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Abstract

We study the process of iterated elimination of strictly dominated strategies and

inessential players from a finite strategic game, abbreviated as the IEDI process A

resulting finite sequence from this process is called a W-IEDI; and if all the dom-

inated strategies and inessential players are eliminated at each step, it is called

the IEDI. First, we show that any W-IEDI preserves Nash equilibrium (and many

other solution concepts). The second result, an extension of the order-independence

theorem, is that the IEDI is the shortest and smallest W-IEDI with the same result-

ing endgame. We have the third result about necessary and sufficient conditions on

possible shapes and lengths for IEDS’s to a given endgame. The conditions indicate

a great variety of sequences possibly generated by the IEDI process. We interpret

those results from the perspective of abstracting from social situations.

Key Words: Finite Strategic Form Games, Dominated Strategies, Inessential Play-

ers, Iterated Elimination, Order-Independence

1. Introduction

Elimination of dominated strategies is a basic notion in game theory, and its relation-

ships to other solution concepts such as rationalizability have been extensively discussed

(cf., Osborne-Rubinstein [15], and Maschler et al. [8]). Its nature, however, differs from

other solution theories: It suggests negatively what would/should not be played, while

other concepts suggest and predict what would/should be chosen in game situations.

In this paper, we study elimination of dominated strategies and of inessential play-

ers whose unilateral changes of strategies do not affect any player’s payoffs including
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his own. In this introduction, first, we describe this elimination process, and second

consider its implications from the perspective of abstracting a social/game situation.

1.1. Elimination process of dominated strategies and inessential players

We consider elimination of strictly dominated strategies and inessential players in finite

strategic form games, as well as their iterations. Elimination of dominated strategies

has a long history from Gale et al. [4], but also has been studied extensively recently.

We mention two results in the literature that are relevant to this paper.

One is the preservation theorem, presented in Maschler et al. [8], Theorem 4.35, that

Nash equilibria are faithfully preserved in the elimination process. The other result is

better known in the literature: The elimination process results in the same endgame

regardless of the order of elimination of dominated strategies. This order-independence

theorem was a kind of a folk theorem in the literature. A proof was given in Gilboa et

al. [5], and also by T. Börgers and M. Stegman around 1990 (see Börgers [3]). Apt [1],

[2] provide a comprehensive treatment of this theorem. First, we present generalizations

of these two results in our framework, allowing elimination of inessential players, too;

these are Theorem 2.1 (preservation) and Theorem 3.2 (smallest and shortest).

Then, we give another theorem on the possible shapes and lengths of sequences gen-

erated in the IEDI process leading to a given endgame, which is Theorem 4.1 (possible-

shape).

Elimination of inessential players is newly introduced in this paper: A player is

inessential iff his unilateral changes in strategies do not affect any players’ payoffs

including his own. We consider a possible finite sequence of games generated in the

IEDI process from a given game. Such a sequence is called a W-IEDI-sequence, or

W-IEDI for short, where each element of the sequence is generated from the previous

element by eliminations of dominated strategies and of inessential players. When all

dominated strategies and inessential players are eliminated at each step, we call such

a sequence an IEDI sequence, or IEDI for short. We are interested in the shapes and

lengths of such sequences as well as the resulting outcomes.

Elimination can be applied in several orders, but it is shown in Lemma 2.3 that one

particular order is more effective than the others. We take the order of elimination of

dominated strategies and then of inessential players.

The preservation result (Theorem 2.1) is simply obtained for any W-IEDI. Our

smallest-shortest result (Theorem 3.2) states that from any given game, the IEDI is the

shortest and smallest among all W-IEDI’s, and the resulting endgames are identical,

which is the order-independence mentioned above.

The third result (Theorem 4.1) describes possible shapes and lengths of the IEDI’s.

First, we derive a set of necessary conditions for a sequence being IEDI. It appears

far from sufficient conditions, but actually, they are sufficient in the sense that when
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Figure 1.1: Relevant and Irrelevant People

those are satisfied, we can construct a game so that the IEDI generated from it meets

them. For 2-person games, these conditions give specific information about the possible

IEDI’s, but for the games with more than 2 players, they are not very restrictive. Thus,

we find a large variety of IEDI’s (and W-IEDI’s).

1.2. Choices of Relevant Actions/Players in an Abstraction Process

A social situation is a complex system containing a lot of seemingly relevant and/or

irrelevant components, depending upon the perspective of a focus. We, social scientists,

focus on a target situation, by choosing relevant components and eliminating irrelevant

ones. The standard economics textbooks start with this methodological view:

“... An economic model or theory is a simplified representation of how the economy,

or parts of the economy, behave under particular conditions. In building a model,

economists do not try to explain every detail of the real world. Rather, they focus

on the most important influences on behavior because the real world is so complex”

(Thompson [17], p.10).

An analysis in game theory/economic theory, however, starts after such abstraction is

already completed. Our study can be viewed as a segment of this abstraction process;

assuming that a social situation is abstracted as strategic games, we focus on the iterated

elimination of dominated strategies and inessential players.

As described in Figure 1.1, our social world consists of many players, who are inter-

dependent upon each other. Some interdependencies are significant but many are not.

For example, the Battle of the Sexes is a 2-person game, while the corresponding social

situation may include other boys and girls. When we have the Battle of the Sexes as

an appropriate abstraction of the situation, we drop the other boys and girls. Let us

consider a 3-person extension of the Battle of the Sexes.
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Example 1.1 (Battle of the Sexes with the 2nd Boy). Consider the Battle of the

Sexes situation including boys 1 2 and a girl, 3 Each boy  = 1 2 has two strategies,

s1 s2 and girl 3 has four strategies, s31  s34 Boy 1 and girl 3 date at the boxing

arena (s11 = s31) or the cinema (s12 = s32) but make decisions independently. Now,

another boy, 2 enters to this scene: Girl 3 can date with player 2 in a different arena

(s21 = s33) or cinema (s22 = s34). When 1 and 3 consider their date, they would be

happy even if they fail to meet; player 2’ choice does not affect their payoffs at all. Also,

we assume that when 2 thinks about the case that 3 chooses dating with boy 1 boy 2

is indifferent between the arena and cinema. The same indifference is assumed for boy

1 when 3 chooses dating with 2 This indifference assumption is assumed in this paper,

but is possibly relaxed, which is discussed in Section 5.

A faithful description of the game is to have two 2× 4 matrices, since each of 1 and
2 has two strategies and 3 has four. Due to the assumption that each’s payoffs depend

only upon the result of dating, the payoff matrices are described as Tables 1.1 and 1.2.

