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Abstract

The Bondareva-Shapley condition is the most eminent necessary and sufficient condition for the

core of a transferable utility game to be nonempty. In this paper, we provide a new necessary and

sufficient condition. We show that a game has a nonempty core if and only if the game can be

decomposed into some simple games. We demonstrate the decomposition through an example and

the proof.
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1 Introduction

The core probably is the most well-known stability concept in game theory and economics. The core

of a cooperative game is defined as the set of allocations from which no coalition has an incentive to

deviate.

The first necessary and sufficient condition for the core of a transferable utility game (TU-game) to

be nonempty has been provided by Bondareva (1963) and Shapley (1967) as an application of linear

programing problem. In their works, the notion of balanced collection features the nonemptiness of the

core. After their result, a game that has a nonempty core is called a balanced game. As for TU-games,

this Bondareva-Shapley condition has been the only necessary and sufficient condition that is applicable

to all TU-games.*1

Scarf (1967) and Billera (1970) have extended the condition to nontransferable utility games (NTU-

games). They call their conditions balancedness and π-balancedness respectively, while their conditions

are sufficient conditions for the core to be nonempty in a NTU game. A necessary and sufficient condition

has been recently provided by Predtetchinski and Herings (2004). In their work, they furthermore extend

π-balancedness and establish the necessary and sufficient condition which they call Π-balancedness.

∗ JSPS Research Fellow. Graduate School of Economics, Waseda University. 1-6-1, Nishi-waseda, Shinjuku-ku, Tokyo

169-8050, Japan. E-mail: takatomo3639@asagi.waseda.jp

The author thanks Yukihiko Funaki for his helpful comments. The author acknowledges financial support from the

Japan Society for the Promotion of Science (JSPS).
*1 Abe and Funaki (2017) have extended the Bondareva-Shapley condition to the class of partition function form games.
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As outlined above, the conditions for the core to be nonempty have been developed in line with the

notion of balancedness. The purpose of this paper is to provide this context with a new approach. The

approach we propose in this paper is to “decompose” a TU-game into some “easy” games. We show

that it is necessary and sufficient for the core of a TU-game to be nonempty that decomposed games

satisfy certain basic properties. The novelty is that our approach and proof are independent from linear

programing and the concept of balancedness.

In the next section, we define TU-games and basic notions. We offer our condition in Section 3.

An illustration of the decomposition is also provided. In Section 4, we conclude this paper with some

remarks. The main proof is provided in Section 5.

2 Preliminaries

Let N = {1, · · · , n} be a finite set of players and a function v : 2N → R with v(∅) = 0 denote a

characteristic function. A coalition of players is a nonempty subset of the player set: S ⊆ N . We denote

the cardinality of coalition S by |S|. A cooperative game with transferable utility (a TU-game) is (N, v).

We fix the player set N throughout this paper and typically use v instead of (N, v) to denote a game.

Let GN be the set of all TU-games with the player set N . For notational simplicity, we sometimes write,

for example, coalition 12 instead of {1, 2}. We define the core as follows: for any game v ∈ GN ,

C(v) =

x ∈ RN |
∑
j∈S

xj ≥ v(S) for any S ⊆ N,
∑
j∈N

xj = v(N)

 .

Below is the list of properties of a game that we use in this paper.

• A game v is balanced if C(v) ̸= ∅.
• A game v is simple if v(S) = 0 or 1 for every S ⊆ N .

• A player i is a veto player in game v if v(S) = 0 for every S ⊆ N with i ̸∈ S.

• A game v is veto-controlled if there is a veto player in v.

• A game v is N-monotonic if v(S) ≤ v(N) for every S ⊆ N .

• A game v is zero-normalized if v({i}) = 0 for every i ∈ N . For any game v ∈ GN , v̄ is v’s

zero-normalized game if v̄(S) = v(S) −
∑

j∈S v({j}) for any S ⊆ N . In general, C(v̄) = {x̄|x̄j =

xj − v({j}) for every j ∈ N, x ∈ C(v)}.
• A game v is nonnegative if v(S) ≥ 0 for any S ⊆ N .

• A game v is called the zero game if v(S) = 0 for every S ⊆ N .

3 A necessary and sufficient condition

In this section, we provide the necessary and sufficient condition based on a decomposition and illustrate

the decomposition process.

