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Difference Equations Solution of Exchange Rate Dynamics®

I. Introduction

This paper focuses on one central question of an appropriate and consistent
theoretical as well as empirical model of a reduced form of the rational
expectations version of the asset market approach to the exchange rate
determination. There has existed a clear inconsistency between models in the
asset market approach to the exchange rate determination in the literature. For
example, according to the rational expectations version of the flexible-price
monetary model, the reduced form of the exchange rate is theoretically shown to
depend on the discounted present values of the vector of the expected forcing
variables in infinite future (e.g., Isard (1995), chapter 7). However, the empirical
versions of the model have usually been formulated by an AR or a VAR
representation using only the past (or predetermined) forcing variables, without
discussing any explicit rationale for using them instead of the future expected
forcing variables (e.g., Isard (1995), chapter 8).

This inconsistency motivated me to reconsider rational expectations versions
of the asset market approach to the exchange rate determination. In order to
pursue my motivation. I took up the so‘called “sticky-price” monetary model (which
has also been known as the “overshooting” model in the exchange rate literature)
because of the following two reasons. First of all, this essentially dynamic model

is a simultaneous equations system with the price level and the exchange rate as

This is an outgrowth of a graduate independent seminar on Advanced Macroeconomics at
Waseda University. | have benefited from stimulating discussions with and constructive
comments from the participating graduate students, especially Kenshi Takeda, Yoshiaki
Nagai, and Takayuki Tsuruga. An earlier version of this paper was presented at the 1998
SEA meeting at Baltimore. I would like to thank Felix Rioja and the participants of the
meeting for critical comments and suggestions. [ would also like to extend my appreciation
to Professor E. Kwan Choi for various critical but constructive comments and suggestions that
have altered and improved the paper substantially. This paper was hardly finalized without
Professor Bjarne S. Jensen's encouraging comments and constructive suggestions. The usual
disclaimer applies with respect to all remaining errors. This research was financed in part
by the Waseda University Grant for Special Research Projects in 1998-99, and the Seimeikai
Foundation.



the endogenous variables. Thus, once the original equilibrium point is disturbed
by some shock, the time paths of adjustment towards the new equilibrium can be
easily traced dynamically. Secondly, if the price level is “sticky” as this model
explicitly assumes, then the simultaneous difference equations system is an
alternative way for formulation to reconsider the problem at hand.

In economics, dynamic problems have been formulated either by a continuous
or discrete form, but unfortunately, the relationships between them, particularly
the characteristics of such issues as dynamic solution paths, stability properties,
etc, have seldom been discussed seriously in the literature.

The "sticky-price” monetary model, which was originally formulated in a
continuous system, is reformulated in a discrete system in this paper. Therefore,
the relationship between the two alternative methods of formulation inevitably
becomes another main concern. We will discuss and compare, explicitly or
implicitly, the two methods of dynamic formulation and the consequential
characteristics with respect to the solutions.

It will be shown that the “forward-looking” characteristic of the theoretical
solution to the flexible-price monetary model is not replicated here,! but on the
contrary, the “backward-looking” characteristic is derived from our solutions.
This characteristic of the solution definitely alleviates empirical studies, simply
* because our solution validates the empirical models formulated to estimate the
exchange rate with an AR or a VAR model using only the exogenous and
predetermined variables.

Moreover, our discrete dynamic model is‘superior to the corresponding
continuous "overshooting” model due to the following reasons: First of all, our
solutions neither exhibit the empirically unfounded overshooting behaviour of the

exchange rate, nor have saddle-point stability (which means that the model is

1 This forward-looking characteristic, requiring observations of the expected future forcing
variables, has been particularly troublesome for empirical studies, simply because
expectations are unobservable. Thus, arbitrariness comes in when the asset market models
are estimated by replacing those expectations with observed or proxy variables.



unstable). Secondly, the exchange rate movement is shown to follow an
oscillatory path in the case of asymptotic stability. This characteristic seems to
replicate the actual movement of the exchange rate that is closely approximated by
a random walk process. .

