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Abstract

Sasaki (IJGT 24, 1995) proposed axioms intended for characterizations of the
core of assignment games. In the first part of this paper, we consider the set of
zero-normalized assignment games having possibly different numbers of players
on both sides. We show by a counter example that theorem 2 in Sasaki (1995)
is not correct. We propose an amendment of the theorem replacing individual
rationality by population monotonicity. In the second part, we also consider the
set of all assignment games. On that domain, the core is the unique solution
satisfying Pareto optimality, consistency, individual monotonicity and pairwise
monotonicity.



1 Introduction.

Recently, Sasaki (1995) proposed axioms intended for characterizations of the
core of assignment games in the zero-normalized class. In his paper, the core is
assumed to determine the subset of matchings as well as the subset of pay-off
vectors. This complicates the axioms, however, if we concentrate on the pay-off
vectors, his theorem can be simplified as follows. The core is the unique solution
on the set of zero-normalized assignment games satisfying individual rationality,
Pareto optimality, consistency and pairwise monotonicity.

His arguments are quite ingenious but unfortunately the above statement is
not correct. It is only valid on the special class of zero-normalized assignment
games having the same number of agents on both sides of a market.

In this paper, we show by a counter example that theorem 2 in Sasaki (1995)
is not true. We propose an amendment for the theorem by replacing individual
rationality by population monotonicity®.

Population monotonicity is one of the guiding principles in the recent ax-
iomatic analysis. ( See Thomson (1995) for an excellent survey of the literature.)
It requires that in case of adding a new agent to a society, each existing agent
suffers a loss if the resources remain unchanged. In an assignment game, there
are two types of agents so that the effect of adding a new agent may be different
depending on the agent’s type. Then, the population monotonicity in the two-
sided model requires that each existing agent of the same type as a new agent
suffers a loss because in the perspective of agents on the opposite side, the ar-
rival of a new agent increases their trading possibilities. This kind of population
monotonicity was applied to the discrete model of Gale and Shapley (1962) by
Toda (2001) but it is first applied to the continuous model in this paper.

From both practical and theoretical viewpoints, however, the set of zero-
normalized games is restrictive. First, in real markets, trade gain and reservation
value can be any real numbers, positive, negative or zero. Second, whether or not
a characterization extends to the general case is not a simple question. Of course,
it is not difficult to show that the core is invariant under the zero-normalization.
Then, it may appear that by requiring the invariance under zero-normalization,
a characterization in the general case follows from the zero-normalized case,
but this may not be true. Besides that the assumption of zero-normalization
invariance is rather technical and not so much economic meaningful, what is
difficult is to show the independence of the axioms. Hence, the characterization
of the core on the general domain of assignment games is a non-trivial problem
which needs to be considered separately.

In the second part of this paper, on the domain of all assignment games,
the core will be characterized by Pareto optimality, consistency, pairwise mono-
tonicity and individual monotonicity. Individual monotonicity requires that if
the reservation value of an agent increases, then the payoff of this agent should
be increased. This axiom is similar to the monotonicity with respect to the
disagreement point in the theory of bargaining. (See, e.g., Thomson (1987).) In
the case of two agents, the both are equal.

Finally in this section, we mention briefly on a significance of our results. In
general, axioms should not be explicit in the definition of the core. In assignment

!Toda (1993) also obtained a characterizations of the core of assignment games based on
the Davis-Maschler type consistency axiom.



games, the core is defined by the set of stable pay-off vectors. A pay-off vector
is stable if it has no blocking pair and no blocking individual. Hence, Pareto
optimality is implicit but individual rationality is explicit in the definition of the
core. It is remarkable that in our results individual rationality is not directly
assumed.

The paper is constructed as follows. The next section gives notation and
definitions employed in this paper. The third section proves our characteriza-
tion theorems on the domain of zero-normalized games. The final section gives
axiomatizations of the core without domain restrictions.

2 Definitions and axioms.

In this section, notation and definitions we employ will be given. We shall
also introduce axioms which will be used in our characterization results and
examples.

Let M and W be non-empty finite and disjoint sets of agents (or traders).
We may consider an element m € M as a man or a buyer or whatever we
imagine as a market participant and an element w € W as a woman or a seller
or any component of the opposite side of a market. Each agent ¢ € M U W has
a reservation value denoted by m(a). An agent is not willing to trade unless he
or she is paid at least as much as w(a). For each pair (m,w) € M x W, [I(m, w)
denotes the worth (or trade gain ) that m and w can jointly achieve. Then, a list
(M, W, 11, ) is called an assignment game and denoted for notational simplicity
by 7. The set of all assignment games is denoted by I'.

