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Abstract

In this paper, we introduce a new concept of core by extending the definition of deviation. The

traditional definition of deviation allows for players to deviate if some profitable allocation exists

after their deviation, while our new definition requires that all possible allocations are profitable.

Hence, our core becomes a superset of the traditional core. We examine some properties that our

new core satisfies and provide a sufficient condition for being nonempty. Moreover, we apply Ray’s

(1989) credibility to our core.
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JEL Classification: C71

1 Introduction

The traditional theory of core is based on the assumption that if members of a deviating coalition

choose a particular allocation, then they can implement the allocation with certainty. The mathematical

definition of deviation exhibits this spirit. Let S be a coalition of players, RS be the set of |S|-dimensional

real vectors, where |S| is the number of members of S, and V (S) ⊆ RS be the set of feasible allocations

for S. A coalition S deviates from an allocation x if there exists y ∈ V (S) such that yj > xj for any j ∈ S,

namely, if there exists at least one profitable outcome y, they can deviate and obtain y with certainty.

The traditional core is defined by the set of allocations from which no coalition deviates. However, there

are many actual economic scenes in which the members of a coalition cannot determine or unanimously

choose an allocation to deviate. To see this, we consider the following two cases: external uncertainty

and internal uncertainty.

We begin with external uncertainty. We consider n players who work for a firm. Let N be the set of

the players. Each player receives a payoff 1
n by working for the firm. Now, some players try to become

independent from the firm N and start their own firm S ⊊ N , |S| > n
2 , where |S| is number of members

of S. If the economy is good, each member of S obtains 1
|S| . If the economy is bad, they obtain zero.
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We formulate the set of possible allocations for S as V (S) = {( 1
|S| )j∈S , (0)j∈S} ⊆ RS if |S| > n

2 , and

V (S) = {(0)j∈S} otherwise. As mentioned above, the traditional definition may allow for coalition S

to deviate from N because the good outcome ( 1
|S| )j∈S exists, such that 1

|S| >
1
n for every member of S

with |S| > n
2 . Certainly, if the outcomes in V (S) are derived from controllable factors, e.g., quantity of

input or the technology they employ, then this definition might be plausible. However, as described in

the example, the condition of the economy is not controllable for the members of S, and hence, S cannot

“choose” the good outcome. Therefore, S might not deviate from ( 1n )j∈N , as its members are afraid of

(0)j∈S .

Coalition S’s external uncertainty may be caused by the other players N \ S. The class of partition

function form games or games with externalities (Thrall 1961; Thrall and Lucas 1963) is a seminal

attempt that tries to model this kind of external uncertainty. For a partition function form game,

the set of allocations of a coalition S depends on S’s members and the structure of N \ S, which is

mathematically defined as a partition of N \S. Of course, the members of S cannot choose the partition

of N \ S. Therefore, each coalition S has uncertainty about their allocations. A coalition function form

game can be thought of as a model to avoid this uncertainty. Aumann (1960) assumes that V (S) is the

set of feasible allocations that are independent of conditions outside S. This is justified as follows: V (S)

is the set of “maximin” allocations that S can guarantee given that N \ S minimizes it. In other words,

the problem of external uncertainty has been avoided by “fixing” uncertainty to the worst outcome.

Hence, if we do not fix an external partition, the definition of core becomes plural.*1

Uncertainty is also found inside a coalition S that is deviating from N . Now, let S = {i, j} and suppose

that if the members of S become independent from N and start their own business, then they obtain

total surplus 1 with certainty. Moreover, suppose that player i is an egalitarian and claims 0.5 as his

share (therefore, 0.5 for j), while player j is a performance-based player and actually contributes more

than i; she claims 0.6 (thus 0.4 for i). Their preferences then conflict within S, as i prefers (0.5, 0.5),

but j prefers (0.4, 0.6). As this example illustrates, conflict between deviating players may prevent them

from reaching a binding agreement, which may not resolve the traditional definition of deviation and

may admit of an alternative formulation of core.

Internal uncertainty also appears in internal conflict for coordination games and equilibrium selection.

To see this, we consider the following simple stag hunt game.*2 Each of three hunters A,B,C chooses

his (pure) strategy stag or hare. If three hunters choose stag, then they get a large stag and obtain

a total payoff of 21. If two hunters choose stag, they obtain a middle stag and a total payoff of 16.

