose Run and Hide with probability one half each) the former has a higher
expected survival rate than the latter. Evolution of the ratio of the two
population is described by
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where z, : Panic Run population at time ¢ z, : Panic population at time ¢

Hence, Panic dominates Panic Run if (a!7?-67) -2 < a+b and vice versa.
The inequality is always satisfied as far as p is close to 1/2. The type which
has the higher expected survival rate (Panic Run) is dominated by a mixing
type which has the lower expected survival rate. This result indicates that
the type evolved to play mixed strategy may dominate the pure strategy type
which has the highest expected payoff. This result also offers an explanation
to “probability matching” type behavior.

Costly Thinking. Second implication of the main result is that costly
thinking is rewarding when risk is correlated. In the Fear and Panic story,
there are two factors which allow Fear’s domination when the type has the
lower expected survival rate. The first factor is a higher accuracy which
leads to a higher expected value of the logarithm of utility. The appendix
characterizes the parameter values which allow such domination. Another
factor is the idiosyncratic nature of the result of thinking. Thinking diver-
sifies individual judgement within the same group and allow each type to
behave as though it plays a mixed strategy as a group.. We have argued
such "mixing” turns the correlated shock into idiosyncratic shock. Notice
that we have ignored the possibility of the types with mixed strategies when
we derived the mail result. By concentrating on pure strategies, we intended
to model genetically programmed choice behavior by individuals. In other
words, Panic represents choices made by individuals by just following his in-
stinct without serious thinking or by simply applying a rule of thumb. Fear,
on the other hand, represents a different attitude. When the type have to
make a choice, they do not react instinctively but opt for “wait and see” even
if taking such strategy involves cost. The fact that Fear can dominate even

19



if it has a lower expected survival rate suggests that the animals which live
in large groups are more likely develop thinking habits as the risk they face
will be correlated in most cases. Costly thinking is rewarding for the group
if not for the individuals which belongs to the group.

Risk Aversion. Another almost direct implication of the main result is that
people’ attitude towards risk may well be extremely risk averse. If the utility
function is concave as normally assumed, the function obtained by taking
logarithm of it is even more concave. This point offers an explanation to the
seemingly absurdly high degree of risk aversion observed in the household
portfolio selection data. Events like market collapse affect everyone in the
market simultaneously and such shocks may well be perceived aggregated
shock by individuals. Our result is consistent with the observation that
people’s attitude to such risk is significantly risk averse compared with other
risky choices they make.

7 Conclusion

This paper showed that the main results of Robson[6] hold as two extreme
cases in a model which imposes a capacity limit on the population size.
Non-expected utility maximizing behavior may arise through an evolutionary
process if risk is correlated and a significant fraction of the population is
affected ez post. On the other hand, from an evolutionary viewpoint, the
case for the expected utility theory is compelling if risk is idiosyncratic or
only a small portion of the population is aftected ez post by correlated risk.
This result justifies mixed strategies in the games against nature even if a
pure strategy brings the highest payoff to the players as far as the nature
is characterized by correlated shock. Further, the specific model we used
suggests that, when it is possible to increase the accuracy of information on
the nature of risk by paying a cost, costly thinking behavior may evolve even
if it is so costly that thinking decrease the biological fitness at individual
level. This implies that the animals living in groups have a better chance to
develop “thinking ability.”
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Appendix

This appendix aims to clarify when costly thinking is rewarding by lo-
cating the environmental parameters which is consistent with the case in the
Panic-Fear Story. First, we consider the cost of thinking & is constant and
find the ranges of the other two parameters (information accuracy parameter
o and the frequency of Fox type shock r) which lead to the domination of
Fear over Panic when the former has the lower expected survival rate. Then
we briefly discuss the case that the value of k varies and ¢ increases as k
increases.

Suppose that the Fox type shock occur with probability 7 and the Wolf
type shock occur with probability 1—7. The cost of waiting (or thinking cost)
is k. We assume that k is a constant which satisfies 0 < k¥ < min[a — b. ).

Once the value of k is given, we can calculate the upper and lower limits
of r which allow Fear’s domination. The upper limit 7 is calculated using the
fact that Fear's maximum fitness is attained when they choose right evading
action.

In(fa—k) = Tlna+(1-7)Inbd
In{a — k) — Inb
Ina—-1Inb

7":_

The first and second order derivative are

— 1 1t 1
T(k)= % <0,7(k) = ——(a—k)'—’ <

0

The lower limit 1 is obtained using the fact that the point (ar+b(1-r).rlna+
(1—r)Inb) is on the line represented by

In(a — k) — In(b - k)

y= p—> (z—a+k)+In(e—k)
hence
- (@ —b) (Inb — In(b — k)) — k (In(a — k) — In(b — k))
=" (a-b)(In(e—k)—In(b-k) — (Ina—Inb))
r'(k) >0

For a given k and 7 such that (k) < r < r(k) we can find the upper and
lower limit of & within which Fear’ dominates even if the type has the lower
expected survival rate than Panic.
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The upper limit & needs to be smaller than 1 — r for an obvious reason
and it also needs to be small enough to guarantee that Fear has the lower
expected survival rate. Hence @ is expressed as below.

& = min[l k ]
& = minl — r, —
"a—b

The lower limit o needs to satisfy the following equation to guarantee
Fear’s domination over Panic.

rlna+(1—7)Inb=(r+a)ln{fe— &) + (1 = r — a)In(b - k)

Hence

r(lne —In(a = k)) = (1 =) (lnb - In(b — k))
In(a — k) — In(b - k)

Q_=

7]
— = constant < 0
or

To summarize the results above, for any value of 0 < k£ < min[a — b,],
we can find an area in the a — r plane such that Fear dominates Panic when
the values of o and r are contained in the area. Further, in the relevant
three-dimension space of (k,r,«), we can locate an open set ¢ in which Fear
dominates despite its lower expected survival rate.
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