Definition 1. Given M and W, a maiching is a bijection g from M UW into
itself satisfying the following conditions.

(1) pop{a) =aforeache e MUW.
(2) If u(a) # a, then p(a) € W for e € M and p(a) € M fora € W.

For a give matching g, let c(p) = {(m,w) € M x W | p(m) = w} and s(p) =
{a € MUW | u(a) = a}, where c(g) is the set of all pairs matched at x and s(x)
is the set of all agents remaining single. Then, a matching x will be denoted by
such an expression

p={mw),...,m,...,v,...}
indicating all pairs in ¢(u) and all agents in s(z). A matching u is optimal if it

maximizes the sum
Z (m,w) + Z 7(a)

(m,w)€c(u) a€s(u)
of all trade gains over all matchings.

A vector (u,7) € RM x RY is called a pay-off vector. A pay-off vector (u,v)
is feasible if there exists a matching u such that

(1) um =n(m) and vy = 7(w) for m € s(ps) and for w € s(p), respectively.
(2) wm + vy = II(m,w) for each (m,w) € c(p).



In this case, (u,v) is called compatible with p1. A feasible pay-off vector (u,v) is
Pareto optimal if it is compatible with an optimal matching. A pay-off vector
(u,v) is individually rational if

U 2 W(m) and v, 2 7(w) for each m € M and for each w € W.
A feasible pay-off vector (u,v) is stable if it is individually rational and satisfies
U + U 2 II(m, w) for each (m,w) € M x W.
The set of all stable pay-off vectors is called the core and denoted by S(v).

Definition 2. A solution ¢ is a correspondence defined on a subset of " which
associates a non-empty set of feasible pay-off vectors with each 4 in its domain.

Now, we proceed to define axioms which will be used in the subsequent
discussions.

Definition 3 (IR). A solution ¢ is individually rational if for each v in its
domain, each (u,v) € p(7) is individually rational.

Definition 4 (PO). A solution ¢ is Pareto optimal if for each « in its domain,
each (u,v) € p(v) is Pareto optimal.

Let v = (M, W,II, ) be an assignment game and (u,v) a feasible pay-off
vector which is compatible with a matching 4. Then, an assignment game
v = (M',W',Il',n’) is a subgame of v at (u,v) if the following conditions are
satisfied.

(1) MUW CMUW and p(M'UW') = M UW".
(2) For any (m,w) € M’ x W', Il'(m,w) = [I{m, w).
(3) For any a € M' UW’, 7'(e) = n(a).
Definition 5 (CONS). A solution ¢ is consistent if for any (u,v) € () and
for any subgame 4’ of v at (u,v),
(var, vw) € o(7')

where (2, vw+) is the projection of (u,v) to the subspace RM' x RW',

Let 4,4 € I' be such that,
(1) v=(M,W,I1,7), y=(M,W,Il,7).

(2) I'(m’,w’) 2 I(m/, w') for some (m',w’) € M x W and IT'(m, w) = [I(m, w)
for any other (m,w) e M x W.
Definition 6 (PMON). A solution ¢ is pairwise monotonic ? if for any (u,v) €
@(7), there exists («,v’) € () satisfying
Ups +v:,,, 2 U +Vy,
where (m',w') is the pair such that Il'(m/, w') 2 II(m/,w').
2Sasaki (1995) distinguishes pairwise monotonicity and weak pairwise monotonicity. Our

definition corresponds to his weaker notion, however, because in this paper, we do not need
the stronger notion, we simply call it pairwise monotonicity.
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Because all these axioms have appeared in Sasaki (1995), we do not need to
repeat the economic interpretations of them.

In this and the next sections, we are concerned with the class of zero nor-
malized assignment games.

The class I'y of zero normalized assignment games is defined by the subset
of assignment games v = (M, W, II, 7) satisfying the following conditions.

(i) I(m,w) Z 0 for each (m,w) € M x W.
(ii) m(a) =0 foreacha€ MUW.

For the sake of simplicity, each 4 € [p can be written as (M, W,II). By the
arguments in Sasaki (1995), we can obtain the following result.