The organization of this paper is as follows. In section I, an alternative
formulation of the "sticky-price” monetary model is represented by a discrete
dynamic system, and it is shown that quite a different but a larger set of solutions
is derived from the formulation. In section II, some implications for the
characteristics of the model and also for the exchange rate are considered in detail.

Section IV concludes the paper.
I. The Model

In order to emphasize our purpose of this paper mentioned at the outset with
greater clarification, let me begin with the so-called “sticky-price” monetary model
of exchange rate determination due originally to Dornbusch (1976).2 The model
was extended by Frenkel and Rodoriguez (1982) and Akiba (1996) to accommodate
different degrees of capital mobility. The model adopted here, however, looks
more closely resemblant to Taylor's (1995a,b) version, simply because it is not
“overshooting”, but the exchange rate dynamics is our focal point.? Following
them, let p, y, d, and m represent natural logarithms of the national price level,
aggregate output, aggregate demand, and the money supply, respectively, and let i
denote the nominal rate of interest. The logarithm of the spot exchange rate

(defined as number of units of domestic currency needed in order to purchase one

2 This model is also known as the "overshooting" monetary model (Frankel (1983), p.89), because
it emphasized that sluggish adjustment of national price levels could help explain the
phenomenon of exchange rate "overshooting” - that is, a tendency for the exchange rate to
jump into one direction in response to news and subsequently to retreat at least part of the
way back to its initial position (Isard (1995), p.118).

3 Obstfeld and Rogoff (1995, p.644) wrote that “Given the lack of empirical support for the
overshooting hypothesis,..., it is unclear that this should be regarded as an essential property
of an exchange rate model.” They also wrote in another place that “the evidence in support of
overshooting is thin indeed” (Obstfeld and Rogoff (1996), p.678).
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unit of foreign currency) is denoted by s. The foreign variables are identified with

an asterisk (*), and the expectations by superscript (e). The model is succinetly

summarized as follows:

d= vyy- a(i—p;)+ 8(s+p*-p) (1)
m-p= ¢y - i/2 (2)
p=06(d-y)+ ¢, (8>0) (3)
S.e=i-i*+ £g (4)

Equation (1) defines the aggregate demand for goods and services, which is
formulated to depend on the aggregate production level, the real rate of interest,
and the (log linearized) real exchange rate. v, 8, and o are all assumed as
positive parameters, and & > 0 signifies that the so-called Marshall-Lerner
condition is satisfied in our model.  Equation (2) is a simplified portfolioc balance
schedule, where ¢ and A1 are also assumed as positive parameters.* Equations
(3) and (4) describe the dynamics of the model. The price level is sluggishly
adjusted (>x >0) according to the excess demand for goods and services (d-y),
while the spot exchange rate is instantaneously adjusted to the international
interest rate differential.

e pand ¢ are iid. disturbance terms representing the unanticipated
shocks to the commodity and the capital market, respectively. To be more
specific, they are assumed to be white noise. Assuming the perfect foresight
version of rational expectations, the expected values of changes in p and s are

replaced by the actually realized values, respectively, yields:

4 Because i is not logarithmically transformed, (1/ 1) is the semi-elasticity of demand for money
with respect to the nominal rate of interest.
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where Qo= -1m+i ¢y-i'+e,and Q= 6(y-0 1 ¢-1)y+6 0 Am+8 §p'+ep.

Denoting the Jacobian of equation (5) by H, o =trace H and § =det H, the
characteristic equation is expressed as:

p2- ap + B =0 (6)
where p is the eigenvalue. Although Daniel (1989) imposed a plausible
assumption of 1-8 o0 >¢ 8§ (>0) from an economics point of view, we implicitly
impose an even weaker condition of 1- 8§ ¢ >0. This guarantees that both « and
B are negative. The equilibrium point is not asymptotically stable, because 8
is negative, although « satisfies ¢ <0 (Takayama (1994), p.407). However, the
fact that 8 < 0 means that the equilibrium is a saddle point (Takayama (1994),
theorem 7.4).5

The exchange rate is a “jump variable” (Taylor (1995a,b)) of the model that
compensates for stickiness in other variables, includin.g another endogenous
variable, the price level. Thus, exchange rate expectations are related to
expectations about other forcing variables in a forward-looking manner, while the
price level behaves sticky in a backward-looking manner (Isard (1995), Taylor

(1995a,b), MacDonald and Taylor (1992)). These two endogenous variables of the
model are considered to be different in nature.