The numbers in the parentheses in Table 1.1 are 2’s payoffs. The dating situation for 2

and 3 is parallel to that for 1 and 3; only player 3 is much less happy than dating with

player 1

Now, player 3’s two strategies s33 and s34 are dominated by s31 and s32We eliminate

those dominated strategies, and the resulting game is still a 3-person game. However,

player 2 is inessential in the sense that 3 thinks only about dating with 1 and player

2’s choice does not affect the players’ payoffs at all. Thus, we can eliminate him as an

inessential player, and get the Battle of the Sexes between 1 and 2

Table 1.1 Table 1.2

1\3 (2) s31 s32
s11 15,10 (−10) 5,5 (−5)
s12 5,5 (−5) 10,15 (−10)

2\3 (1) s33 s34
s21 15,1 (−10) 5,0 (−5)
s22 5,0 (−5) 10,2 (−10)

Our study of the elimination process can be interpreted from the inside player’s view

as well as the outside analyst’s view; the former interpretation requires a player’s un-

derstanding of a situation, particularly, upon, experiential beliefs/knowledge on the sit-

uation, which can be understood from the viewpoint of inductive game theory (Kaneko-

Kline [6]). However, this requires many restrictions on a player’s experiences and under-

standing about the situation. In this paper, we do not consider such restrictions; instead,

we take the outside analyst’s perspective, i.e., consider no restrictions on iterations of

eliminations of dominated strategies and inessential players.

The preservation result (Theorem 2.1) implies that eliminations of dominated strate-

gies and inessential players do not affect the Nash equilibrium analysis after abstraction.

The smallest-shortest result (Theorem 3.2) states that the iterated eliminations of the

all the dominated strategies and then that of inessential players are the most efficient
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process from the perspective of the lengths of generated sequences and set-theoretical

sizes of their components. However, this sequence is not necessarily the most efficient as

far as the number of preference comparisons are concerned, which is briefly mentioned

in Section 5. Finally, the possible-shape result (Theorem 4.1) suggests that behind the

abstracted game, there are vast number of possible social situations which result in the

same abstracted game.

The paper is organized as follows: Section 2 gives basic definitions of dominance, an

inessential player and some game reduction concepts. Also, we present the preservation

theorem. Section 3 defines the IEDI process, W-IEDI and IEDI sequences, and proves

our version of the order-dependence theorem. Section 4 gives and proves the possible-

shape theorem (Theorem 4.1). In Section 5, we return to our original motivation stated

above, and discuss the difficulties raised by our considerations from the viewpoint of

the outside analyst and that of an inside player.

2. Eliminations of Dominated Strategies and Inessential Players

We define three types of reductions of a game by elimination of dominated strategies

and of inessential players, but we show that one type is more effective than the other

two types. We show that the Nash equilibria is faithfully preserved in this process.

2.1. Basic definitions

Let  = ( {}∈  {}∈ ) be a finite strategic game, where  is a finite set of

players,  is a finite nonempty set of strategies, and  : Π∈ → R is a payoff

function for player  ∈ We allow  to be empty, in which case the game is the empty

game, denoted as ∅
We use the following notation: Let  be a subset of  Then, we may denote

 ∈  := Π∈ as ( ; −) where  = {}∈ and − = {}∈−  When
 = {} we write − for −{} and (; −) for ( ; −)

Let  be given, and  
0
 ∈ . We say that 

0
 dominates  in  iff (

0
; −) 

(; −) for all − ∈ − When  is dominated by some 
0
 we simply say that  is

dominated in 

We say that  is an inessential player in  iff for all  ∈ 

(; −) = (
0
; −) for all  

0
 ∈  and − ∈ − (2.1)

A choice by  does not affect any player’s payoffs including ’s own, provided the others’

strategies are arbitrarily fixed. We find a weaker version of this concept in Moulin [10];

he requires  to be  only. From the viewpoint of player ’s own decision making, once 

becomes inessential in this weak sense, he may stop thinking about his choice. However,
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his choice may still affect the others’ payoffs; in this case, ’s choice is still relevant to

them Some examples of inessential players are discussed below1.

We should be careful about the domains of the payoff functions when the player set

changes. In fact, (2.1) can be extended to an arbitrary set of inessential players, which

is stated in the following lemma.

Lemma 2.1. Let  be a set of inessential players. Then, for all  ∈ 

( ; −) = (
0
 ; −) for all   

0
 ∈  and − ∈ −  (2.2)

Proof. Let  = {1  } and  = {1  } for  = 1   Also, let  0 ∈ 
be arbitrarily fixed. We prove ( ; −) = (

0

; −) by induction on  =

1   Since  0 ∈  are arbitrary, for  =  this implies (2.2). The base case,

i.e.., (1 ; −1) = (
0
1
; −1) is obtained from (2.1). Suppose ( ; −) =

(
0

; −) Since  = ( ; −) = (+1 ; −+1) we have (+1 ; −+1) =

( ; −)Applying (2.1) to (0 ; −) we have (
0

; −) = (

0
+1

; −+1)
By the induction hypothesis, we now have (+1 ; −+1) = ( ; −) = (

0

; −)

= (
0
+1

; −+1) Thus, we have the assertion for + 1

Let  be a set of inessential players in ,  0 =  −  and let  be any player in  0.
The restriction 0 of  to Π∈ 00 with ∅ 6= 0 ⊆  for  ∈  0 is defined by

0( 0) = ( 0 ; − 0) for all  0 ∈ 0 0 and − 0 ∈ − 0  (2.3)

The well-definedness of 0 is guaranteed by Lemma 2.1.
We say that 0 = ( 0 {0}∈ 0  {0}∈ 0) is a D-reduction of  iff the components

of 0 satisfy:

DR1:  0 ⊆  and any  ∈  − 0 is an inessential player in ;

DR2: for all  ∈  0 0 ⊆  and any  ∈  − 0 is a dominated strategy in ;

DR3: 0 is the restriction of  to Π∈ 00 

A D-reduction allows simultaneous eliminations of dominated strategies and inessential

players. However, it would be easier to separate between these eliminations than to

treat them at the same time.