Theorem 2.1. The core is the unique solution satisfying individual rational-
ity, Pareto optimality, consistency and pairwise monotonicity if its domain is
restricted to the subset of Tg such that |M| = |W|, where |M| and |W| denote the
cardinality of M and W, respectively and II(m, w) > 0 for each (m,w) € MxW.

If the domain of the core is extended to I'g, the assertion of theorem 2.1 is
no longer valid. The following example shows this.

Example 2.1. Let ¢! be the solution defined as follows 3,
(1) o(M,W,1I) = S(M,W,1II) if [MUW]| #3.

(2) ¢(M,W,II) is equal to the set of all Pareto optimal and individually rational
pay-off vectors if [M UW|=3.

Proposition 2.1. On the domain of I'o, the solution @' satisfies all azioms in
Theorem 2.1.

Proof. Tt suffices to prove that ¢! satisfies consistency and pairwise monotonic-

ity. To prove consistency, suppose that (u,v) € ¢(v) and 4’ is a subgame of y

at (u,v). If the numbers of players in 7 and in 4’ are not equal to 3, then ¢!

satisfies the requirement of consistency because it equals to the core.
Otherwise, we need to distinguish two cases.

(Case 1). [MUW|#3inyand [M'UW|=3in 4.
Since (u,v) is stable in v, (¥, vw) is obviously individually rational and
Pareto optimal in 7/ and hence it is contained in ¢!(v’).

(Case 2). IMUW|=3inyand [MUW'|=2in4'.

|M’UW’| = 2 means that M’ = {m} and W’ = {w}. Because (m,w) € c(u)
for a matching p compatible with (u,v), 2m+vy = II(m,w) and u,, 2 0,7, 2 0.
Hence, it follows from the definition of ¢! that (um,vw) € @' (Y').

Next, we will see that ¢! satisfies pairwise monotonicity. By the definition
of ¢!, we only need to check this in case of [MUW/| = 3. Let ¥ = (M, W,II) and
v' = (M, W, II') satisfy the conditions in the definition of pairwise monotonicity.
Because |M U W| = 3, without loss of generality, we may assume that M =
{mq,ma}, W = {w}, II'(my, w1) = I(m, w,) and IT'(m2,wn) 2 (m2, wn).

3The construction is simplified in order to make verifications of the axioms easy but we

can find a solution satisfying the axioms which is different from the core on a larger class of
assignment games.




For an arbitrarily given (u,v) € ¢'(), let 4 be a matching compatible with
it. If we have

p= Ilvl = {("’inl)aml}s

then it is immediate to obtain the desired property. Otherwise, we distinguish
two cases. At first, assume that the matching p is still optimal in 4. Then, the
conclusion is also immediate. In the second case, the matching g is no longer
optimal in 9'. In this case, the matching p' is the unique optimal matching in
7. Therefore, we have,

H’(M2,wl) > H(m;,wl).
Because p' # p, if (my, w;) € c(u), then

II'(ma, wy) > I{m1, w1) = U, + Ve 2 Vu,

and Uy, = 0. For the pay-off vector (u/,7’) defined by U, =0, 1y, =
l'(ma, w1) — vy, and v}, = vy,, (¥',7') € p!(¥) and ul,, + V!, 2 Um, + Vu,.
If (my,w,) € c(p), then (u,v) = (0,0, 0) and the conclusion is obvious. This

completes the proof.
0

3 Population monotonicity.

The example in the previous section constitutes a counter example of theorem
2 in Sasaki (1995). In this section, we propose an amendment of the theorem,
in which the core is characterized on the domain Iy replacing individual ratio-
nality by population monotonicity in the axioms of theorem 2.1. Population
monotonicity requires that if a new agent is added to a group, then each of
the existing agents suffers a loss when the resources remain unchanged. In our
model, there are two types of agents so that it requires that each of the exiting
agents having the same type of a new comer suffers a loss. For the mathematical
expression of the idea, we need an additional definition.

An assignment game ' = (M', W', I', ') is an extension of y = (M, W, IL, 7
ITMUWCMUW , I'=lon MxWand#® =wron MUW.

Definition 7 (POP). A solution ¢ is population monotonic if for any exten-
sion ¥/ = (M U {m}, W,Il', ') of ¥ = (M, W,II, x) and for any (u,v) € (%),
there exists (u’,7v’) € y(v’) such that

u, < 4y, for eachme M

and the symmetric requirement is satisfied for any extension involving a new
woman.