If one hunter chooses stag, he cannot hunt any stag and obtains zero. If he chooses hare alone, he

gets one hare and a payoff of 2, independent of the others’ choices. These three hunters first agree to

form a team, or a coalition, and then go hunting, in which each of them individually chooses stag or

hare. If a three-hunter team is formed, then the corresponding payoff matrix of the three-hunter game

*1 Funaki and Yamato (1999) consider the pessimistic core and the optimistic core for partition function form games.

Kóczy (2007) defines a recursive core for partition function form games. Abe and Funaki (2017) propose conditions for

the cores to be nonempty. Abe (2018) characterizes the cores by consistency properties in the presence of externalities.
*2 Stag hunt games are not the only examples illustrating internal conflict. Almost all coordination games contain a

similar conflict; another example is battle of the sexes.
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is as summarized in Table 1. Table 2 is that of a two-hunter team. If one hunter goes alone, then he

gets one hare and obtains a payoff of 2. Clearly, for each of three-hunter and two-hunter teams, there

are two Nash equilibria: (stag,stag,stag), (hare,hare,hare); and (stag,stag), (hare,hare). As Harsanyi

and Selten (1988) discuss, the stag-equilibrium payoff dominates the hare-equilibrium, and the latter

risk dominates the former. Now, which team of hunters is formed and goes hunting? Moreover, which

outcome (namely, payoffs and strategy profile) is chosen by the hunters? If members of a two-hunter

team agree on the stag-equilibrium and can bind each other to the equilibrium, then allocation (7, 7, 7)

of the stag-equilibrium should be blocked by the coalition of the two hunters through allocation (8, 8).

However, as the theory of equilibrium selection questions, it is not necessarily obvious that each of the

two hunters commits to accomplish the stag-equilibrium. This uncertainty is also a background that we

attempt to define for a new core concept.

Table 1 Stag hunt of a three-hunter team

B

C: stag stag hare

A
stag 7, 7, 7 8,6,8

hare 6, 8, 8 2,2,0

B

C: hare stag hare

A
stag 8, 8, 6 0,2,2

hare 2, 0, 2 2,2,2

Table 2 Stag hunt of a two-hunter team

stag hare

stag 8, 8 0,2

hare 2, 0 2,2

Given these arguments, how should we deal with uncertainty and modify the concept of core? This

question motivates us to introduce a new notion of core, the unbinding core. This is our main purpose

of the paper. We also investigate important properties of the unbinding core that the original core

obeys. We introduce this new concept of core and analyze some numerical examples, including the stag

hunt game, in Section 2. In Section 3, we present general basic differences and similarities between the

core and the unbinding core. In Section 4, we propose a sufficient condition for the unbinding core to

be nonempty. In Section 5, we consider credibility of the unbinding core. The notion of credible core

was introduced by Ray (1989) to formulate a deviation by credibility. The credible (traditional) core

coincides with the traditional core, while this coincidence does not hold for the unbinding core. Section

6 presents concluding remarks.

2 Preliminaries

Let N = {1, ..., n} be the set of players. A coalition S is a subset of N : S ⊆ N . We denote by |S|
the number of players in S and use n to denote |N |. For any nonempty coalition S ⊆ N , let V (S)
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denote the set of all possible allocations for S, namely, V (S) ⊆ RS . We assume that V (S) ̸= ∅ for

any S ⊆ N . If allocations in V (S) are countable, we denote by |V (S)| the number of allocations in

V (S). For example, if V ({1, 2}) = {(6, 4), (5, 5), (4, 6)}, then |V ({1, 2})| = 3. An outcome is a pair

of an allocation and a coalition structure. A coalition structure of N is a partition of N . We denote

it by P and the set of all partitions of N by Π(N). Let F ⊆ RN be the set of outcomes, formally,

F = {(x,P)|P ∈ Π(N), x ∈ RN , xS ∈ V (S) for any S ∈ P}, where xS is a restriction of x to S, namely

xS ∈ RS and xS
j = xj for any j ∈ S. A game is (N,F, V ). In this paper, we assume the formation of the

grand coalition and restrict our attention to the stability of allocations for it. Hence, we assume that

F = {(x, {N})|x ∈ V (N)}. We use (N,V ), or simply V , to denote a game.

A coalition S deviates from an allocation x ∈ RN if there exists y ∈ V (S) such that yj > xj for any

j ∈ S.*3 A coalition S unbindingly deviates from an allocation x ∈ RN if for all y ∈ V (S), yj > xj for

any j ∈ S. By S dev x (S devUB x), we denote a coalition S’s deviation (unbinding deviation) from

an allocation x. The unbinding deviation illustrates deviating players’ cautious attitude: players do not

deviate from N unless all possible outcomes are profitable.