Therefore, it is not necessarily considered to be an appropriate way to
formulate the model by a differential equations system (5). An alternative way
for formulating the model is by a difference equations system. Although it could

be argued that the exchange rate behaves rather smoothly compared to the price



level, so that the discrete-time framework also has some drawbacks, an attempt to
do so has been made at least for the exchange rate (Isard (1995) chapters 5,7, and
8). In fact, it is well known that the rational expectations solution of the
discrete-time flexible price monetary model is expressed as the discounted present
value of the vector of the expected forcing variables in infinite future (Isard (1995),
p.127; Taylor (1995), p.22; MacDonald and Taylor (1992), p.5). However, if the
exchange rate behavior is formulated with the price level behavior in a
simultaneous equation system, this forward-looking characteristic of expectations
seems inappropriate. The reason for it lies in a simple observed fact that the
price level behaves quite sticky in the short and medium runs.

If the continuous planar system (5) is, disregarding (Qs, Qp), compactly

denoted by vectors and a matrix as:

x = Hx (39

then it is known that the system (5') has an exact discrete analogue as:

Xir1 = eHxe | tE No (7)
where x is the column vector (s, p)', No is a set of non-negative integers, and el is
called the exponential matrix.6

However, because the determinant of eH is always positive (e.g., Jensen
(1994)), p.223), the family of solutions to (7) is clearly only a subset of those to the
discrete dynamic system:

xe+1 = Hxe ' (8)

where, e.g., the determinant of H, i.e., 8, is not restricted to be positive.

5 The two eigenvalues are shown to be p 1<0<pa. The eigenvector for the stable eigenvalue
p1'is shown to be ¢(1, p1/1) where ¢ is an arbitrary constant. Thus, the convergence
path is represented by the stable arm s-so=(1 / p 1)(p-po), where so and po are the equilibrium
values.

-8 Bee, e.g., Cesari (1963), Sec.2.1 (pp.14-18), Guckenheimer and Holmes (1983), Sec. 1.4
(pp.16-22), Jensen (1994), Sec.13.4 (pp.288-291).
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To achieve an analogy more general than that between (5') and (7), we must

look for a certain coefficient matrix of differential equations system:

x =Lx = (log H) x (5")
that corresponds to the coefficient matrix of the difference equations system (8),
viz.:
xe+1 = elxe = elogHx, = Hx: (89

This is the exact discrete analogue of the continuous planar system (5"). The
matrix L, which is equal to the matrix log H, symbolizes the so-called logarithmic
matrix of H (e.g., Cesari (1963), p.18, or Jensen (1994), p.288).

1t should be noted at this stage that the coefficient matrices in equations (5)
and (8) are deliberately selected to be the same for the following reasons. First of
all, by doing so, we can directly compare the differences in the behaviour between
the two systems, i.e., the continuous dynamic system (5) and the discrete dynamic
system. Secondly, it can be shown that we will obtain even richer economic
insights from a discrete dynamic system (8) than from the corresponding
continuous dynamic system (5), as will be made clearer in the latter part of this
and the next sections. For example, we will observe that the discrete dynamic
system has an obvious advantage of being able to display asymptotic stability if the
underlying parameters are restricted within a certain area. In striking contrast
with this, the continuous dynamic system (5) exhibits saddle-point stability as
mentioned earlier, and the system is not asymptotically stable, but unstable (e.g.,
Sanchez et al. (1988), p.493).