First, we restrict a D-reduction as follows: Let  be a game, and 0 a D-reduction of
 When  0 =  holds in DR1 0 is called a ds-reduction of  denoted as → 

0
1Also, the concept of an inessential player may look related to the condition on the payoff functions,

called the transference of decision maker indifference, due to Marx-Swinkels [9], p.5, which states that

if two strategies  
0
 for player  have unilaterally the same effects for − the others have the same

effects. This is relative to two strategies  
0
, and − while an inessential player  has no effects on

his own and the others’ payoffs by his own unilateral changes.
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When −0 = { :  is a dominated strategy for  in } in DR2 it is called the strict
ds-reduction of 

Returning to a D-reduction 0 of  when 0 =  for all  ∈  0 in DR2 0 is called
an ip-reduction of  denoted by → 

0 and when  − 0 = { :  is an inessential
player in } in DR2 it is called the strict ip-reduction of 

In this paper, we choose the order of applications of a ds-reduction and an ip-

reduction. Hence, we have the following definition: We say that 0 is a DI -compound
reduction, or a DI -reduction of  for short, iff there is an interpolating game  such

that →  and → 
0. This allows trivial cases, e.g.,  =  or  = 0When 

is the strict -reduction of  and 0 is the strict -reduction of  we say that 0 is
the strict DI -reduction of .

We have another compound reduction: We say that 0 is an ID-reduction of  iff

→ → 
0 for some  Lemma 2.3. shows the equivalence between D-reductions

and ID-reductions.

Lemma 2.2 states that if a dominated strategy in  remains in a subgame 0 of
 then it is still dominated in 0 This is called hereditarity in the literature (cf. Apt
[2]). A parallel fact holds for an inessential player. The third assertion states that

eliminations of only inessential players do not generate new dominated strategies. On

the other hand, Example 2.2 shows that only eliminations of inessential players may

generate new inessential players.

Lemma 2.2. Let 0 = ( 0 {0}∈ 0  {0}∈ 0) be a D-reduction of 

(1): If  ∈ 0 ( ∈  0) is dominated in  so is in 0

(2): If  ∈  0 is an inessential player in  so is in 0

(3): Suppose that 0 =  for all  ∈  0 Let  ∈  and  ∈  0 Then, a strategy  is

dominated in  if and only if it is dominated in 0

Proof. We prove (1); (2) is similarly proved. Suppose that  is dominated by 0
in  Then, (

0
; −)  (; −) for all − ∈ − We can assume without

loss of generality that 0 is not a dominated strategy in  so 0 ∈ 0 We have, by
(2.3), for all − 0 ∈ − 0  0(

0
;  0−) = (

0
;  0−; − 0)  (;  0−; − 0)

= 0(;  0−) for all  0− ∈ 0 0− Thus,  is dominated by 
0
 in 0

(3): Let us show the if part. Suppose that  is dominated by 
0
 in

0 Then, 0(
0
; 

0
 0−)

 0(; 
0
 0−) for all 

0
 0− ∈ 0 0− By assumption, we have 

0
 0− =  0− Let 0 0−

be an arbitrary element in 0 0− =  0− We have, by (2.3), for all − 0 ∈ − 0 

(
0
; 

0
 0−; − 0) = 0(

0
; 

0
 0−)  0(; 

0
 0−) = (; 

0
 0−; − 0) for all  0− ∈

0 0− Thus,  is dominated by 
0
 in 

Lemma 2.3 states that ID-reductions are equivalent toD-reductions, butDI -reductions

are more effective than others. The converse of (2) does not hold.

7



Lemma 2.3.(1): 0 is a D-reduction of  if and only if 0 is an ID-reduction of .

(2): If 0 is a D-reduction of  then 0 is a DI -reduction of 

Proof. (1):(Only-If): Let 0 be a D-reduction of  It follows from Lemma 2.2.(1) that
we can postpone and separate eliminations of dominated strategies from eliminations of

inessential players. Hence, 0 can be an ID-reduction.
(If): Let 0 be an ID-reduction of  i.e., → → 

0 for some  Lemma 2.2.(3)
states that  has the same set of dominated strategies as  Hence, we can combine

these two reductions to one, which yields the D-reduction 0
(2): Since  is a set of dominated strategies in  we can eliminate them from 

and we have  i.e.,  →  By Lemma 2.2.(2), the inessential players in  remain

inessential. Hence, we eliminate  − from  in . This game is the same as 0 and
 → 

0 Hence, 0 is a DI -reduction.

This is illustrated by the following example.

Example 2.1 (Large and Small Stores). Consider the game 0 of Figure 2.1, which

is interpreted as follows: 1 is a large supermarket, 2 is a small mart; and 1 ignores 2

Here, neither player is inessential, but s12 is dominated. By eliminating s12 we have the

second 0, where player 1 is inessential, and by eliminating him, we get 1. Since s22
is dominated there, we have 1. Finally, 2 is eliminated, and we get the empty game

∅ The game 1 is a DI -reduction of 0, but not a D-reduction. Also, the last ∅ is
a DI -reduction of 1. The game 1 is a D-reduction of 0.⎛⎝ 1\2 s21 s22

s11 30,1 30,0

s12 20,0 20,1

→


1\2 s21 s22
s11 30,1 30,0

⎞⎠→


µ
2 s21 s22

1 0
→


2 s21
1

¶
→


∅

0 0 1 1
Figure 21

In this example, eliminations of dominated strategies generate new inessential play-

ers. Eliminations of inessential players may generate new inessential players, too.

Example 2.2 (Elimination of Inessential Players, only). The leftmost 2-person

game has no dominated strategies, but player 1 is inessential. By eliminating 1, we have

the second 1-person game, and by eliminating 2, we have the empty game.

1\2 s21 s22
s11 4,6 2,6

s12 4,6 2,6

→


2 s21 s22
6 6

→


∅

Figure 22
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2.2. Preservation of Nash equilibria

We study the IEDI-process to eliminate irrelevant players as well as irrelevant actions

for some players. From the perspective of a negative criterion, it could be required that

such eliminations should lose no essential features of the target social situation. Here,

we show that this is the case with respect to the Nash equilibrium as well as many other

solution concepts.

We say that  ∈  is a Nash equilibrium in a nonempty game  iff for all  ∈ 

() ≥ (
0
; −) for all 

0
 ∈  Let  be the null symbol, i.e., for any  ∈  we

set (; ) =  and stipulate that the restriction of  to the empty game ∅ is the null
symbol . Also, we stipulate that  is the Nash equilibrium in ∅.

We have the following basic theorem, stating that eliminations of dominated strate-

gies and inessential players do not affect Nash equilibria. In the case of eliminations of

only dominated strategies, the theorem is reduced to the one given in Maschler et al.

[8], Theorem 4.35, p.109.