We define the core C as the set of allocations in V (N) from which no coalition deviates, formally,

C(V ) = {x ∈ V (N)| ̸ ∃S ⊆ N such that S dev x}.

Similarly, the unbinding core CUB is defined by

CUB(V ) = {x ∈ V (N)| ̸ ∃S ⊆ N such that S devUB x}.*4

Clearly, S devUB x ⇒ S dev x. Hence, for every V , we have C(V ) ⊆ CUB(V ), which illustrates that

conflicts and uncertainty make players less likely to deviate. Therefore, if |V (S)| = 1 for every S ⊊ N ,

then we have CUB(V ) = C(V ).

Example 2.1. We now analyze the stag hunt game introduced in Section 1. We adopt Nash equilibria

as outcomes and set V as follows.*5

V (S) =

 {(7, 7, 7), (2, 2, 2)} if |S| = 3,
{(8, 8), (2, 2)} if |S| = 2,
{(2)} if |S| = 1.

We first focus on the traditional core. The core is empty. This is interpreted as follows: both allocations

for the three-hunter team, (7, 7, 7) and (2, 2, 2), are deviated by each two-hunter team through (8, 8),

which means that each team consisting of two hunters is binding and the two hunters can achieve the

stag-equilibrium with certainty. This brings about the empty core. Now, we consider the unbinding

core. In the view of unbinding deviation, the members of a team cannot bind each other to a particular

*3 There are various definitions for deviation. This definition is the one employed by, for example, Ray (1989) and

Peleg and Sudhölter (2007) (for the latter, see Subsection 12.1: “The Core of NTU Games”). Another definition is

discussed in Section 6.
*4 If we do not assume the formation of the grand coalition, the definitions are as follows: S dev (x,P) if ∃y ∈ V (S)

s.t. yj > xj ∀j ∈ S, and C(V ) = {(x,P) ∈ F | ̸ ∃S ⊆ N s.t. S dev (x,P)}. The unbinding core is also defined in the
same manner. These general settings are desirable in the context of coalition formation and games with externalities.
See, for example, Greenberg (1994) and Kóczy and Lauwers (2004).

*5 It is rational for the member of a one-hunter team, namely, a hunter, to choose hare and obtain payoff 2 because if

he chooses stag alone, he obtains zero.
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outcome: once they form a team and go hunting, each hunter makes a decision individually and plays

a stag hunt game. Neither (7, 7, 7) nor (2, 2, 2) are eliminated by any two-hunter deviation (or any one-

hunter deviation) because hunters are cautious of the possibility that their deviation may lead to the

hare-equilibrium (2, 2), which is not profitable for them. Moreover, even the grand coalition does not

deviate from (2, 2, 2) to (7, 7, 7) in the view of unbinding deviation because the three hunters cannot

bind each other to the good equilibrium.*6 As a consequence, CUB(V ) = {(7, 7, 7), (2, 2, 2)}.*7 It may be

worth mentioning that their cautious attitude maintains the formation of the grand coalition as a result.

Example 2.2. We consider a variant of the three-person majority game: N = {1, 2, 3},

V (N) = {x ∈ R3|
∑
j∈N

xj = 1},

V ({1, 2}) = {(0.5, 0.5)},
V ({1, 3}) = {(0.5, 0.5)},
V ({2, 3}) = {(0.5, 0.5), (0.6, 0.4), (0.4, 0.6)},

V ({i}) = {(0)} for all i ∈ N.

In this example, for any x ∈ V (N) \ {(0, 0.5, 0.5)}, there exists a coalition S such that S dev x. Hence,

C(V ) = {(0, 0.5, 0.5)}.

In contrast, the unbinding core becomes a proper superset of the core. For any set X, we denote the

convex hull of X by co(X) (including extreme points) and the interior of X by intX. In addition to

the allocation (0, 0.5, 0.5), allocations (0.5, 0, 0.5) and (0.5, 0.5, 0) are also the members of the unbinding

core. Moreover, define La := co({(0.5, 0, 0.5), (0.6, 0, 0.4)}), Lb := co({(0.5, 0.5, 0), (0.6, 0.4, 0)}), Aa :=

intco({(0.5, 0, 0.5), (0.6, 0, 0.4), (0.5, 0.1, 0.4)}) and Ab := intco({(0.5, 0.5, 0), (0.6, 0.4, 0), (0.5, 0.4, 0.1)}).
We have

CUB(V ) = {(0, 0.5, 0.5)} ∪ La ∪ Lb ∪Aa ∪Ab.