In describing the behavior of the solutions and the trajectory geometry of the
discrete dynamic system (8), it is convenient to define the ratio variable:

re = pise, s:+0 )



This ratio r. is first used to determine invariant subspaces in the phase plane.
Using the definition (9), the system of equations (8) is rewritten as:

s =50+ A n)=sf() (10.1)

8¢ ) 8(d+o0 1)

= r 102
60 1o | & (102

D1=5¢

Next, the linear fractional recurrence equation of re+1 is expressed as:

=t <0, o0 an

Equation (11) represents rectangular hyperbolas with the center (0, - 8 (6 +
6 A) A (1-8 ¢)) and the constant -8/12 =6 §/1(1-6 ¢). Thus, a stationary
ratio solution of the difference equation is derived from:

Ari=rim-re=q(r) - re (12)

and is determined by the real roots of the polynomial:

o8 6(0+a 1)
l1-¢g 8 I-c 0

r-1r2=0 (+0) (13)

Equation (13) corresponds exactly to the so-called director function of the
corresponding continuous linear system. This second-order polynomial
(parabola) has a discriminant, conveniently designated by 4A 2, and so A is
defined by:

2

1[9(6"‘01)

2—_
4 4 1-fg¢

(14)

2 A0 =l[9(6+ol)
Lo 4 b0

It was shown that B < O because 1-6§ ¢ > 0 as assumed earlier, and this
guarantees that A2>0. Thus, the director roots (o i) of (13) and directrix values

(f( 0 1)) of (10.1) and (10.2) are given by:



1| 6(6+0 2
p1=KoD=4 pr=- “[(—0——)}'-[& (15.1)

2 1-6 ¢
1/ 8(d+o 1)
= = | T 152
p2=Hp2)=21 p2 2[ 0o }A (15.2)

and thus, equation (14) implies that:
prp2=f (= dtH)<0 (153)
The general solutions x: = (s, pv), t€ No, of the discrete linear dynamic
system (8) for A2> 0 are given as (e.g., Jensen (1994), p.283):
s=Cpl+Gud (16.1)
p=Cipu'+Gpapd (162)

where C; and C: are arbitrary real constants. To determine these constants by an

elimination procedure in a systematic way, let us introduce:

l[ 6(5+o e)]+A

1 21 1 2 1-¢ 6
{=2—ln|l—|==in = a”n
2" | pal 2 1[8(6*-09)} A
2 l-g 6 !

In the Appendix it is shown that { in equation (17) is negative. The negativity
of ¢, together with the fact that det H = 8 <0 and trace H= o <0, means that the
entire family of solutions, x. = (s, pt)', t€ No,solving the discrete linear dynamic

system (8) with initial values (so, po) ER? at t=0 is given by (Jensen (1994),

pp.284-8):
B(6+o A A
o| cog S IO 2 G = sim({ )
5 2 2A(-6 o) A S
=|g| (18.1)
ol 80 o oL o0 ) it |\P
AC-6 0" 2800 o) K¢
for t=2n, n€ No, and:
8(6+c A A
P e RN 2 car( 1
Sf]g]B|z A(l"e 0) A K (l&’))
8% o T ALk D SN )
A(-00) 2A(-9 o) ¢



for t=2n+1, n€ Ny, where:
1 1
cos({ 1)55(9“*‘8“’) and sink( { 1)5’2‘(8"-8"’)) (19

are the hyperbolic cosine and the hyperbolic sine functions.
Invoking Theorem 1 of Jensen (1994, p.289), the governing matrix , L=1og H,
of the correlated continuous linear dynamic system (5) which embeds the solution

(18.1)-(18.2) into phase curves of the discrete non-singular dynamic system (8) is

given as:
(_xlogm“c 8(5+0 1) ¢
2 1-
tog H= 2AQ-6 a) A (20)
| Lo Lt g1 £ 880 1)
\ AC-0 o) 2P TS 008 o

The system of trajectories obtained from the solutions (s, pe)’ in (18.1)-(18.2)
describes the global phase portrait of the discrete non-singular dynamic system (8).
The traditional necessary and sufficient conditions for solutions of linear
differential equations is the characteristic roots being less than one in absolute
value, in which case the solutions converge to a stationary point from any initial
values over time. The corresponding discrete counterpart, ensuring global
asymptotic stability of the solutions (18.1)-(18.2) is (i) trace (log H) < 0, and (ii) det
(log H) > 0.