Theorem 2.1 (Preservation of Nash Equilibria). Let 0 be a D-reduction of 
Then,

(1) if  is an NE in  then its restriction  0 to 0 is an NE in 0;

(2) if  0 is an NE in 0 ( 0 ; − 0) is an NE in  for any − 0 in Π∈− 0 

Proof. (1): Let  be an NE in  For any  ∈  we have (; −) ≥ (
0
; −) for any

0 ∈  Let  ∈  0 Then,  is not dominated in , and thus,  ∈ 0 Let 
0
 ∈ 0 Since

0 is a D-reduction, we have 0(;  0−) = (; −) ≥ (
0
; −) = 0(

0
;  0−)

Thus,  0 is an NE in 0.

(2): Let  0 be an NE in 0We choose any − 0 ∈ − 0 . We let  = ( {0}∈ 
{}∈ ) where 0 =  for all  ∈  − 0 First, we show that this ( 0 ; − 0) is an

NE in 

Let  ∈  0 We have 0(
0
 0) = (

0
 0 ; − 0) for any 0 0 ∈ 0 0 by Lemma

2.1, since the players in  −  0 are inessential in . Since  0 is an NE in 0 we
have (;  0−; − 0) = 0(;  0−) ≥ 0(

0
;  0−) = (

0
;  0−; − 0) for all

0 ∈ 0 Let  ∈  −  0 Then since  is inessential, we have  (;  0−; − 0) =

 (
0
;  0−; − 0) for all 0 ∈ 

  Hence, ( 0 ; − 0) is an NE in 

Suppose that  ∈  0 has a strategy 00 in  so that (
00
 ; −)  (; −). We

can choose such an 00 giving the maximum (
00
 ; −) Then, this 

00
 is not dominated

in  Hence, 00 remains in 0 which contradicts that  0 is an NE in 0

Let () and (0) be the sets of Nash equilibria for a game  and its D-

reduction 0 It follows from Theorem 2.1 that () and (0) are connected by:

() = Π∈− 0 ×(0) (2.4)
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When 0 is the empty game ∅ Theorem 2.1.(1) states that the resulting outcome is

the null symbol  and (2) states that any strategy profile  = (; ) in  is a Nash

equilibrium in  In Section 3.2, this will be used to make a comparison with the notion

of d -solvability of Moulin [10], [11].

Let us apply (2.4) to the sequence of games in Figure 2.1. By (2.4), (s21) is the

unique NE in 1 and so is in 1 By (2.4) again, (s11 s21) is the NE in 0 and also is

the NE in 0 In the case of Figure 2.2, the set of NE’s moves from  to 2 and from

2 to 1 × 2

D-reduction preserves not only Nash equilibria, but also the Nash [12] noncooper-

ative solution. We say that the set of NE’s satisfies the interchangeability iff for any

NE  and 0 (0; −) is also an NE for all  ∈  He regards the game as solvable iff

interchangeability holds for it. In fact, this is equivalent to that the set of NE’s is ex-

pressed as the product of Nash strategies. In the case of game 0 of (2.4), 0 is solvable
if and only if (0) is expressed as (0) = Π∈ 0(

0) where (
0) =

{ ∈ 0 : ( ;  0−) ∈ (0)} for  ∈  0 By (2.4), 0 is solvable if and only of so is
 Thus, Theorem 2.1 implies preservation for the Nash noncooperative theory.

The above theorem holds with respect to the mixed strategy Nash equilibrium,

too. Preservations of other solution concepts such as rationalizability and correlated

equilibrium hold. So far, we have only positive results as far as pure noncooperative

solution concepts are concerned23 4.

If we consider weak dominance rather than strict dominance, preservation does not

hold. Table 2.1 is a counter example, where there are two Nash equilibria (s11 s21)

and (s12 s22) If we adopt weak dominance, only (s12 s22) remains but (s11 s21) is

eliminated.

Table 2.1

s21 s22
s11 1 1 1 1

s12 1 0 2 2

2The folk theorem may be regarded as a negative example for this. But if the above argument is

applied to the repeated game itself, it would not be a coutner example.
3The solution concept called the intraperson coordination equilibriun in Kaneko-Kline [7] is regarded

as a noncooperative solution concept, but it is incompatible with elimination of dominated strategies.

An example for nonpreservation is a Prisoner’s Dilemma.
4Theorem 2.1 my look related to the consistency property due to Peleg-Sudhöter’s [16] for an ax-

iomatization of Nash equilibria. They use the term "reduced game" to restrict a strategy profile to a

subset of the player set by fixing the other players’ strategies specified by the profile Thus, although

the player sets vary, the concepts are very different.
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3. The IEDI Process and Generated Sequences

Here, we consider the iterated elimination process of dominated strategies and inessential

players (IEDS process). In Section 3.1, we provide definitions, while in Section 3.2, we

present the smallest-shortest result on the IEDS sequence, which is also an extension of

the order-independence theorem (cf., Apt [2]).

3.1. W-IEDI and IEDI sequences

We define a sequence generated by the IEDI process by means of DI -reductions. There

are the other two alternative ways to define this process using D-reductions and ID-

reductions. We consider these after Theorem 3.1.

Let  be a given finite game. We say that h0 1     i is a W-IEDI sequence
from  = 0 iff

+1 is a DI-reduction of  and +1 6=  for each  = 0     − 1; (3.1)

 has no dominated strategies and no inessential players. (3.2)

We call  the length of Γ() We abbreviate a W-IEDI sequence simply as a W-IEDI.

We denote the set of all W-IEDI’s from  by W()
In particular, a W-IEDI Γ() = h01    i is said to be the IEDI sequence iff

+1 is the strict DI -reduction of  for all  = 0     − 1 (3.3)

A W-IEDI may not be unique, but the IEDI is uniquely determined by a given . The

IEDI from  is denoted by Γ∗() = h∗0 ∗1    ∗∗i We will show that this is the
smallest and shortest W-IEDI generated from .

In Example 2.1, Figure 2.1 shows the unique W-IEDI; a fortiori, it is the IEDI.

It has the length 2 and is described as the sequence h0 1 2i = h∗0 ∗1∗2i
where 2 = ∅ The game 0 is the interpolating game between 0 and 1 The other
interpolating game is 1. For Example 2.2, the IEDI is represented in Figure 2.2. In

this sequence, both steps involve the elimination of an inessential player. Here, there

are no non-trivial interpolating games.