The expanded allocations in La ∪ Aa are those that players 1 and 2 derive from player 3 through the

presence of (0, 0.6, 0.4). Once an allocation in La∪Aa results, allocation (0, 0.6, 0.4) is no longer profitable

for player 3. Therefore, player 3 does not agree with player 2 to jointly deviate to form {2, 3}, and it

belongs to the unbinding core. The reason behind this disagreement lies in the multiplicity of allocations

that the coalition {2, 3} has. This example tells us that uncertainty due to the small change in the

possible allocations of coalition{2, 3} implies that it is possible for both players 2 and 3 to obtain benefit

0.1 because (0.5, 0.1, 0.4) and (0.5, 0.4, 0.1) are in the unbinding core.

If the set of allocations for {2, 3} is restricted to V ({2, 3}) = {(0.5, 0.5)}, then every allocation in

La ∪ Aa, except for (0.5,0,0.5), is bindingly and unbindingly deviated, and CUB(V ) = C(V ). This can

be seen as an example illustrating the relationship between the expansion of the unbinding core and that

of V (S). We elaborate upon this in the following section.

*6 Note that we do not force the deviating hunters to choose an equilibrium but simply let them take into account a

wider range of possible outcomes that may happen after their deviation.
*7 It is not necessarily essential that allocation (2, 2, 2) belong to the unbinding core. If we assume that the one-hunter

team can more smoothly hunt a hare, as the hunting ground is less crowded, and that V ({i}) = {(2 + ϵ)}, ϵ > 0,

then CUB(V ) = {(7, 7, 7)}.
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3 Basic properties of the cores

3.1 Coincidence between the cores

We begin this section by showing some conditions for the unbinding core to coincide with the traditional

core. For any S ⊆ N and any y ∈ RS , we define DOMS(y, V ) = {x ∈ V (N)|yj > xj for all j ∈ S} ⊆
RN . Let ηS(V ) =

∩
y∈V (S) DOMS(y, V ), and similarly, µS(V ) =

∪
y∈V (S) DOMS(y, V ). We offer the

following expressions and conditions. The proofs are provided in the appendix.

Lemma 3.1.

C(V ) = V (N) \
∪

S⊆N

µS(V ),

CUB(V ) = V (N) \
∪

S⊆N

ηS(V ).

Proposition 3.2. The following three statements are equivalent:

1 C(V ) = CUB(V )

2
∪

S⊆N µS(V ) =
∪

S⊆N ηS(V )

3 for any x ∈ V (N), x satisfies either

(i) there exists S ⊆ N such that x ∈ ηS(V ) or

(ii) for any S ⊆ N , x ̸∈ µS(V ).

Given that C(V ) ⊆ CUB(V ), the third condition means that every allocation x ∈ V (N) either belongs

to C(V ) or not to CUB(V ), which results in no “gap” between the two cores. Proposition 3.2 shows

that the unbinding core coincides with the core if every allocation that is dominated by some allocation

through some coalition S is also dominated by all allocations in V (S).

Remark 3.3. The unbinding core satisfies covariance as well as the binding core.

3.2 Monotonicity

In the traditional theory of core, an expansion of V (S) implies that coalition S becomes more likely

to deviate from N because it offers more options to coalition S, which, as a result, reduces the core.

However, for the unbinding core, an expansion of V (S) brings about the result opposite to what the

following proposition suggests.

Proposition 3.4. Let V, V ′ be games.

V ′(S) ⊇ V (S) for all S ⊆ N =⇒ CUB(V ′) ⊇ CUB(V )

Proposition 3.4 states that the unbinding core CUB(V ) expands to CUB(V ′) as V (S) expands to V ′(S).

On the other hand, the formal proposition about the traditional core is provided as follows, which shows

that the traditional core shrinks as V (S) expands.
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Proposition 3.5. Let V, V ′ be games.

V ′(S) ⊇ V (S) for all S ⊊ N
and V ′(N) = V (N)

=⇒ C(V ′) ⊆ C(V )

The proofs are provided in the appendix. How can we understand the difference between these proposi-

tions? We interpret this result in terms of negotiation and uncertainty. From the negotiation viewpoint,

we consider V (S) as the set of allocations that the players in S negotiate with each other to solve their

internal conflict. The expansion of V (S) implies that the players of S obtain more options to nego-

tiate, which may make it more difficult to build consensus within S and to deviate from N . As for

the viewpoint of uncertainty, an expansion of V (S) means that the members of S get more uncertain

about which allocation finally results after their deviation. The expansion of the unbinding core exhibits

players’ cautious attitudes toward the possibility that the worst outcome may become worse.