According to Lemma 1 of Jensen (1994, p.291), these conditions are
equivalent to: 7

(i) B <1,(ii) B>-1+ca, and (iii) B> -1-a (21)

" The derivation of the last two conditions (ii) and (iii) is briefly sketched as follows: Because
of (15-1),(15-2) and (15-3), llog H| = logl 1 ,|-logl s ;| = logl- 8 (6 0 +2)/2(1-8 ¢ ) + Al-logl8(d o
+*2)/2(1-8 o) - Al=logla/2+ Al-logla/2- A|>0. To satisfy the last inequality together with
(i) trace (log H) < 0 (which reduces to (i) 8 < 1), we only need to consider | i,/ <0 and |,/ < 0. After
eliminating superfluous inequalities, these restrictions reduce to (ii) B> -1+ec, and (iii) 8> -1-c.
For the complete proof, see Jensen (1994), pp.291.2.
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In the discussion of saddle point stability of (5), we have confirmed that o <0and
B < 0, so that the first condition (i) in (21) is satisfied. Accordingly, the second
and the third parts of (21) remain effective restrictions. Moreover, because both
o« and B are negative, only the last restriction (iii) turns out to be an effective
restriction, which can be rewritten as:
1/6 >(A+1)(d +a) (22

Thus, we have derived an important restriction (22) for the parameters of the
underlying model, if the discrete linear dynamic system (8) exhibits global
asymptotic stability. Equation (22) can be regarded as an equation of hyperbola
with respect to A and &, given 6 and o, with two asymptotes, A=-1and &
=-¢. Asymptotic stability is assumhed if the parameters happen to be restricted

within an open set depicted in Figure 1 (area denoted as (a)).

e e o e e e gk e de ke e e de de e de de e de ke ke dede ke ke ke

Insert Figure 1 around here
Je Je e Je e e v Je Je I Fe Fr I Je de Je Jo e K e e de e de e e

It is straightforward to confirm that the larger the value of 8 and/or o, the
narrower the area (a), so that the dynamic system tends not to exhibit global
asymptotic stability. Because 6 and o represent the sensitivity of inflation
with respect to aggregate excess demand and of investment with respect to the real
rate of interest, respectively, the above finding has economically plausible
implications for the stability of the underlying open economy macro model. For
example, if an economy becomes more sensitive to excess aggregate demand than
before (an increase in 6), the resultant degree of increase in the price level is
higher. The larger increase in p: has some destabilizing effects on exchange rate
st, possibly through a decrease in exports but an increase in imports from abroad.
Thus, the increase in 6 makes the economy unstable through disequilibrium both

in the internal and the external sectors.
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As we have just seen, the signs of trace (log H) and det (log H) give crucially
important information about whether the solutions (18.1)-(18.2) exhibit

convergence to or divergence from a stationary value. In addition, the sign of A

% distinguishes between oscillatory and non-oscillatory behavior of the solutions.
Also the sign of trace H (= a) appears in the off diagonal elements of the log (H)
matrices through the value of {, and thus affects the non-oscillatory values of the
solutions. Finally, the sign of det (H)(= 8) is also important for the phase
portrait of non-oscillatory solutions.

If we combine the information of the signs of A2>0, <0, and 8 <0 in our
model with the information of the signs of det (log H) and trace (log H) given in
Figure 1, three possible behaviors of solutions can be deduced (e.g., Jensen (1994),
p-293). The first possible case is a combination of det (log H)>0 and trace (log
H)<0 that satisfies the global asymptotic stability condition mentioned earlier. The
solutions are reflected in p i-directrix and converging along the parabolic
boundary curves. The solutions in this case are generated by the combination of
parameters restricted in the area (a) of Figure 1. Although the exact shape of the

trajectory depends on the parameter values, its general shape is exemplified in

Figure 2,

dekdhhhdhddddhthrhhdiehkhdhiii

Insert Figure 2 around here
dkdekhdhhihkhderbhhhirhdekddeher ikt

In the second and the third possible cases, the solutions are also reflected in
p 1-directrix but diverging. If det (log H) is negative, but trace (log H) is of either

sign, the solutions diverge along the hyperbolic boundary curves. The parameters

are restricted in the areas (b) and (c) in Figure 1.
On the other hand, other diverging solutions reflected also inp 1-directrix

are obtained when both of det (log H) and trace (log H) are positive. The solutions