Let us return to the 3-person  = ({1 2 3} {}3=1 {}3=1) of Example 1.1.
Example 3.1 (Continued from Example 1.1). The IEDI is represented in Figure

3.1. Player 3’s strategies s33 and s34 are dominated by both s31 and s32 and by elimi-

nating s33 and s34 we get the second interpolating 3-person game. Now, players 1 and

3 focus on their dating ignoring player 2 as inessential. By eliminating him, we get the
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2-person battle of the Sexes with 1 and 3⎛⎝0 →


1\2\3 s31 s32
s11 15,−1010 5, -5, 5

s12 5, −5 5 10,−10,15

⎞⎠→


1\3 s31 s32
s11 15,10 5, 5

s12 5, 5 10,15

s21 or s22

Figure 3.1

A W-IEDI sequence may be partitioned into two segments, 0 1      and

+1      so that in the first segment, dominated strategies (and, maybe, inessential

players) are eliminated, and in the second, only inessential players are eliminated, which

is illustrated in (3.4).

Γ() = h0 1     | {z } +1  | {z }i (3.4)

However, even if  has some dominated strategies, (3.1) may allow no dominant strate-

gies to be eliminated. We exclude this possibility: We say that Γ() = h0     i
is proper iff for all  = 0   − 1 if  has some dominated strategies and  →

 → +1, then  6=  When  has no dominated strategies, some inessential

players are eliminated. The IEDI Γ∗() is proper.
The following theorem holds for any proper W-IEDI.

Theorem 3.1 (Partition of a Proper W-IEDI). Let Γ() = h0 1    i be a
proper W-IEDI from 0 = . There is an exactly one  (0 ≤  ≤ ) such that

(i) for any  (0 ≤   − 1) at least one dominated strategy is eliminated in the step
from  to +1;

(ii) for any  ( ≤  ≤ − 1) no dominated strategies are eliminated but at least one
inessential player is eliminated in the step from  to +1

Proof. Suppose that  has no dominated strategies. Then, +1 is obtained from

 by eliminating inessential players. It follows from Lemma 2.2.(3) that +1 has no

dominated strategies. Hence, we choose the smallest  among such ’s for 

We call the  given by Theorem 3.1 the elimination divide. Example 2.2, where

 = 0 implies that the second segment may have a length greater than 1. The

elimination divide  plays an important role in Section 4.

Let us apply Theorem 2.1 to a W-IEDI Γ() = h01     i Then, (0)

can be written as:

(0) = Π∈0−10 × · · · ×Π∈−1−−1
 ×() (3.5)

Indeed, let  = (  {
}∈  {}∈) be the interpolating game between  to +1

for each  it follows from (2.4) that() = () and () =Π∈−−+1
×

(+1) for  = 0  − 1 Repeating this decomposition from − 1, we have (3.5).
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3.2. The Shortest and smallest: the IEDI sequence

The order-independence theorem states that when we restrict the reduction steps to

eliminations of dominated strategies, any W-IEDI has the same endgame (cf., Gilboa et

al. [5], and Apt [1], [2]). Here, we extend this result, allowing iterated eliminations of

inessential players, too. We show that for any finite game  the IEDI generated from

 is the shortest-smallest among the W-IEDI’s and has the same endgame.

To make comparisons between two finite games, we introduce the concept of a sub-

game. We say that0 = ( 0 {0}∈ 0  {0}∈ 0) is a subgame of = ( {}∈  {}∈)
iff ()  0 ⊆  ; () 0 ⊆  for all  ∈  0; and () for  ∈  0 0 : Π∈ 00 → R is given
by (2.3). For the purpose of references, we state the following immediate result:

if 0 is a D-reduction of , then 0 is a subgame of G. (3.6)

The subgame relation has the following property.

Lemma 3.1 (Partial Ordering). The subgame relation is a partial ordering over the

set of all finite games.

Proof. It is reflexive, anti-symmetric, and transitive. Here, we consider only transitiv-

ity. Let 0, 00 be subgames of 0 respectively. It suffices to show that 00 ( 00) =

( 00 ; − 00) for all  00 ∈ 00 0 and − 00 ∈ − 00  Let  be an arbitrary strat-

egy profile in   We have 
00
 ( 00) = 0( 00 ;  0− 00) = 0( 0) = ( 0 ; − 0) =

( 00 ; − 00) The first and third equalities are due to (2.3) for 0 and 00 and for 
and 0 The second and fourth are simply changes of expressions.

When Γ() = h0 1     i is a W-IEDI, it follows from (3.6) and Lemma 3.1

that if    then  is a subgame of 

The following theorem states that the IEDI sequence is the smallest and shortest in

W() and that its endgame is identical over those of W-IEDI sequences in W(). We
present the proof of the theorem in the end of this section.

Theorem 3.2 (shortest and smallest). Let  be a finite game, and let Γ∗() =
h∗0 ∗1    ∗∗i be the IEDI from Then, for anyW-IEDI Γ() = h0 1     i ∈
W()

(1): ∗ ≤ ; (2): for each  ≤ ∗ 
∗ is a subgame of ; and (3): ∗ = 

Thus, the IEDI Γ∗() is the shortest and smallest in W()We have other elimina-
tion processes adopting different reductions such as D- and ID- reductions. The IEDI

Γ∗() based on DI - reductions is shorter and smaller than the sequences based on D- or
ID- reductions by Lemma 2.3. Another possible process is to apply only ds-reductions

up to the elimination divide 0 and then apply ip-reductions: This may be strictly

longer than the length of Γ∗() as far as we count each compound DI -reduction step
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as one. We can take the IEDI as the benchmark case for a further analysis of iterated

elimination of dominated strategies and inessential players; indeed, we use it in Section

4.

We adopt strict dominance for Theorem 3.2. Apt [1], [2] gives comprehensive dis-

cussions on order-independence theorems for various types of dominance relations5.

It follows from Theorem 2.2 that if ∗ has a Nash equilibrium, then so does  If

∗ is the empty game, which has the Nash equilibrium  then  has a Nash equilib-

rium. Moreover, these do not depend on the choice of a W-IEDI from  Hence, the

decomposition given in (3.5) is independent from the choice of a W-IEDI.

This is related to Moulin’s [10], [11] -solvability: We say that a game  is -solvable

iff there is a sequence h0  i with 0 =  −1 → 
 for  = 1  − 1 and for

all  ∈ 

(; −) = (
0
; −) for all  

0
 ∈  and − ∈ − (3.7)

This requires constant payoffs for each player  with his unilateral deviation. Now, we

have the following corollary.

Corollary 3.3. If a game  has a W-IEDI Γ() = h0 1     i with  = ∅
then  is -solvable.