To examine Propositions 3.4 and 3.5, we consider a symmetric version of Example 2.2: we set

V ({2, 3}) = {(0.5, 0.5)}, and the same for the other coalitions. We consider V ′ as the original game

in Example 2.2. Clearly, V ′(S) ⊇ V (S) for all S ⊆ N and V ′(N) = V (N). Since |V (S)| = 1 for any

S ⊆ N , we readily have

CUB(V ) = C(V ) = {(0, 0.5, 0.5), (0.5, 0, 0.5), (0.5, 0.5, 0)}.

Expanding V ({2, 3}) to V ′({2, 3}) shrinks the core to C(V ′) = {(0, 0.5, 0.5)} and allows for the unbinding

core to contain La, Lb, Aa, and Ab, as discussed in Example 2.2.

Now, we focus on “how V (S) expands.” The following proposition shows that if V (S) expands to

contain modest choices, then it does not affect the unbinding core.

Proposition 3.6. Let V be a game and fix an arbitrary coalition S∗ ⊊ N . Let V ′(S∗) = co(V (S∗)) and

V ′(S) = V (S) for any S ⊆ N (S ̸= S∗). Then, CUB(V ′) = CUB(V ).

The traditional core does not obey this property. This proposition shows that even if an intermediate

choice is added, it does not influence the players’ (unbinding) deviation.*8 We use Example 2.2 again

to describe Proposition 3.6. Now, let V be the game in Example 2.2. We define V ′ as V ′({2, 3}) =

co({(0.4, 0.6), (0.6, 0.4)}) and V ′(S) = V (S) for any other coalition S ⊆ N . It holds that η{2,3}(V ′) =

η{2,3}(V ). Hence, CUB(V ′) = CUB(V ). Note that we can weaken the constraint of Proposition 3.6 by

replacing V ′(S∗) = co(V (S∗)) with V ′(S∗) = V (S∗) ∪ C, where C is an arbitrary subset of co(V (S∗)).

We conclude this subsection with two technical remarks.

Remark 3.7. As for Proposition 3.5, one might hold that V ′(N) = V (N) is not necessary. Hence, let

*8 Note that the following is a corollary of Proposition 3.6: Let V be a game. Let V ′(S) = co(V (S)) for any S ⊊ N

and V ′(N) = V (N). Then, CUB(V ′) = CUB(V ).
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us briefly check the role of the condition through Example 2.2. We define V as follows:

V (N) = {x ∈ R3|
∑
j∈N

xj = 1, x ̸= (0, 0.5, 0.5)},

V ({1, 2}) = {(0.5, 0.5)},
V ({1, 3}) = {(0.5, 0.5)},
V ({2, 3}) = {(0.6, 0.4), (0.4, 0.6)}

V ({i}) = {(0)} for all i ∈ N.

Let V ′ be the game of Example 2.2. Hence, V ′(S) ⊇ V (S) for all S ⊊ N and V ′(N) ⊋ V (N). However,

we have C(V ) = ∅ ⊊ {(0, 0.5, 0.5)} = C(V ′), which violates Proposition 3.5.

Remark 3.8. NTU games (games with nontransferable utility) are often assumed to be comprehensive.

A game is comprehensive if for every S ⊆ N , if x ∈ V (S), y ∈ RS , and yj ≤ xj for any j ∈ S,

then y ∈ V (S). Proposition 3.4 suggests that we need to pay attention to comprehensive games: if a

game is comprehensive, then no coalition unbindingly deviates, and the unbinding core is V (N). This

is because of the pessimism of the unbinding core: the comprehensiveness of V (S) is considered the

possibility that a boundlessly bad allocation may result in an outcome of S’s deviation. This contrasts

with the optimistic attitude that the traditional definition of deviation describes. Fortunately, by slightly

changing the definition of unbinding deviation, we can avoid this technical problem and apply the spirit

of unbinding deviation to comprehensive games. Let V be an arbitrary game. We now define S dev*UB x

as, for all y ∈ V ∗(S), yj > xj for any j ∈ S, where V ∗(S) is the set of efficient allocations given by

V ∗(S) = {y ∈ V (S)| ̸ ∃y′ ∈ V (S) s.t. y′j ≥ yj for all j ∈ S, y′k > yk for some k ∈ S}. Let C*UB(V ) =

{x ∈ V ∗(N)| ̸ ∃S ⊆ N s.t. S dev*UB x}. It readily follows that C*UB(V ) = CUB(V ∗).