12



diverge along the parabolic boundary curves in this case. A combination of

parameter values restricted in the area (d) in Figure 1 gives rise to this solutions.®

M. Implications for Exchange Rates

This section explores some important implications derived from the solutions
(18.1)-(18.2), compared with those obtained from the differential equations version
of the model.

First of all, st and p: are jointly determined variables depending on the same
sets of underlying variables, although their dynamic time paths are apparently
different.-

Secondly, there is a basic difference in stability property. Although the
differential equation version is only saddle-point stable, and thus the equilibrium
state is unstable (see Sanchez et al (1988), p.493), the difference equations version
(8) is slightly more involved. We have seen that solutions of the price level and
the exchange rate in our discrete nonsingular linear system are either converging
or diverging, depending on the parameter values in our underlying model. This
implies that, because there is no compelling evidence that the actual exchange rate
series diverge from the stationary values in the recent floating period, the actual
exchange rate as the relative price of two national monies tends to converge to the
stationary value over time. Then, it is inferred that the solutions, given in
(18.1)-(18.2) are oscillating, but the parameter values are restricted within the
open region comprised by (1 +1)(8 +0)<1/6, 1> 0, and &> 0, implying that the

solutions have global asymptotic stability.

8 The exact curves cannot be depicted because the parameters (1,8, 6, and o) are arbitrary
constants, and therefore only the signsof «,8,r10i, &,and A are important to determine
the signs of det (log H) and trace (log H) for qualitative behavior of the solutions. However,
the general forms of the trajectory in the three cases explained above are similar to Fig. 3.7,
3.8, and 3.9 in Jensen (1994, p.2986).
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Thirdly, while the exchange rate in the differential equations version (5) is
known to exhibit the so-called "overshooting” phenomenon, the corresponding
solution of the exchange rate in the difference equations version (8) behaves, when
restricted by global asymptotic stability, to reflect in z i-directrix and to converge
along the parabolic boundary curves.

The stability property and the "overshooting” phenomenon of the exchange
rate mentioned above are not separate, but stem essentially from the same
characteristics of the coefficient matrix H in equation (5). Element (1,1) of H is
zero, which exhibits a quite peculiar characteristic of the "overshooting” model.
It signifies that the current spot exchange rate has nothing to do with the change
in the spot exchange rate, and this seems to be quite implausible from an economic
point of view.

Fourthly, and related to the first point, the exchange rate in the differential
equations version monotonically approaches to the stationary value after
"overshooting”. In contrast, in the difference equations version (8), it approaches
to the stationary value with oscillation. These "alternating” solutions are
admissible only in the discrete dynamic system.

One of the well-documented empirical regularities observed from the recent
floating exchange rate system is the fact that the exchange rates have been very
much volatile, with sporadic large jumps in the short-run. As far as the author
knows, two explanations have been proposed to account for such a stylized fact.
One is a more or less practically oriented compromise, and the other seems to be a
theoretical curiosity.

On the one hand, it was demonstrated by Meese and Rogoff (1983a,b) that the
out-of-sample forecasting performance of some structural models, including the
"sticky-price” monetary model, was outperformed by a simple random walk model

for a time horizon of up to twelve months. Although the exchange rate behaviour

14



in the short-run seems to be closely approximated by a random walk procesé, the
Meese-Rogoff conclusion does not mean that the exchange rates actually follow
random walk processes. In fact, as Moose (2000, chapter 1) summarizes, the
empirical evidence on the hypothesis that the exchange rate follows a random walk
process is not completely supportive.