Proof. By Theorem 3.2, it suffices to consider the IEDI Γ∗() = h∗0∗1     ∗∗i
with ∗ = ∅ Then, each ∗ is obtained from ∗(−1) so that ∗(−1) → 

(−1) →

∗ for some interpolating game (−1) After the elimination divide 0 only → is

applied to ∗. Now, we can ignore eliminations of inessential players in this sequence.
The resulting sequence is denoted by h01    0i: (1) 0 = ∗0 = ; and (2)

for  = 1 0 
 is obtained from −1 by eliminating all the dominated strategies

that are eliminated in ∗(−1) → 
(−1) Then, each  has the full set of players 

Since ∗
∗
= ∅ ∗0 has only inessential players Hence, in 0  all the players in 

are inessential, so a fortiori, (3.7) holds.

The converse of Corollary 3.3 may not hold: Table 3.1, given in Moulin [11], is

d-solvable, but this does not generate a W-IEDI to the empty game.

Table 31

1\2 s21 s22
s11 1,1 0,1

s12 1,0 0,0

Now, let us prove Theorem 3.2. First, we refer to Newman’s lemma (see also Apt

[2]). An abstract reduction system is a pair (→), where  is an arbitrary nonempty

5 It is well-known that the order-independence theorem does not hold for weak dominance, (cf.,

Myerson [14], p.60).
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set and → is a binary relation on . We say that { :  = 0  } is a → sequence in

(→) iff for all  ≥ 0  ∈  and  → +1 if    It may be the case that  is

infinite (i.e.,  = ). We use →∗ to denote the transitive reflexive closure of → 

Let an abstract reduction system (→) be given. We say that  ∈  is an endpoint

for → iff there is no  ∈  such that  → . We say that (→) is weakly confluent iff
for each    ∈  with →  and → , there is some 0 ∈  such that  →∗ 0 and
 →∗ 0.
Lemma 3.3 (Newman [13]): Let (→) be an abstract reduction system satisfying

N1: each → sequence in  is finite; and N2: (→) is weakly confluent. Then, for any
 ∈  there is a unique endpoint  with →∗ 
Proof of Theorem 3.2: First, we show (3). Let G be the set of all finite strategic form
games. Then (G→) is an abstract reduction system, where we write  → 

0 for
→  and → 

0 for some interpolating  and  6= 0Then, each →sequence

is finite, i.e., we have N1, since at least one strategy or one inessential player is eliminated

in each transition. We can see N2 as follows: Let 0 00 ∈ G with  → 0 and
→ 

00 Now, let ∗ be the strict DI -reduction of  Then, ∗ is a DI -reduction of
both 0 and 00 Hence, 0 → 

∗ and 00 → 
∗ Then it follows from Lemma 3.3

that for any  ∈ G there is a unique endpoint ∗∗ with  = ∗
∗


Now, we show (1) and (2). Let us see the following:

∗ is a subgame of  for each  = 0    min( ∗) (3.8)

We prove this by mathematical induction on . When  = 0, this holds by definition.

Suppose that it holds for   min( ∗). Let ∗ → 
∗ → 

∗+1 and  → 
 →

+1 Then if a strategy  in ∗ is dominated in  it is also dominated in ∗ since
∗ is a subgame of . For the same reason, if a player  in ∗ is inessential in  then

 is also inessential in ∗, We obtain ∗+1 by eliminating all the dominated strategies
in ∗ and all the inessential players in ∗. Hence it follows that ∗+1 is a subgame
of +1 Then (3.8) holds by the principle of mathematical induction.

Consider (1): By (3),  = ∗  If   ∗ then ∗(+1) is a strict subgame of
 = ∗ by (3.8). But by definition, ∗

∗
is a subgame of ∗(+1); hence we get a

contradiction. This proves (1). Then, we have (2) by (3.8).

4. Possible Shapes of IEDI Sequences

In Section 3, we studied the IDEI and W-IEDI’s generated from a given game  = 0.

This approach is depicted in the top of Figure 4.1. In this section, we reverse the focus:

We consider possible IEDI sequences to a given final game. In the bottom of Figure

4.1,  is a given final game, and we have a number of IEDI’s that can lead to 

15



G G
G  = HG

H

Reversing the Focus

0 1 2 s

G
s‐1G t

G’ t

G’’t

s‐1

s‐1

G’

G’’ 

Figure 4.1: Start with the Final Game

We give necessary and sufficient conditions with respect to the player set and the set

of players having dominated strategies. Throughout this section, we consider only the

IEDI sequences.

4.1. Possible shapes of IEDI sequences

Consider the IEDI Γ∗() = h∗0 ∗1    ∗i from = ∗0 where∗ = (  {
}∈ 

{}∈) for  = 0   For each  = 0   let

  := { ∈   : player  has a dominated strategy in ∗} (4.1)

We call   the D-group in ∗. Recall the elimination divide  given by Theorem 3.1,

i.e.,   6= ∅ if    and   = ∅ if  ≥  Then, we call
£
(0  0)     (   )

¤
the

player-configuration of Γ∗(). This represents the structure of changes in players in
Γ∗() We focus only on the changes in the player sets and D-groups.

The following lemma gives simple observations, which turn out to be sufficient con-

ditions to get an IEDI sequence from some game .

Lemma 4.1(Necessary Conditions). Let Γ∗() = h∗0 ∗1    ∗i be the IEDI
with its elimination divide 0 and player-configuration [(

0  0)     (   )] Then,

PC0:   ⊆   for  = 0  ;

PC1: 0 ⊇  ⊇  ) +1 )  )   with
¯̄
 
¯̄
6= 1;

PC2: for  = 1  if | −1| = 1 then  −1 ∩   = ∅;
PC3:  = +1 =    =   = ∅
Proof. PC0 follows from the definition of  , and PC3 follows the definition of 
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PC1: Up to  eliminations of inessential players may not occur; thus, we have weak

inclusion relations up to After some inessential players are eliminated, and thus,

we have strict inclusion after  As remarked before, we have
¯̄
 
¯̄
6= 1

PC2: Let  −1 = {} If  ∈   then  ∈   so a fortiori,  −1 ∩   = ∅ Suppose
 ∈   Then, let ∗(−1) → ∗(−1) → ∗ Then, all the dominated strategies
for player  in ∗(−1) are eliminated in ∗(−1) By Lemma 2.2.(3), player  has no
dominated strategies in ∗ Hence,  −1 ∩   = ∅

Lemma 4.1 derives four conditions on the player-configuration from the IDES Γ()

generated from  = ∗0 The following theorem reverses this lemma: A proof is given

in Section 4.2.

Theorem 4.1 (Possible Shapes): Let  = (  {
 }∈  { }∈ ) be a game

with no dominated strategies and no inessential players. Let [(0  0)     (   )] be

any sequence satisfying PC0-PC3 with   =  . Then, there exists a game  with

the IEDI Γ∗() = h∗0 ∗1     ∗∗i generated from  = ∗0 such that

(a) ∗ = ;

(b) [(0  0)     (   )] is the player-configuration of Γ∗().