Proposition 3.1. A zero-normalized nonnegative game has a nonempty core if and only if it is a positive

linear combination of simple N-monotonic veto-controlled games.

2



The following result readily follows.

Corollary 3.2. A game v has a nonempty core if and only if its zero-normalized game v̄ is of the form

v̄ = v′ + w for some v′ and w, where v′ is a positive linear combination of simple N-monotonic veto-

controlled games, and w is given as follows: w(N) = 0, w({i}) = 0 for every i ∈ N , and for any S ⊆ N

with 1 < |S| < n,

w(S) =

{
v̄(S) if v̄(S) < 0,
0 otherwise.

Proof. We begin with the only-if-part, since game v has a nonempty core, its zero-normalized game

v̄ has a nonempty core. Let x ∈ C(v̄). Since v̄ is zero-normalized, xi ≥ 0 for every i ∈ N . Now let

S = {S ⊆ N |v̄(S) < 0, 1 < |S| < n}. We first assume that S is not empty. Then, we set w(S) := v̄(S)

for any S ∈ S, and w(S) := 0 for every S ∈ 2N \S. Moreover, set v′ := v̄−w, namely, v′(S) := 0 for every

S ∈ S and v′(S) := v̄(S) for every S ∈ 2N \ S. Note that v′(N) := v̄(N) as N ∈ 2N \ S. For any S ∈ S,
we have

∑
j∈S xj ≥ 0 = v′(S); and for any S ∈ 2N \ S, by x ∈ C(v̄), we have

∑
j∈S xj ≥ v̄(S) = v′(S);

and for N , we have
∑

j∈N xj = v̄(N) = v′(N). Hence, the core of v′ is not empty. Moreover, by the

construction of v′, v′ is zero-normalized because v̄ is zero-normalized and v′({i}) = v̄({i}) for any i ∈ N ,

and v′ is nonnegative because for every S ∈ S, v′(S) = 0 and for every S ̸∈ S, v′(S) = v̄(S) ≥ 0 by the

construction of S. Note that v′(N) = v̄(N) ≥ 0 holds because if v̄(N) < 0, this contradicts C(v̄) ̸= ∅
and v̄({i}) = 0 for every i ∈ N . Hence, in view of Proposition 3.1, v′ is a positive linear combination

of simple N-monotonic veto-controlled games. If v̄(S) ≥ 0 for all S ⊆ N , i.e., S is empty, then w is the

zero game and v′ := v̄. Hence, C(v′) ̸= ∅ and v′(= v̄) is nonnegative and zero-normalized. Again by

Proposition 3.1, v′ is a positive linear combination of simple N-monotonic veto-controlled games.

Now we prove the if-part. First C(v′) ̸= ∅ follows from Proposition 3.1. Moreover, it holds that

(0, ..., 0) ∈ C(w) because w(N) = 0, w(S) ≤ 0 for all S ⊊ N . Hence, superadditivity of the core and

equality v̄ = v′ + w jointly imply that C(v̄) ̸= ∅.

The proposition shows that we can decompose a balanced game into some “easy” games, namely,

simple N-monotonic veto-controlled games. The if-part is straightforward because each of such easy

games also has a nonempty core.*2 The only-if-part can be seen as a decomposition of a balanced game.

To see this, we consider a game v that is given as Table 1.

Table 1 The first step

1 2 3 12 13 23 123 coefficients

v 0 0 0 6 5 4 9 -

v1 0 0 0 5 5 0 5 1

v2 0 0 0 1 0 3 3 1

v3 0 0 0 0 0 1 1 1

*2 Although formally stated in Section 5, every simple game with v(N) = 1 has a nonempty core if and only if it is

veto-controlled.
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Below, we describe the rough sketch of the proof thorough the example. The formal proof is provided

in Section 5. The decomposition consists of two steps. In the first step, we first fix an arbitrary core

allocation: (5, 3, 1) in this example. Given this allocation, we decompose v into v1, v2, v3, each of which

is a N-efficient veto-controlled game as Table 1 shows. It holds that v1 + v2 + v3 = v. Note that for each

i ∈ N , i is a veto player in vi.