Proposition 3.1. The core S satisfies population monotonicity.
Proof. Obvious from proposition 8.17 in Roth and Sotomayer (1990). O

Proposition 3.2. If a solution ¢ satisfies Pareto optimality and population
monotonicily, then it satisfies individual rationality’.

4An analogous result has been obtained in the matching model of Gale and Shapley (1965)
by Toda (2001).




Proof. At first, it is not difficult to show that population monotonicity implies
the following : For any v = (M, W,II) and its extension v’ = (M', W,IT'), if
(u,v) € (), there exists (u',v') € ¢(7’) such that u;, S up, for all m € M.
By way of contradiction, suppose that for an assignment game y = (M, W,1I),
@(7) contains a pay-off vector (u,) which is not individually rational. Without
loss of generality, we may assume that %, < 0 for some m’' € M. Let us denote
W = {wy,ws,... ,ws}. Foreachj=1,...,n, we introduce a new man m; and

¢
construct an extension ' = (M’, W, II') of « satisfying the following conditions.

(1) I'(m},w;) > II(m, w;) for each m € M.
(2) II'(my,w;) =0 for each k # j.

In the assignment game +’, the matching p’ such that x/(m) = m for each
m € M and p'(w;) = mj for each j =1,... ,n is the unique optimal matching.
By Pareto optimality, for any (u,v’) € ¢(7') and for any m € M, uy,, =0 and
hence u/,, = 0 > ¢, This contradicts the population monotonicity of ¢. 0O

The main result of this section is as follows.

Theorem 3.1. The core is the unique solution on the domain [y satisfying
Pareto optimality, consistency, pairwise monotonicity and population mono-
tonicity.

Proof. By proposition 3 in Sasaki (1995) and proposition 3.1, the core satisfies
the axioms. Conversely, let ¢ be a solution satisfying the axioms. By proposition
2 in Sasaki (1995), ¢(7) C S(¥) for each v = (M, W,II, ) such that |M| =
|W| = 2. We show that the same inclusion holds for each v with |M| £ 2 and
W] £ 2.

If M| £ 1 and [W]| £ 1, then by individual rationality and Pareto optimality,
e(7) =S()-

Hence, we only need to consider the case of |M UW| = 3. Without loss of
generality, we may assume that M = {m;,mo} and W = {w,}. Suppose that
there exists (u,v) € @(y) such that (u,v) € S(7). If um, = Um, =V, =0, then
by Pareto optimality, (u,v) must be stable. Then, without loss of generality,
we may also assume that up,, + vy, = l(m;,w,) > 0 and Uy, = 0 for any
(u,v) € ¢(7). For (u,v) € ¢(7) such that (u,v) ¢ S(7), it must be true that
Umg + Yy, = Vw, < II(m2,w;). Then, let us introduce a new woman ws such
that II(m,ws) = m(w2) = 0 for any m € M and 7' denote the extension of y
obtained in this way. In 4/, for any (u',v') € @(v'), up,,, + v, = (my, w;) >0
and t,,, = 0. Because in 4/, there are two men and two women, we have already
seen that ¢(y) C S(7"). Therefore, for any (u/,v') € @(7'), Ul,, + V4, =V, 2
II(mg,wy) > vy,. This contradicts population monotonicity.

We have shown that () C S(v) if [M| £ 2 and |[W| £ 2. In order to
prove the same inclusion for any «, let (u,v) € ¢(y). Then, by consistency,
(uarr,vw:) € @(Y) for any subgame 4’ of 7y at (u,v) such that [M’| < 2 and
[W’| £ 2. Hence, (upm+,vwr) € S(7'). By Proposition 3 in Sasaki (1995), the
core satisfies converse consistency®. Therefore, we may conclude that (u,v) €
S(7). By the same argument as in Sasaki (1995), we can show that the core has

SFor the definition, see Sasaki (1995).



no proper subsolution satisfying consistency. Then, it follows that o(y) = S(7)
for each 4. This completes the proof. a

The next task is to establish the logical independence of the axioms in the-
orem 3.1. We will show that deleting each axiom from the list in theorem 3.1
results in a solution different from the core. Because the solution in example 2.1
satisfies the axioms other than population monotonicity, we will consider the
remaining three axioms.

Example 3.1 (Deleting PO). Let ¢! be the solution which associates the set
of all feasible pay-off vectors satisfying individual rationality with each v. This
is essentially equal to the solution in example 5 in Sasaki (1995). Then, we
only need to check population monotonicity. Let (u,v) € ¢!(7) for an arbitrary
v =(M,W,1I) and v = (MU {m'}, W,II') an extension of 4. For a matching p
compatible with (u,v), we define v/ € R¥ as follows.