On the other hand, because of the observed fact that the expectations about
the future exchange rates have not been formed rationally, De Grauwe and
Dewachter (1992,1993) extended the "stick-price” monetary model with two classes
of speculators in an ad hoc manner. The first are chartists who use past history of
exchange rates to form expectations of future spot rates. The second group of
speculators are fundamentalists who calculate the equilibrium exchange rate as
given by the model and forecast the future spot rates based on the economic
fundamentals. Based on this framework, De Grauwe and Dewachter theoretically
demonstrated that the behaviour of the exchange rate becomes chaotic in the
gituation where the chartists dominate the market.

In contrast to these two explanations, our solutions are definitely superior
for the following reasons. First, our solutions are derived from a celebrated
"sticky-price" monetary model of the exchange rate determination and thus are
based on a clear economic theory, while the random walk hypothesis provides no
clear-cut explanation of where such randomness comes into the market in the first
place. Secondly, our solutions do not depend on such an ad hoc assumption as the
chaotic theory that there are two types of speculators, chartists and
fundamentalists, in the market. Therefore, thirdly, depending on a clear
economic model that is constructed on the behavioural equations of the price level
and the exchange rate, our solutions offer a superior explanation of why the
exchange rate approximately follow a random walk with little or no drift.

Fourthly, because our solutions are deterministic in nature (see eﬁuation (18)), the

15



empirical investigation is more easily implemented in either a form of time-series
or more conventional regression techniques based on the fundamentals in the
model. It is instructive to note that the reason why our exchange rate behaviour
looks similar to a random walk process in the case of asymptotic stability seems to
lie in the following fact. That is, the interaction between the adjustment in s and
pe is better treated in the discrete system (8) than in the corresponding continuous
. system (5), in the sense that the coefficient matrix in (20) is more symmetrical or
more even, compared with that in (5).8

Finally, and, for our present purposes most importantly, the rational
expectations solutions for st and p. in the discrete dynamic model (8) depend on the
underlying parameters of the model and the initial values, as clearly described in
solutions (18.1)-(18.2) and (19). It should be recalled that the discrete dynamic
system (8), compared with the continuous dynamic system (3), is constructed by
approximating the UIP condition (4) with the aid of perfect foresight, a special case
of rational expectations. As mentioned earlier, the rational expectations solution
for the flexible-price monetary model depends on the discounted values of the
vectors of the forcing variables in all future periods only.!?

In striking contrast with it, our solutions for the "stick-price” monetary
model with rational expectations were shown to depend on the contemporaneous
parameter values as well as the initial values of the endogenous variables.

The implication of this finding is particularly important for empirical
investigation. If the rational expectations solutions were to depend only on the
discounted present values of the vectors of the forcing variables in all future

periods which are essentially unobservable, i.e., "forward-looking" in nature, then

9 I owe this point to Professor Bjarne S. Jensen.

19 Rational bubbles are assumed away here. For rational bubbles and its related topics, see
Taylor (1895a, p.22; 1995b, pp.38-9), and MacDonald and Taylor (1992, pp.13-5).
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any atteﬁxpt to estimate and forecast the exchange rate is literally impossible
unless such unobservable variables are somehow arbitrarily replaced by proxy
variables. If one pushes such a regression ahead with approximated data, it in
turn results in bringing in a classical but serious problem of errors in variable, and
thus undermines the statistical tests involved. According to our solutions (18-1),
(18-2), and (19), any attempt at empirical investigation should be more
conventional, in the sense that both p: and st can be estimated jointly by a VAR
model with time-varying parameters. Thus, the "forward-looking" characteristic
of the flexible-price monetary model with rational expectations is not replicated
here, but a more ¢conventional "backward-looking” characteristic is obtained.
Before leaving this section, one more comment is in order. Obstfeld and
Rogoff (1995) showed that, making use of their two-country dynamic model based
on the intertemporal approach and the sticky-price Keynesian approach, the
exchange rate "jumps" immediately to its long-run level when prices are unable to
adjust in the short-run. Their assumption of the short-run stickiness of the price
level approximates 6 in our model with a smaller real number. It can be
easily observed that the smaller the value of 6, the wider the region (a) in Figure
1 that guarantees the global asymptotic stability. As our solutions (18.1)-
(18.2)(and also Figure 2) make clear, the exchange rate in this case is still very
likely to fluctuate, despite the inability of prices to adjust in the short-run. Thus,
our difference equations model depicts more plausible short-run behavior of the

exchange rate than theirs.