Table 2 The second step

1 2 3 12 13 23 123 coefficients

v1 0 0 0 5 5 0 5 -

v̂112 0 0 0 1 1 0 1 5

v2 0 0 0 1 0 3 3 -

v̂212 0 0 0 1 0 1 1 1

v̂223 0 0 0 0 0 1 1 2

v3 0 0 0 0 0 1 1 -

v̂323 0 0 0 0 0 1 1 1

In the second step, each vi is furthermore decomposed into some simple games so as to keep N-

efficient. In view of Table 2, we consider, for example, v2. We first focus on coalition 12, that has

the smallest positive worth in v2. Using this worth, we cut off v̂212 with coefficient 1. Now we focus

on coalition 23, that has the second smallest positive worth in v2. We derive v̂223 with coefficient 2.

Although this finishes the decomposition in this example, we generally repeat this procedure until it

reaches the zero game for every player. As a result, we obtain vi =
∑

T∈T i ηiT v̂
i
T for each i ∈ N , where

T i = {T ⊆ N |vi(T ) > 0, ̸ ∃T ′ ⊆ N such that vi(T ) = vi(T ′)} and ηiT > 0 for every i ∈ N and T ∈ T i.

In the end, we achieve the decomposition

v =
∑
i∈N

∑
T∈T i

ηiT v̂
i
T .

4 Concluding remarks

In this paper, we provide a new necessary and sufficient condition for the core of a TU-game to be

nonempty. We conclude this paper with the following two remarks.

Relationship with PMAS: Sprumont (1990) studies the concept of population monotonic alloca-

tion schemes (PMAS) that is a vector (xS)S⊆N satisfying (i)
∑

j∈S xS
j = v(S) for any S ⊆ N , and (ii)

xS
i ≤ xT

i for any i ∈ N and any S, T with i ∈ S ⊆ T ⊆ N . Condition (i) is called coalitional efficiency.

Condition (ii) is population monotonicity, which guarantees that as a coalition grows larger its members

obtain more payoffs. In general, a game does not necessarily have a PMAS, while if it does then its

allocation to the grand coalition N , xN , lies in the core. Sprumont (1990) shows that a zero-normalized

game has a PMAS if and only if it is a positive linear combination of simple monotonic veto-controlled

games. Given that our condition is a positive linear combination of simple N-monotonic veto-controlled

games, these two necessary and sufficient conditions are very contrastive. Note that monotonicity implies
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N-monotonicity, which is consistent with the fact that if a game has a PMAS, it also has a nonempty

core.

The core and the D-core: The domination core, which is also known as the D-core, is a superset of

the core. An allocation x dominates y if there exists a coalition S ⊆ N such that (i) xj > yj for every

j ∈ S and (ii)
∑

j∈S xj ≤ v(S). The D-core of a game v, DC(v), is the set of efficient allocations that

are not dominated by any other allocations. If the core is nonempty, then the core coincides with the

D-core.*3 This fact implies that as long as the core is nonempty, we can identify the D-core with the

core. However, since there is a game that has a nonempty D-core and an empty core, our condition is a

sufficient condition for the D-core to be nonempty.

5 Proof of Proposition 3.1

Proof. IF: This readily follows from the following three facts: (i) a simple game has a nonempty core

if and only if the game is veto-controlled and N-monotonic. We provide the proof of this statement

below;*4 (ii) C(v) + C(w) ⊆ C(v + w) for any v, w ∈ GN ; (iii) C(v) ̸= ∅ ⇒ C(av) ̸= ∅ for any a ∈ R+.

Namely, every simple N-monotonic veto-controlled game has a nonempty core in view of (i), and their

positive linear combination also has a nonempty core by (ii) and (iii).

Proof of (i) We begin with the if-part. Let i∗ be a veto player. Consider x satisfying xi∗ = 1 and xi = 0

for all i ̸= i∗. This belongs to the core because for any S with i∗ ∈ S ⊆ N , we have
∑

j∈S xj = 1 and v(S)

is 0 or 1, which results in
∑

j∈S xj ≥ v(S); and for any S with i∗ ̸∈ S ⊆ N , we have
∑

j∈S xj = 0 = v(S).

Now, we prove the only-if-part. Suppose that there is no veto player or v is not N-monotonic. If v is

not N-monotonic, then there exists a coalition S ⊆ N such that v(S) > v(N). Hence, the core is empty.