, {n(m,w) if p(w) = m,
v, =
Y 10 if p(w) = w.

From the definition of ¢!, it is obvious that (0,7’) € RM*1 x RY is contained in
#(7'). Because up, 2 0 for each m € M, ¢! satisfies population monotonicity.

Example 3.2 (Deleting CONS). Let ¢? be the solution which is different
from the core only if [M| = |W| =1 and in this case, p*(v) consists of (tn,0)
where u,, = II(m,w). This is essentially equal to the one in example 1 in
Sasaki (1995). In order to show population monotonicity, we only need to
consider the effect of adding a new man to + such that |M| = |[W| = 1. Let
7' be an extension of such a < obtained by adding a new man m®. Suppose
that m is still matched with w at an optimal matching in 7. Because ¢?(y') =
S(7'), for any (up,, up., L) € ©%(7’), ul,. =0 and v, 2 II(m*,w). Therefore,
Uy, = I(m,w) — v, £ M(m,w) — I(m*,w) £ O{m,w) = u,;,. If m remains
single at any optimal matchings in 4/, then for any (ul,,,..,v)) € ¥*(¥),
4y, = 0 £ II(m,w) = up. Thus, the population monotonicity of ¢? has been
shown.

Example 3.3 (Deleting PMON). Let ¢? be the solution which associates
the set of all individually rational and Pareto optimal pay-off vectors with each
assignment game. This corresponds to the one in example 6 in Sasaki (1995).
We need to check population monotonicity. For any optimal matching u, we
consider the vectors @ € RM™ and ¥ € R such that uy, = vy = O(m,w) if
p(w) = m and um = vy = 0 if u(m) = m or p(w) = w. Because the pay-off
vectors (%, 0) and (0, %) are always individually rational and Pareto optimal, the
population monotonicity of ¢? is obvious.

Our characterization does not include individual rationality. As we argued
in introduction, this is desirable because individual rationality is a part of the
definition of the core. But, if we weaken the axiom of population monotonicity,
we may obtain another characterization including individual rationality. This
is a more simple-minded extension of theorem 2.1.

For an assignment game v = (M, W,II), m € M is called a null player in
7 if II(m,w) = 0 for all w € W. A female null player is analogously defined.



Now, let 4/ = (M U {m},W,II') be an extension of v, in which m is a null
player. Then, 7 is called a male null player eztension of 7. A female null
player eztension is analogously defined.

Definition 8 (NPI). A solution ¢ satisfies null player invariance if the pro-
jection of the set (') onto the subspace RM x RY is equal to the set ¢(%)
when 4 is a male (or female) null player extension of .

Then, we can obtain the following result.

Theorem 3.2. The core is the unique solution on Iy satisfying individual ra-
tionality, Pareto optimality, consistency, pairwise monotonicity and null player
invariance.

Proof. Almost obvious from the proof of theorem 3.1. ' a

4 Characterizations on I'.

In this section, we shall characterize the core of assignment games on the domain
of I. For an assignment game v = (M, W,IL,x) € [, [I(m, w) and w(e) can be
any real numbers, positive, negative or zero for each (m,w) € M x W and for
each ¢ € M UW. As we discussed in introduction, characterization of the core
on I is non-trivial

In the following, we prove that the core is characterized by Pareto optimality,
consistency, pairwise monotonicity and individual monotonicity. The axiom of
individual monotonicity is defined as follows.

Definition 9 (IMON). A solution ¢ is individually monotonic if the following
condition is satisfied.

Let v = (M,W,IL7),y = (M,W,II,z’) € I be such that 7'(a) 2 n(a)
for some a € M UW and 7'(e’) = =(a’) for any other ¢’ € M UW. For any
(u,v) € p(7), there exists (u',v') € p(7’) such that a is paid at (u',7') at least
as much as at (u,?).

Proposition 4.1. The core satisfies individual monotonicity.

Proof. Lety = (M, W,II,7) and ' = (M, W, II, ') be such that 7’(m’) 2 w(m')
for some m’ € M and n'(e) = w(a) for any @ # m'. Let (u,v) € S(y) and g
a matching compatible with it. If u,, 2 #'(m’) 2 x(m’), then the conclusion
is obvious. Suppose that 7'(m’) > u,,:. Then, for any (v',2') € S(¥), ul,, 2
n’(m') > tpy, which completes the proof. O

Proposition 4.2. If ¢ satisfies Pareto optimality and individual monotonicity,
then it satisfies individual rationalily.

