“L,abor Mobility and Dynamic Core-Periphery
Patterns: A Two-Region Case”
Masanori Yokoo (i@ B#)  No.2004



Labor Mobility and Dynamic Core-Periphery
Patterns: A Two-Region Case

(preliminary version)

Masanori Yokoo®
Graduate School of Economics, Waseda University
e-mail: yokoo@tkd.att.ne.jp

November 2000

Abstract

Paul Krugman (1991) proposed a geographic model in which a country
can endogenously become differentiated into an industrialized “core” and an
agricultural “periphery”. It is known that the model can give rise to multiple
equilibria at which manufacturing production is concentrated in one region
or divided between the both regions. To make the basically static two-region
model dynamic, we introduce a discrete-time adjustment process that leads
the workers who earn lower real wage than the average to migrate to the
other region which offers them higher real wage. Numerical simulations
show not only that persistent endogenous fluctuations in manufacturing
share are possible but also discontinuous changes in manufacturing share
can occur without any changes in the underlying system. Furthermore, we
numerically demonstrate that the basins of attraction of the concentration
steady states can be very complicated for larger transpotaion costs.
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1 Introduction

One of the most important issues of geographic/spatial/urban economics
is to explain how geographic concentration occurs. Using the monopolistic
competition model by Dixit and Stiglitz (1977) as a building block, Paul
Krugman (1991,1992) proposed a spatial model based on nonconvexity im-
plied by increasing returns. He argued whether a country consisting of two
regions becomes divided between a manufacturing “core” and an agricul-
tural “periphery”, that is, whether manufacturing is concentrated in only
one region or the both regions have some manufacturing. See Fujita et a!
(1999) for generalized and extended versions of the model.

Krugman and his co-workers offered a continuous-time adjustment dy-
namic model (which can be seen as the replicator dynamics) that gives rise
to multiple equilibria. They mainly use the dynamics to examine whether
a given core-periphery pattern is sustainable or, in other words, whether
an instantaneous equilibrium is stable (i.e. attracting). Seemingly, they
implicitly assumed that what matters is to understand in what equilibrium
steady state the economy will end up.

Our interest is, however, in possible dynamic patterns (and other nonlin-
ear phenomena) per se rather than in local stability of instantaneous equi-
libria. Our question is then: what kind of dynamic core-periphery patterns
are possible in the Krugman’s settings? Since it is known that discrete-time
dynamics even in one dimension can be very rich in general, we will offer a
discrete-time adjustment dynamic model in order to expect to obtain some
interesting dynamic results in the minimum setting. The model is ad hoc
and involves no intertemporal profit/utility maximization. This could be
made so, but we don't do that because the model is so complex to analyze
that we don’t want to complicate it any more for the time being. This will

be left for future research.

In exposition of the model, we will use numerical methods because of
the model’s complexity. We will see below that complicated dynamic core-
periphery patterns that cannot arise in the continuous-time setting are pos-

sible in our model.



2 A Two-Region Model

2.1 Statement of the Model

In this subsection we will just state the model without detailed explana-
tions. The model we are going to deal with is summarized in the following

set of equations. Fort=0,1,2,--,
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Y;,: income of manufacturing and agricultural workers in total in region i

at time £;

y: constant representing the expenditure share of manufactured goods;

z,: region 1's share of manufacturing at time ¢ while 1 — z, representing

region 2's share;

w; ¢: nominal wage for manufacturing workers in region i at time {;
G, price index for manufactured goods in region i at time ¢;

o: elasticity of substitution between any two varieties of manufactured

goods;

T transportation cost for manufactured goods between two regions;
w; .: real wage for manufacturing workers in region ¢ at time ¢;

@y average real wage over two regions;
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(: intensity parameter (> 0) of reaction to wage difference.

2.2 The Static Part of Model

The static part of the model (i.e. egs. (1) through (9)) is identical to the
model proposed by Krugman (1991) and Fujita et al (1999, chapter 4 and
5). We will only give a sketch of the structure of the static part.