If there is no veto player, then we assume that some allocation x is in the core. Since every player is

not a veto player, for any i ∈ N , there exists S ̸∋ i such that v(S) = 1. First, consider i1 ∈ N and

S1 ̸∋ i1 such that v(S1) = 1. Note that the core element x must satisfy
∑

j∈S1
xj = 1. Now, consider

i2 ∈ S1 and S2 ̸∋ i2 such that v(S2) = 1. Then S1 ̸= S2 and
∑

j∈S2
xj = 1. Moreover S1 ∩ S2 ̸= ∅ and∑

j∈S1∩S2
xj = 1 because otherwise, either one contradicts

∑
j∈N xj = 1. Next, consider i3 ∈ S1∩S2 and

S3 ̸∋ i3 such that v(S3) = 1. In the same manner, we obtain S1 ∩ S2 ∩ S3 ̸= ∅ and
∑

j∈S1∩S2∩S3
xj = 1.

Repeating this procedure, we reach a coalition Sk and a player i∗ such that ∩k
h=1Sh = {i∗} and xi∗ = 1.

Hence, for any j ∈ N \ {i∗}, xj = 0 (note that xj ≥ 0 for all j ∈ N because of individual rationality).

However, even for i∗, there exists S∗ ̸∋ i∗ such that
∑

j∈S∗ xj = 1. This contradicts the fact that xj = 0

for any j ∈ N \ {i∗}. This completes the proof of (i).

ONLY IF: Since v is a balanced game, let x ∈ C(v). Without loss of generality, let x1 ≥ ... ≥ xn. As

v is zero-normalized, xn ≥ 0.

Step 1: Set w0(S) := v(S) for any S ⊆ N . Define v1(S) := min{x1, w
0(S)} for any S with 1 ∈ S ⊆ N ,

*3 Since this simple fact is hardly mentioned in preceding works, we provide the proof here. We begin with the following

condition: for any S ⊆ N , v(N) ≥ v(S) +
∑

j∈N\S v({j}). If a game v ∈ GN satisfies this condition, we have

C(v) = DC(v). Now, we assume that C(v) ̸= ∅. From the definition of C(v), it follows that for some x ∈ C(v),

v(N) =
∑

j∈N xj =
∑

j∈S xj +
∑

j∈N\S xj ≥ v(S)+
∑

j∈N\S v({j}). Hence, the game satisfies the condition above,

which implies C(v) = DC(v). This implies that if C(v) ̸= ∅, then C(v) = DC(v).
*4 See Peters (2008) Theorem 16.11 for another proof.
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and v1(S) := 0 for any S with 1 ̸∈ S ⊆ N . Now, set w1(S) := w0(S)− v1(S) for any S ⊆ N . Similarly,

define v2(S) := min{x2, w
1(S)} for any S with 2 ∈ S ⊆ N , and v2(S) := 0 for any S with 2 ̸∈ S ⊆ N .

In general, for any player i = 1, ..., n and any S ⊆ N ,

vi(S) :=

{
min{xi, w

i−1(S)} if i ∈ S,
0 if i ̸∈ S,

(5.1)

wi(S) := wi−1(S)− vi(S) for any S ⊆ N.

This recursive process ends at player n with setting vn.

We show that v = v1 + ...+ vn. We arbitrarily fix S ⊆ N . We have

∑
j∈N

vj(S)
(5.1)
=

∑
j∈S

vj(S) =

|S|∑
k=1

vjk(S), (5.2)

where players j1, ..., j|S| are ordered to satisfy xj1 ≥ ... ≥ xj|S| . Since
∑

j∈S xj ≥ v(S), in view of (5.1),

there exists a player jk∗ (1 ≤ k∗ ≤ |S|) such that

vjk(S) = xjk for k = 1, ..., k∗ − 1,

vjk∗ (S) = wjk∗−1(S), (5.3)

vjk(S) = 0 for k = k∗ + 1, ..., |S|.

As for the second line of (5.3), we have

vjk∗ (S) = wjk∗−1(S)
(5.1)
= wjk∗−2(S)− vjk∗−1(S)

(5.1)
= wjk∗−3(S)− vjk∗−2(S)− vjk∗−1(S)

...