Conditions PC0-PC3 are sufficient for [(0  0)     (   )] to have the IEDI

Γ∗() so that its player-configuration coincides with [(0  0)     (   )] Since PC0-

PC3 are not really restrictive, the class of IEDI’s leading up to a particular H can have

a great variety of lengths and shapes.

Let us consider PC0-PC3 for the 2-person case. We get the following corollary.

Corollary 4.2. Let  be a 2-person game, and Γ∗() = h∗0 ∗1    ∗i the IEDI
with its elimination divide 0 and player-configuration

£
(0  0)     (   )

¤
 Then,

(1) − ≤ 2;
(2) 0 =  = −2 = {1 2};
and there is some  ≤  − 2 such that
(3)   = {1 2} if  ≤ ; and

¯̄
 
¯̄
= 1 if  =  + 1  − 1;

(4)   ∩  +1 = ∅ for  =  + 1  − 1

∗0 · · · ∗ ∗(+1) ∗(+2) · · · ∗(−1) ∗ ∗(+1)

() · · · () ( {}) ( {}) · · · ( {}) ({} ∅) (∅ ∅)
Figure 4.2

Thus, up to   the D-group remains   =  = {1 2} but once  +1 becomes a

singleton set, condition PC2 requires  +2 to be empty or consists of the other player.
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In the latter case,   starts alternating at +1 up to −1. Then, the process

continues for possibly two more steps, but may stop at  . Theorem 4.1 implies that

there are no other possibilities for the 2-person case. Figure 4.2 describes one possibility.

The above monotonicity is observed only for the 2-person case. The following is a

3-person game, where  0 is a singleton, but  2 becomes the entire set.

Example 4.1 (Nonmonotonicity). Consider the following 3-person game  where

each player has three strategies, and the payoffs are described by the following three

tables. The IEDI from this game is as follows: In the game 0 = , player 3 has the

dominated strategy s33, and in the resulting game 1 from the elimination of s33 1

and 2 have dominated strategies s13 and s23 Here, the game 
2 obtained from 1 by

eliminating s13 and s23 has still three players, each of whom has 2 strategies. Game 2

is expressed by the northwest corner (PD) of each table, where each has a dominated

strategy. Here, the player-configuration is
£
(0  0)     (3  3)

¤
 where 0 = 1 =

2 = {1 2 3} 3 = ∅  0 = {3}  1 = {1 2}  2 = {1 2 3}  3 = ∅ and  = 3

Table 4.1, s31 Table 4.2, s32

1\2 s21 s22 s23
s11 5,5,2 1,6,2 3,0,1

s12 6,1,2 3,3,2 1,0,1

s13 0,3,2 0,1,1 0,0,2

1\2 s21 s22 s23
s11 5,5,0 1,6,0 3,0,2

s12 6,1,0 3,3,0 1,0,1

s13 0,3,1 0,1,1 0,0,2

Table 4.3, s33

1\2 s21 s22 s23
s11 5,5,0 1,6,0 3,9,0

s12 6,1,0 3,3,0 1,9,0

s13 9,3,0 9,1,0 9,9,0

4.2. Proof of Theorem 4.1

Consider a sequence [(0  0)     (   )] and  = (  {
 }∈  { }∈ )

in the theorem We construct a sequence ∗ ∗−1     ∗0 from ∗ =  along

(   )  (0  0) and show that for each  =  − 1  0 ∗+1 is the strict DI -
reduction of ∗; thus, h∗0  ∗i is the IEDI generated from ∗0

∗ → ∗ → ∗+1

(   ) ⇐=(construction) ⇐=(construction) ( +1  +1)

Lemmas 4.3, 4.4 Lemma 4.2

Figure 4.4

Lemma 4.2 is for the construction of the interpolating ∗ from ∗+1 in Figure 4.4.
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Lemma 4.2. Let  = ( {}∈  {}∈ ) be a game with || ≥ 2 for all  ∈  and

let  0 be a nonempty set of new players Then, there is a 0 = ( 0 {0}∈ 0  {0}∈ 0)

such that (1):  0 =  ∪  0; (2): |0| ≥ 2 for all  ∈  0; and (3):  is the strict -

reduction of 0

Proof. We choose the strategy sets   ∈  0 so that 0 =  for all  ∈  and

0 = { } for all  ∈  0 where   are new symbols not in  Then, we define the

payoff functions {0}∈ 0 so that the players in  0 are inessential in 0 but no players in
 are inessential in 0. Let  be the set of inessential players in  For each  ∈  we

choose an arbitrary strategy, say s1 from . Then, we define {0}∈ 0 as follows:

(a): for any  ∈  0 0( 0) = |{ ∈  :  = s1}| for  0 ∈  0 ;

(b): for any  ∈  0( 0) = ( ) for  0 ∈  0  where  is the restriction of  0

to 

For any  ∈  0 ’s strategy  is nominal in (a) and (b) in the sense that  does not

appear substantively in 0 for any  ∈  ∪ 0 Thus, the players in  0 are all inessential in
0. On the other hand, each  ∈  as far as such a player exists in  affects ’s payoffs

for  ∈  0 because of (a) and || ≥ 2 This means that any  ∈  is not inessential in

0. Also, any  ∈  −  is not inessential in 0 by (b). Thus, only the players in  0 are
inessential. In sum,  is the strict is-reduction of 0

Now, we consider the step from ∗ to ∗ in Figure 4.4. For this construction, first
we show the following lemma. In the following, we write  dom 0 when  dominates

0 in 

Lemma 4.3. Let  = ( {}∈  {}∈) be an -person game, and  ∈  a fixed

player There are real numbers {()}∈ such that
if  dom 0  then ()  (

0
) (4.2)

Proof : The relation dom is transitive and asymmetric. We call a sequence {1    }
a descending chain from 1 to 


 iff  dom +1 for  = 1 − 1

We say that  is maximal in ( , dom) iff there is no 0 ∈  such that 
0
 dom

  Let 
0
   


 be the list of maximal elements in ( dom) Then, we define the sets

(0 )  (

 ) inductively by

(0 ) = {0} ∪ { ∈  : 
0
 dom }; (4.3)

() = {} ∪ { ∈  −∪−1=0(

) : 


 dom } for  ≤  (4.4)

That is, we classify each  ∈  − {0   } to the first () with  dom   which

implies

if  dom  and  ∈ (
0
 ) then 0 ≤  (4.5)
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Thus, these sets (0 )  (