Suppose that the economy involves two regions: region 1 and region 2.
There are two types of producers: farmers and (manufacturing) workers.
Farmers are equally distributed ((1 — #)/2, ¢ € (0,1)) and fixed in each
region and produce a homogeneous agricultural good A with constant re-
turns to scale. Workers whose total population adds up to p produce many
differentiated manufactured goods m(t), i € [0,n] with increasing returns:
producing a quantity g of any variety of manufactured good in any given
region requires labor input { with fixed input F and marginal input require-
ment c:

l=F+cq.

Under this technology, the producer of each specific manufactured good
will maximize his temporal profit, which is driven to zero by the free entry
assumption. Contrary to the farmers, workers are able to move between
two regions according to the real wage difference. The agricultural market
is perfectly competitive, and transportation of the agricultural goods is
costless. On the other hand, the manufacturing market is monopolistically
competitive, and each manufactured good is produced in only one region
by a single monopolistically competitive producer. It is costly to transport
the manufactured goods to the other region: only a fraction 1 JT (T >1)of
the original unit of product actually arrives (Samuelson’s “iceberg” form).
Every consumer shares the same Cobb-Douglas utility U from the agricultral
good A and a composite of manufactured goods Cas,

U =U(4,Cp) = AVBCE,,

Cr = [ /0 " m(i)!:—‘di];:—'

with ¢ > 1 being the elasticity of substitution among any two varieties
of manufactured goods. Each consumer maximizes his utility subject to
the usual temporal budget constraint. Some exercise together with some
normalization of parameters gives egs. (1) through (9).

where



2.3 Dynamization of the Static Model

Let us introduce a time-structure into the model. To do this, we assuine
that in each discrete time period manufacturing workers in a region may
move to the other region according to the difference between their real wage
and the real average wage, wi, — @. Workers can choose to move to the
other region or to stay where they are. If the workers are in the region that
offers them higher real wage than the average (or, put differently, than the
other region’s wage), they have no incentive to move, so they will stay. A
fraction of workers who are paid lower wage will migrate to the other region,
and the rest will stay. The fraction depends on the size of wage difference
between the regions: the bigger the difference of wages, the bigger fraction
of workers will migrate!. This migration process will be formulated by the
migration function Qp : R — [0,1], which is a restatement of eq.(11):

o(wie — @) = —tanh (B(wie — @), fwip <y, (12)
0, if Wiy 2 G)t,
where 8 > 0 is the parameter of intensity of migration (See Fig 2.1). The
larger the parameter 3, the more sensitively the workers will react to the
wage difference. Note that in the extreme case of 8 = 400, the migration
function (12) becomes a step function given by

- 1: if Wi t < ‘:)t)
Jool(wiy — @) = (13)
0, if Wit Z Wy

— Fig 2.1 —

Now let us define the adjustment dynamics in terms of manufacturing
workers’ share in region 1, z,. At the end of period ¢, the fraction of
gs(wy,e —@) of workers in region 1 will migrate to region 2, and the fraction
of ga(wa,: — @) of workers in region 2 will migrate to region 1. Thus at the
beginning of period t + 1, the fraction of manufacturing workers in region

1, 141, will amount to:
Tepr = (1 — gp {wre — @) 2o + gp(wae — @) (1 — ) - (14)

Expressing w; and @ as functions of z by “solving” egs. (1) to (9), we
obtain a map f : [0,1) — [0,1] with

Terr = f(Ze), (15)

I'This implicitly assumes that there is some unmodeled heterogeneity in the workers.



where
f(@) = (1 = gg (wi{z) — @)  + gs(wa(z) — @(z)) (1 - 2). (16)

It is important to recognize that the static model can have multiple instan-
taneous equilibria. These equilibria correspond to the fixed points (=steady
states) of f. Although we cannot characterize all of the possible equilibria in
an explicit form because of our inability to solve the nonlinear simultaneous

equations, there are several obvious equilibria given by
* - L 1
z*=0, z*=1, and z'= 3 17)

At the first two equilibria, manufacturing is concentrated in one of the
two regions. At the third equilibrium, manufacturing is equally divided
between the two regions. As we will see below, other steady states can arise

for some set of parameter values.