= w0(S)−
k∗−1∑
k=1

vjk(S)

= v(S)−
k∗−1∑
k=1

xjk , (5.4)

where the last equality holds because w0(S) = v(S) and the first line of (5.3). Hence, we have

(5.2) :

|S|∑
k=1

vjk(S)

=

[
k∗−1∑
k=1

vjk(S)

]
+ vjk∗ (S) +

 |S|∑
k=k∗+1

vjk(S)


(5.3)(5.4)

=

[
k∗−1∑
k=1

xjk

]
+ v(S)−

k∗−1∑
k=1

xjk +

 |S|∑
k=k∗+1

0


= v(S).

Thus, we obtain v = v1 + ...+ vn.

From (5.1), it follows that for each vi (i = 1, ..., n), vi(S) = 0 if i ̸∈ S. Hence, every vi is veto-

controlled. Moreover, in view of v(N) =
∑

j∈N xj and v(N) = v1(N) + ...+ vn(N) and (5.1), for every
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vi (i = 1, ..., n) we have

vi(N) = xi. (5.5)

For any S ⊊ N ,

vi(S)
(5.1)
=

{
min{xi, w

i−1(S)} ≤ xi
(5.5)
= vi(N) if S ∋ i,

0 ≤ xi
(5.5)
= vi(N) if S ̸∋ i.

Hence, every vi is N-monotonic. This completes Step 1. We have decomposed v into the sum of v1, ..., vn

and shown that each vi is veto-controlled and N-monotonic.

Step 2: Fix a player i ∈ N such that vi is not the zero game. Recall that a game v is called the zero

game if v(S) = 0 for every S ⊆ N . Without loss of generality, let T1, ..., Tm ⊆ N satisfy

0 < vi(T1) < ... < vi(Tm) (5.6)

for some m ≤ 2n − 1. If there are some coalitions T, T ′ satisfying 0 < vi(T ) = vi(T ′), we adopt one of

them and remove the other to establish strict inequalities. In view of (5.6), if Tm ̸= N , then either (i)

there exists Tk such that Tk = N and k = 1, ...,m− 1 or (ii) vi(N) = 0 holds. However, (i) immediately

violates N-monotonicity because vi(Tk = N) < vi(Tm ̸= N) and (ii) is also incompatible with the fact

that vi is N-monotonic and is not the zero game. Hence we obtain Tm = N .

Let T = {T1, ..., Tm}.*5 We recursively define viT1
, ..., viTm

as follows: for any S ⊆ N ,

viT1
(S) :=

{
vi(T1) if S ∈ T ,
0 if S ̸∈ T ,

viT2
(S) :=

{
vi(T2)− vi(T1) if S ∈ T \ {T1},
0 if S ̸∈ T \ {T1},

... (5.7)

viTm
(S) :=

{
vi(Tm)− vi(Tm−1) if S ∈ T \ {T1, ..., Tm−1},
0 if S ̸∈ T \ {T1, ..., Tm−1}.

By the construction (5.7), for any S ∈ T , say S = Tk, we have∑
T∈T

viT (Tk)
(5.7)
= [vi(T1)] + [vi(T2)− vi(T1)]

+...+ [vi(Tk)− vi(Tk−1)] = vi(Tk).

For any S ̸∈ T , we readily have
∑

T∈T viT (S)
(5.7)
= 0

(5.6)(S ̸∈T )
= vi(S). Hence, we obtain

vi(S) =
∑
T∈T

viT (S) (5.8)

for any S ⊆ N , namely, vi =
∑

T∈T viT .

In view of (5.6), for any Tk ∈ T , vi(Tk)− vi(Tk−1) > 0. For any Tk ∈ T with 2 ≤ k ≤ m, we define

v̂iTk
(S) :=

1

vi(Tk)− vi(Tk−1)
viTk

(S) (5.9)

*5 Strictly speaking, T depends on i. However, since the player i ∈ N is fixed throughout this step, we omit i for

simplicity.
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for any S ⊆ N . For k = 1, v̂iT1
(S) = 1

vi(T1)
viT1

(S). Hence, for any S ⊆ N , we obtain

vi(S)
(5.8)
=

m∑
k=1

viTk
(S)

(5.9)
= vi(T1) · v̂iT1

(S)

+(vi(T2)− vi(T1)) · v̂iT2
(S)

...

+(vi(Tm)− vi(Tm−1)) · v̂iTm
(S).

In view of (5.7) and (5.9), every v̂iTk
is simple and N-efficient. By the construction of T and (5.7), every

v̂iTk
is veto-controlled. By (5.6), the coefficients are positive. This completes the proof.
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