Proof. Let (u,v) € ¢(7) and g an optimal matching compatible with (u,v).
Suppose that u,, < 7(m) for some m € M. Then, there exists w € W such that
(m,w) € c(p). Therefore, Uy, + vy = [I(m,w). It follows from the optimality of
i, I(m, w) 2 w(m) + w(w). For each £ > 0, we define 7° by,

7é, = [I{m,w) — x(m) + € > n(w)
7s = n(a) for each a # w.



Consider an assignment game v¢ = (M, W,II, #¢). Let u’ be an optimal match-
ing in 4°. By construction,

Z O(m,w) + Z n'(a) 2 z I(m,w) + Z n(e) +e&.

(m,w)€c(u’) a€s(p’) (myw)€c(s) a€a(n)
If w ¢ s(y'), then

Y. Omw)+ Y w@)> > Hmw)+ Y n(a),

(m,w)€c(p') ags(pn) (m,w)€c(n) a€s(p)

which contradicts the optimality of . Therefore, for any optimal matching p'
in ¥*, p'(w) = w. Then, for each (u%,v°) € p(¥*),

vy, =I(m,w) — n(m) +¢.
Since uy, < w(m) and um + vy = [M(m, w),
vy = [I(m, w) — vy, > O(m,w) — w(m).
Therefore, for sufficiently small € > 0,
v > [(m,w) — 7(m) + & =5,

This contradicts individual monotonicity. Thus, it has been shown that u,, 2

m(m) for all (u,v) € () and for all m € M. By the symmetric argument, we
can prove that v,, 2 w(w) for all (u,v) € p(7) and for all w € W. O

Proposition 4.3. If a solution ¢ satisfies Pareto optimality and individual
monotonicity, then for any v = (M, W,I1,x) such that [ M UW| £ 3, ¢(7) C
S(7).

Proof. If M UW| = 2, the conclusion is obvious. Then, let us consider the case
of [M UW| = 3. Without loss of generality, we may assume that M = {m,, m;}
and W = {w,}. Let (u,v) € ¢(7) and g a matching compatible with it. If
c(p) = 9, then for any (m,w), lI(m,w) £ n(m) + m(w) = %, + v, and hence
(u,v) is stable. Thus, we only need to consider the case of c(12) # 9. Without loss
of generality, we assume that (m;,w;) € ¢(t), which implies that p(ms) = ms.
By way of contradiction, suppose that (u,v) is not stable. Because (u,v) is
individually rational, we must have u,,, + v,,, < II(m2,w;). Let us define,

o = {Il(my,wy) + 7(m2)} — {Il(ma, ;) + n(m;)} 2 0,

and for each € > 0, #%(m,;) = w(mlj + o + £ and 7°(a) = w(a) for any other
a € MUW. Foreach £ > 0, let v* = (M, W, IL, n¢). By individual monotonicity,
for each £ >.0, there exists (u%,v°) € ¢(7°) such that uf, 2 um,. In 9%, the
matching g’ = {(m2,w),m1} is uniquely optimal and hence it is compatible
with (u®,v®). Therefore,
Up, + vy, = II{mg, w,) and
U, + Upy, + Vg, = [l(ma, wy) + 7% (m1)

= Il(mz,w,) + w(m1)+ 0o +¢€

= [I(my,w1) + w(m2) + ¢

= uml +u7n2 +'Uw| +€'



Then, it follows that um, + Vw, + € 2 u%,, + v, = [I(maz,wn) for any £ > 0.
But, because um, + Vw, < II(m2,wy), for sufficiently small £ > 0,

I(m2, w1) > Um, + Vw, + € 2 [I(mg, wy),
which is a contradiction. This completes the proof. a

Proposition 4.4. If a solution ¢ satisfies Pareto optimality, individual mono-
tonicity and pairwise monotonicity, then for any v = (M, W,IL, 7) with |M| =
[Wi=2, p(y) C S(7)-

Proof. Let (u,v) € ¢(7) and x an optimal matching compatible with it. If
c(p) = 9, then it is obvious that (u,v) € S(v). Without loss of generality, we
may assume that (my,w;) € ¢(g). By way of contradiction, suppose that (u,v)
is not stable. Because of the individual rationality of ¢, there exists a pair
(m,w) € M x W such that um, + vy < [I{m,w). If this pair (m,w) is (m2, ws),

Z (m,w) + E 7(a) = tm, + Vuwy + Umy + Vuy
(m,w)€c(n) a€a(p)
< H(mla wl) + H(mﬁ’w2)s

which contradicts the optimality of z. Therefore, without loss of generality, let
us assume that,

Um, + Vuw, < (Mg, wa).