IV. Concluding Remarks
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This article develops an appropriate and consistent model of rational
expectations version of asset market approach to the exchange rate determination
for the purposes of both theoretical and empirical analysis. Using the discrete
dynamic formulation of the "sticky-price" monetary model, it was shown that both
the exchange rate and the price level are a function of a set of forcing variables that
extends from the present into the past only. This "backward-looking"
characteristic of our solutions is in striking contrast to the "forward-looking”
characteristic obtained from the modern theory of the asset market approach to
exchange rate determination. In the latter, the exchange rate is considered as a
“jump” variable (Isard (1995, p.118), Taylor (19954, p.230; 1995b, p.39) in one
direction, or a “forward-looking” variable, while the price level is not a jump but a
“backward-looking” variable (Kawai and Murase (1990, p.57), Stansfield and
Sutherland (1995, p.221)). In addition, our exchange rate solution with the
backward-looking characteristic also alleviates empirical investigation, simply
because the past data alone are sufficient for estimation.

According to Jensen (1994, section 13.6), the merits and factual choice
between discrete and continuous time modeling must be determined from
theoretical justifications as well'as from their empirical performance. We come to
the conclusion that, for exchange rate dynamics, our discrete dynamic
representation of the "sticky-price" version of the monetary model with rational
expectations is superior to the corresponding continuous version, known as the
"overshooting" model, for the following reasons. (1) Since the exchange rate and
the price level are different in nature, i.e., while the speed of adjustment of the
former is sufficiently swift, that of the latter is "sticky", the exchange rate
dynamics seem to be more legitimately formulated by a discrete system
theoretically. Moreover, theoretically speaking, the discrete dynamic model is

asymptotically stable, depending on the parameter values, whereas the continuous
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dynamic system is unstable (only saddle-point stable). And (2) while the
continuous dynamic system generates the empirically unfounded overshooting
behaviour of the exchange rate, the discrete dynamic system exhibits, in a certain
case, oscillatory movement that seems to replicate the actual movements closely
approximated by a random walk process. This also seems to be more realistic

empirically.

19



APPENDIX

This section provides a proof that { defined in equation (17) is negative (¢ <0).

Using equations (15.1) and (14), it is straightforward to proceed:

1 2
p,z__[m;‘)_]ﬂ =_1[ 8(8+0 l)]+J_1[ 0o )P Aba
2l 8o 2l 1-8aq 4l 1-6¢ | 164

The inside of the square root is rewritten as:
%[9(6'*-01)]2_*_180=[}_[6(6+o‘l)]+ 100 ]2_[6(6-*-01)] 700

1-9 ¢ 1-6 ¢ 2 1-9 ¢

i[ 9(6+o‘1)]+ 109 I’
< 2 1'60 1

-8 o
and thus:
1[8(6'*'01) 1[“6*01)] 1{9(64‘01)] (xea i
— A < | T/ | +{ = +
2 1-8 g 2 1-8 ¢ 2 1-9 ¢ 1-8 ¢
Abo
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1-6 ¢ “2

Likewise, it can be shown that;

[9(6"‘01)] A=__1[ 9(5"'01)] \/
-6 ¢ 2 -6 ¢

1] 8¢8+a 2) [1[-9(5+01)]+ [260 }
2| 160 | 2| 160 160
V (a3)

Thus, (A-2) and (A-3) imply that { in equation (17) is:
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(d)

(A-1)(6-0)=1/6
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Ad=(1-6 0)/6
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Figure 1 Parameter regions for stability ‘
area (a) det (log H) > 0 and trace (log H) < 0

(b) det (log H) < 0 and trace (log H) <0
(c) det (log H) < 0 and trace (log H) > 0
(d) det (log H) > 0 and trace (log H) > 0



Figure 2  Stable Solutions
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