3 Dynamic Core-Periphery Patterns

In this section, we will ask, using numerical methods, whether and how the
economy becomes divided between a manufacturing core and an agricultural
periphery over time. In Krugman’s original works (1991,1992) and Fujita et
al (1999), they used a continuous-time replicator-like adjustment dynamic
model?

‘;_“: = y(wi (z) - @(z))z, (v>0)

to examine the problem what equilibrium is selected in the long run, in other
words, whether an instantaneous equilibrium is sustainable. Unlike their
analyses, we are more interested in the dynamic patterns in manufacturing
than in the steady states. In what follows, numerical simulations will show
that our model is capable of generating persistent fluctuations including
periodic and even chaotic dynamics. Furthermore, many other interesting
nonlinear phenomeana can be observed.

For our numerical study, let us fix some parameters as follows:

c=5 p=035 and §=200. (18)

2A possible discrete-time version of the continuous replicator-like adjustment model
is given by
a +uwi(ze)
% ’7
a + @(zt)
This model is not capable of generating comlicated dynamics.

T4l = a>0.



We will vary the transportation cost parameter T to see how the graph
of f changes. Fig 3.1 and Fig 3.2 show that the map T=10land T =
1.50 (smaller T') has three fixed points at x =0, 1/2, and 1. Clearly, the
fixed points z = 0 and = = 1 are stable (i.e, attractors), and the fixed
point z = 1/2 is unstable (i.e., a repeller). Intervals (0,1/2) and (1/2,1)
are the basins of attraction of attractors z = 0 and 1, respectively. For
T = 1.01 and T = 1.50, there are virtually two possible final states of
the economy: manufacturing is concentrated in region 1 or 2 depending
on initial conditions. Note that in these cases, every trajectory is either

monotone increasing or monotone decreasing.
— Fig 3.1 and Fig 3.2 —

Fig 3.3 depicts the picture for T = 1.92. At some T-value near 7 = 1.92,
the fixed point = = 1/2 undergoes a pitchfork bifurcation®, gaining stability
and generating two other unstable fixed points around it. The fixed points
z = 0 and 1 are still stable. Thus, in this economy, there are virtually three
possible final states: manufacturing can be concentrated in one region or
divided between the two regions, which again depends on initial conditions.
Note that the basin of attraction of each attractor is an interval.

— Fig 3.3 —

Fig 3.4 for T = 1.96. At some T-value near T = 1.96, the fixed point
z = 1/2 undergoes a period-doubling bifurcation. This type of bifurcation
cannot occur in the continuous time version of this model. Through this
bifurcation, the fixed point z = 1/2 loses again its stability and gives birth
to a stable periodic orbit of period two in its vicinity. The two fixed points
of manufacturing concentration remain stable, so there are at least three
possible final states, one of which keeps oscillating over time around the
fixed point z = 1/2. Thus, in our model, it is possible for the share of
manufacturing workers (and other relevant variables) to keep fluctuating
between the two regions without any external disturbances.

— Fig 34 —

Fig 3.5 shows that nonlinearity of the map f at T = 2.00 is strong enough
for the manufacturing share to fluctuate around z = 1/2 in an erratic or
chaotic way. It seems as if the economy would be in the steady state z = 1/2,
constantly subjected to external random shocks. Fig 3.6 plots the chaotic

time series.

3For dynamical systems theory and bifurcation theory, see e.g. Guckenheimer and
Holmes (1983).