We define
o= Z l'I(m, w) + Z 11'(0.) - {H(mhw2) + H(m2’w1)}

(mw)€c(x) a€s(p)
and for each € > 0, define an assignment game ¥* = (M, W, II¢, 7) by,
[ (m, w) = O(m,w)+o+e if (m,w) = (me2,w),
II(m, w) otherwise.

For each £ > 0, by pairwise monotonicity, there exists (u%,v°) € ¢(7°) such
that,

L4 (4
U, + Ve, 2 Umy + Vi

Since m(my) + m(wz) £ Um, + Vwy < I(my,w2), the matching x' given by
{(my, w2), (m2,w)} is uniquely optimal in 4°. Therefore, by Pareto optimality,

uf,, +v5, = °(m;, we) = l(my, w)
g, + 05, =I(mg,w1) = I(mg, 1) + o +¢
Hence,
Ul + VG, + Up, + 05, = (my, wo) + M(ma, wn) +0+¢

= Z I(m,w) + Z w(a) +¢
(m,w)€c(x) a€s(p)
= Um, + Vwy + Umy +Vw, +€
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Because uf,, + v, 2 Um, + Vw,, we must have,
Uy, +v5, S um, +v, +e.
Since Um, + Vuw, < I(my,w2), for sufficiently small £ > 0,
(my, ws) = u,, +v5, S Um, +Vu, +€ < I(my, w2),
which is a contradiction. Therefore, it has been shown that (z,v) € S(y). O

Thus, we have proved

Proposition 4.5. If a solution ¢ satisfies Pareto optimality, individual mono-
tonicity and pairwise monotonicity, then for eachy = (M, W,II, 7) with |M| < 2
and [W| £ 2, ¢(7) E S(7)-

The following proposition is an immediate consequence of proposition 4.5.

Proposition 4.8. If a solution ¢ satisfies Pareto optimality, consistency, indi-
vidual monotonicity and pairwise monotonicity, then it is a subcorrespondence
of the core.

Proof. Let (u,v) € ¢(7). For each subgame 7 of 7y at (u,v) such that |[M’'| £
2 and |W'| £ 2, (upmr,vw) € @(7') by consistency. Then, it follows from
proposition 4.5 that (uar,vw) € S(7'). Because the core satisfies converse
consistency, we may conclude that (u,v) € S(v). This completes the proof. O

We are at last in a position to present the main result of this section.

Theorem 4.1. The core is the unique solution satisfying Pareto optimality,
consistency, individual monotonicity and pairwise monotonicity.

Proof. Let (u,v) € S(v), where ¥ = (M, W,I1,7) and g a matching compatible
with (u,v). We introduce a2 new man m’ and a new woman »’ into < such that,

(1) O(m',w) = vy, for each w e W,
(2) O(m,w') = u,, for each m € M,
(3) II(m',w') = w(m’) = x(w') = 0.

Let 4/ be the assignment game obtained in this way. Then, it is easy to see
that (u,0,v,0) € RMY{m'} x RWU{='} ig stable in 4 and the matching p' =
p U {m',w'} is compatible with (u,0,v,0). Suppose that (u’,»') is another
stable pay-off vector in 4’. By corollary 8.7 in Roth and Sotomayor (1990), u’
is compatible with (u/,v’). Therefore, u},, = v}, = 0 and ul, 2 u,, for each
m € M and v, 2 v, for each w € W. If one of these inequalities is strict, this
contradicts the Pareto optimality of (u,0,v,0). Thus, (v/,v') = (»,0,v,0). In
other words, (u,0,v,0) is the unique stable pay-off vector in 4. If ¢ satisfies the
axioms, then by proposition 4.6, it is a subcorrespondence of the core. Hence,
¢() = {(u,0,v,0)}. By consistency, (u,v) € ¢(y). Therefore, it has been
shown that S(v) C ¢(v) for each 4 € I". By proposition 4.6, we may conclude
that S = ¢. This completes the proof. a