 ) form a partition of  

Now, we define {()}∈ as follows: for  ∈ () and  = 0  

() = − | |+   (4.6)

where  is the maximum length of a descending chain from  to  6=   and is 0 if

 =  When  = 0  may be equal to | |  but when   0  is smaller than | | 
Now, we show (4.2). Let   

0
 ∈  and  dom 0  Also, let  ∈ () and

0 ∈ (
0
 ) Since 


 dom   we have 


 dom 0  which implies 

0 ≤  by (4.5). Now, we

consider two cases: 0 =  and 0   First, suppose  = 0. Let   0 be, respectively,
the maximal lengths of descending chains from  to  and 0  Since  dom 0  we
have   0  Thus, () = − | | +   (

0
) = − | | + 0  For the other

case, suppose 0   Since | |    0 as remarked above we have (
0
) − () =

−0 | |+ 0 − (− | |+  ) = (− 0) | |+ (0 −  )  0

Now, we go to the step from ∗ to ∗ in Figure 4.4; in the lemma,  and 0 are
supposed to be ∗ and ∗ respectively.

Lemma 4.4. Let  = ( {}∈  {}∈ ) be a game with  , and let  ⊆ 

satisfying the following condition:

if  = {} then there are no  0 ∈  with  dom 0 (4.7)

Then, there is a game 0 = ( {0}∈  {}∈ ) such that  is the D-group for 0

and  is the strict -reduction of 0

Proof. First, let  be a new strategy symbol for each  ∈  We define {0}∈ as

follows:

0 =
½

 ∪ {} if  ∈ 

 if  ∈  − 
(4.8)

Then we extend  to 
0
 : Π∈

0
 → R for each  ∈  so that the restriction of 0 to

Π∈ is  itself and  is the strict -reduction of 0
To be precise, we define the payoff functions {0}∈  Let  ∈  First, 0 is the

same as  over Π∈ i.e., 0() = () if  ∈ Π∈ Now, let  ∈ 0 −  if

 ∈  −  then

0() = (); where () is given for  in Lemma 4.3, (4.9)

and if  ∈  then

0() =
½

() if  6= 
min{() :  ∈ }− 1 if  =  

(4.10)
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First, let  ∈  −  , and let   
0
 ∈  = 0  Suppose that  dominates 

0
 in 

Then, consider  0 ∈ 0 −  so that the -th components of  and 0 are  and 0  By
(4.9), we get 0() = ()  (

0
) = 0(

0) Hence,  does not dominate 0 in 0
which implies that  has no dominated strategies in 0

Second, let  ∈  We choose an ∗ ∈  with ∗ 6=   By (4.10), we have, for any

− ∈ − 

0( ; −) = min{() :  ∈ }− 1  (
∗
) = 0(

∗
 ; −)

This does not depend upon − ; thus, ∗ dominates  in 0 From the analysis of the

two cases, we can conclude that  is the D-group in 0
It remains to show that  does not dominates 

0
 in 

0 for any   0 ∈  = 0−{}
and  ∈  . If  does not dominate 

0
 in , then in 0  does not do 0 . Now, we

suppose that  dominates 
0
 in  By (4.7), we have | |  1 This guarantees that

the existences of  0 ∈ 0 −  such that their -th components are  and 0  Then, by
(4.10), we have 0() = ()  (

0
) = 0(

0) Hence,  does not dominates 0 in
0 From these, we conclude that  is the strict -reduction of 0.

Now, we can prove the Theorem 41.

Proof of Theorem 41: Let ∗ =  Since  has no dominated strategies and no

inessential players, condition (3.2) holds.

Suppose that ∗+1 is already defined with
¯̄
+1


¯̄
≥ 2 for all  ∈  +1 Condition

PC2 guarantees condition (4.7). By Lemma 4.2, we find an interpolating game ∗ so
that ∗+1 is the strict -reduction of ∗ with its player set   and

¯̄



¯̄
≥ 2 for all

 ∈   By Lemma 4.4, we find another game ∗ so that ∗ is the strict -reduction
of ∗ with its D-group   and satisfying

¯̄



¯̄
≥ 2 for all  ∈  

Now, we have an IEDI Γ∗() =
­
∗0  ∗

®
such that [(0  0)     (   )] is

the player-configulation of Γ∗()

5. Conclusions

We have considered the process of iterated elimination of strictly dominated strategies

and inessential players. Iterated elimination of inessential players is newly introduced

in this paper, and is quite compatible with elimination of dominated strategies. The

three main results given in this paper are: Theorem 2.2 (preservation), Theorem 3.1

(smallest and shortest) and Theorem 4.1 (possible shape).

The preservation theorem is a direct extension of the result given in Maschler et al.

[8], and leads to the recovering result (3.5) on Nash equilibria. This result is important

from the perspective of the abstraction process.

The second theorem is an extension of the order-independence theorem and states

that any sequences generated from a given game by the IEDI process ends up with the
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same game and that the IEDI sequence is the shortest and smallest among the WIEDI’s

from any given game 

The third theorem is entirely new. It gives necessary and sufficient conditions for

possible shapes of IEDI’s. They provide some specific structural information on the

shapes of generated sequences, and imply that IEDI’s have a vast variety of lengths and

shapes.

In this paper, we have not touched upon the preference comparisons required to

calculate the IEDI sequence or a W-IEDI sequence from a game . The development

given in this paper, however, facilitates this consideration, which may be interpreted

as implying that the IEDI requires less than any other W-IEDI. In fact, we have an

example of a game where some W-IEDI sequence can be calculated by a smaller number

of preference comparisons than the IEDI. A detailed study is an open problem.

Finally, we return to the perspective of abstracting social situations. The preserva-

tion theorem is relevant for this. That is, the Nash equilibrium concept gives a positive

criterion for decision making by a player and/or prediction by an outside analyst. In

inductive game theory (cf., Kaneko-Kline [6]), an inside player takes this perspective.

From either perspective, we find an apparent restriction: The definition of an inessen-

tial player here is too stringent in that his unilateral changes have no effect at all on any

player’s payoffs. There are two directions to weaken this restriction. One direction is to

consider one player’s effects on some players separately, and the other is to introduce

-inessential players. Both are captured together as follows: An -inessential player 

against  is defined iff ’s unilateral changes in strategies may affect only ’s payoffs

within -magnitudes for a given   0 By this definition, we may capture “remote”

players relative to a player in question such as players behinds the main players in Fig-

ure 1.1 This includes already a lot of aspects, each of which remains open. The study

given in this paper is the benchmark for this consideration.
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