— Fig 3.5 and Fig 3.6 —

As T increases, we can observe other important nonlinear phenomena.
First take a look at Fig 3.7. At T = 2.10, the maximum and minimum of
the humps of the graph of f hit the basins of attraction of manufacturing
concentration equilibria z = 0 and z = 1. The trajectory of almost every
initial manufacturing share zo € [0, 1] seems to settle down to either z =0
or z = 1 as time goes on. On the interval (0, 1), there seems to be some
f-invariant set* on which f behaves chaotically. As a result, some trajecto-
ries starting near that “chaotic invariant set” which eventually converge to
0 or 1 will fluctuate for a relatively long time; this mechanism will gener-
ate so-called transient chaos, that is, long-lasting erratic oscillations which
eventually cease. Fig 3.8 depicts two transient-chaotic trajectories with dif-
ferent but close initial conditions: one trajectory eventually drops to 0, and
another one with a slightly different initial condition converges to 1. As Fig
3.8 indicates, workers move in and out of the two regions in a complicated
manner for first many periods, but, suddenly, all of them tend to either 0
and 1 depending on initial conditions, and nobody will ever return to the

other region.
— Fig 3.7 and Fig 3.8 —

Remarkable is the structure of the basins of attraction for the attractors
z =0and z = 1 for T = 2.10. Unlike the cases of smaller T, those
basins are no longer intervals and the boundaries of the two basins look
complicated. See Fig 3.9a,b. Fig 3.9b is an enlargement of Fig 3.9a. These
basin boundaries are referred to as fractal basin boundaries®. In the presence
of such fractal basin boundaries the final state (i.e., the state to which a
trajectory converges) can be sensitive to initial conditions.

— Fig 3.9a,b —

4 Summary and Concluding Remarks

This paper has offered a discrete-time dynamic version of Krugmnan's ge-
ographic model (Krugman 1991) which is based on Dixit and Stiglitz’s mo-
nopolistic competition model (Dixit and Stiglitz 1977). In Krugman (1992)
and Fujita et al (1999), a continuous-time dynamic version of Krugman's
model was explored to examine the stability of multiple equilibria. On the

4]s is “usually” a Cantor set of measure zero
5See e.g. Onozaki et al (2000) for fractal basin boundaries.



other hand, we have stressed the possible occurrence of complex nonlin-
ear phenomena which may or may not be related to equilibrium selection.
In comparison with Krugman and his co-workers’ works, our findings are

summarized as follows:

a. Given our discrete-time adjustment process, persistent periodic and
chaotic endogenous fluctuation in manufacturing share can occur. Such
dynamics can not be generated by Krugman’s two-region continuous-
time model;

b. Even if an equilibrium steady state is unstable (e.g. = = 1/2 for
T = 2.00), manufacturing share may remain in the vicinity of that
steady state. In Krugman's two-region model, however, instability of
the steady state implies that a trajectory stays away from that steady
state;

¢. Transient chaos is possible. As a result, seemingly discontinuous change
in dynamic patterns can occur without any structural change in the
underlying system;

d. Unlike Krugman’s continuous-time adjustment model, even higher trans-
portation costs (i.e. larger T') may cause manufacturing concentration
because of the presence of overshooting adjustment. This seems to be
inconsistent with our intuition that at higher transportation costs each
region would have some manufacturing;

e. Basin boundaries of multiple attractors can be very complicated, which
causes our inability to predict the final state of the economy even if we
have highly precise knowledge about initial conditions.

We have numerically demonstrated that our model can generate much
richer dynamics than the Krugman’s continuous-time model when we mod-
ify his model by introducing another type of adjustment process. Our nu-
merical results, however, depend on the ad hoc adjustment process as much
as those by Krugman do. Basically, our model is intended to illustrate
what kind of dynamic core-periphery patterns are possible in the simplest
Krugman-type geographic model. If we want to make our results persua-
sive, we may need a sophisticated dynamization of the static model. An
interesting future research topic would be then to replace our ad hoc labor
adjustment process by a more sophisticated one® to check wether the results
obtained above can be reproduced for that model.

6For other types of adjustment dynamics in the similar context, see e.g. Matsuyama
{1992) and Matsuyama and Takahashi (1998).
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