Next, let us establish the logical independence of the axioms in theorem 4.1.
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Example 4.1 (Deleting PO). Let ¢* be the solution which associates with
each assignment game the set of all feasible and individually rational pay-off
vectors. Because this is essentially equal to the solution in example 5 in Sasaki
(1995), it is not difficult to check [CONS] and [PMON]. In order to check
[IMON], let v = (M, W,II,x) and o = (M, W,II, %’) be such that #'(m) 2 n(m)
and 7'(a) = w(a) for each a # m. For each (u,v) € pA(7), if um 2 7'(m),
then (u,v) € ¢(9’) and thus the desired condition is satisfied. Hence, let
us consider the case of 7'(m) > u,,. In this case, for any (v',v) € (),
ul, 2 7'(m) > um. Therefore, it has been shown that * satisfies IMON].

Example 4.2 (Deleting CONS). Let ¢? be the solution which differs from
the core only for assignment games 7 such that |[M| = |[W| =1 and H(m,w) >
w(m) + w(w). For such games 7, the set ¢®(7) consists of a single point
(4m, 7(w)) € R x R where u,, = II(m,w) — m(w). Because this is essen-
tially equal to the solution in example 1 in Sasaki (1995), it is not difficult
to show that [PO] and [PMON)] are satisfied. In order to check [IMON], let v =
({m}, {w}, M(m, w), 7(m), (w)) and v = ({m}, {w}, I(m, w), #'(m), x(m)) such
that [I(m, w) > w(m) + x(w) and #'(m) 2 x(m). If I(m,w) > ='(m) + m(w),
then (u,v) € p(v') for any (u,v) € ¢(y). Hence, the desired condition is ob-
tained. Suppose that #'(m) + w(w) 2 II(m,w). Then, for any (u’,v') € ¢(v'),
u!, = '(m) 2 (m,w) — 7(w) = up, for any (u,v) € p(). This shows that 7
satisfies [[MON].

Example 4.3 (Deleting PMON). Let ¢€ be the solution which associates
with each 7 the set of all Pareto optimal and individually rational pay-off vectors.
This is essentially equal to the solution in example 6 in Sasaki (1995) so that it
is not difficult to show [PO] and [CONS]. Moreover, by an analogous argument
as in example 4.1, it is easy to see that ¢ satisfies [IMON].

Example 4.4 (Deleting IMON). Let ¢ be defined as the one in example
2.1. Then, by an analogous way, we may prove that [PO] [CONS] and [PMON]
are satisfied.

As the final remark, we will show that theorem 3.1 extends to I,

Theorem 4.2. The core is the unique solution on I satisfying Pareto optimal-
iy, consistency, population monotonicity and pairwise monotonicity.

Proof. Tt is easy to see that the core satisfies the axioms. By the same argument
as in the proof of proposition 3.2, Pareto optimality and population monotonic-
ity imply individual rationality. In proposition 4.4, individual monotonicity can
be replaced by individual rationality. Then, by the same argument as in the
proof of theorem 3.2, we may prove that a solution satisfying the axioms is a
subcorrespondence of the core if |M| < 2 and |W| £ 2. Hence, by consistency
and the converse consistency of the core, the solution set is a subset of the core
for all assignment games. Therefore, the conclusion follows from the consistency
axiom. ) m]

We thus have obtained

Theorem 4.3. Under Pareto optimality, consistency and pairwise monotonic-
ity, population monotonicily is equivalent to individual monotonicity.

12



References.

Gale D, Shapley L (1962) College admissions and the stability of marriage.
American Mathematical Monthly 69: 9-15

Roth A, Sotomayor M (1990) Two-sided matching: A study in game-theoretic
modeling and analysis. Cambridge University Press Cambridge UK

Sasaki, H (1995) Consistency and monotonicity in assignment problems. Inter-
national Journal of Game Theory 24: 373-397

Shapley L, Shubik M (1972) The assignment game I: The core. International
Journal of Game Theory 1: 111-130

Thomson, W (1987) Monotonicity of bargaining solutions with respect to the
disagreement point. Journal of Economic Theory 42: 50-58

Thomson, W (1995) Population-monotonic allocation rules, chapter 4 in Social
Choice, Welfare, and Ethis (Barnett, W, Moulin, H, Sales, M, Schofield, N)
Cambridge University Press: 79-124

Toda, M (1993) Consistency and its converse in assignment problems, mimeo.

Toda, M (2001) Monotonicity and consistency in matching markets, mimeo.

13