3.3 The relationship with TU games

In the previous subsection, we compared the unbinding core with the traditional core. In this sub-

section, we study the relationship with games with transferable utility (TU games) by constructing V

from a TU game v. Let v be a TU game, i.e., v : 2N → R. The core of a TU game v is the set of

allocations from which no coalition deviates. A coalition S deviates from allocation x (S dev x) if there

exists y ∈ RS such that
∑

j∈S yj ≤ v(S) and yj > xj for any j ∈ S. Therefore, the core of a TU game is

formally defined as follows:

C(v) =

x ∈ RN

∣∣∣∣∣∣
∑
j∈N

xj = v(N) and ̸ ∃S ⊆ N such that S dev x

 .

Similarly, we define the set of imputations as follows:

I(v) = {x ∈ RN |
∑
j∈N

xj = v(N) and xi ≥ v({i}) for all i ∈ N}

= {x ∈ RN |
∑
j∈N

xj = v(N) and ̸ ∃i ∈ N such that i dev x}.
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First, we examine the most standard construction of V (S): the set of allocations whose sum is equal

to v(S). For any TU game v, we define Vv(S) = {x ∈ RS |
∑

j∈S xj = v(S)} for any S ⊆ N .

Proposition 3.9. For any TU game v,

C(v) = C(Vv) ⊆ CUB(Vv) = I(v).

The proof is provided in the appendix. The reason behind this result is similar to Remark 3.8: some

allocation that is not profitable for some members in S prevents S from deviating. In other words, as

long as V (S) is not bounded, similar results hold. Next, we consider restricting V (S) to a particular

value. For any S ⊆ N , we define

V ED
v (S) =

(
v(S)

|S|
, ...,

v(S)

|S|

)
∈ RS .

Clearly, |V ED
v (S)| = 1 for any S ⊆ N . Therefore, we have CUB(V ED

v ) = C(V ED
v ) for any TU game v.

We denote it by CED(v). The following result is not difficult to check.

Proposition 3.10.

CED(v) ̸= ∅ ⇐⇒ for any S ⊆ N ,
v(S)

|S|
≤ v(N)

|N |
.

The proof is provided in the appendix. Proposition 3.10 and CED describe the stability of the equal

division of v(N) by assuming that members of every deviating coalition share its profit v(S) equally.

Selten (1972, 1987) studied a similar concept, called the equal division core. The only difference is

that the equal division core does not restrict the allocations for v(N) into the equal division: setting

V ED∗
v (S) = V ED

v (S) for every S ⊊ N and V ED∗
v (N) = {x ∈ RN |

∑
j∈N xj = v(N)}, we define the equal

division core as CED∗(v) = CUB(V ED∗
v ) = C(V ED∗

v ).*9 He investigated the equal division core through

experiments to observe subjects’ behavioral equity. On the other hand, Bhattacharya (2004) offers a

theoretical justification for the equal division core. He proposes some axioms including antimonotonicity

as Proposition 3.5 and provides an axiomatic characterization.

The equal division is not the only way to divide the surplus. We now consider the Shapley value instead

of the equal division. In the same manner as CED(v) and CED∗(v), we define CSh(v) and CSh∗(v). In

other words, we assume that deviating players share the profit v(S) by the Shapley value of the subgame

v|S after their deviation. It may be clear that balanced games are sufficient for CSh∗(v) to be nonempty.

However, this is not true for CSh(v). An example is a gloves game:

v(N) = v({1, 2}) = v({1, 3}) = 1 and v({2, 3}) = v({i}) = 0.

The Shapley value for the grand coalition is ( 23 ,
1
6 ,

1
6 ), whereas for {1, 2} and {1, 3}, the Shapley value is

( 12 ,
1
2 ). Hence, player 1 does not agree with the deviations {1, 2} and {1, 3}.

We can employ any solution concept ϕ as the way to distribute v(S) and define Cϕ(v) and Cϕ∗(v) in

the same manner. Below, we conclude this section by some brief corollaries and a remark derived from

the above observation.

*9 Selten originally defined the equal division core in more general settings. He did not necessarily assume that allocations

in the equal division core are efficient for the grand coalition.
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• If ϕ is a set-valued solution, then C(V ϕ
v ) may not coincide with CUB(V ϕ

v ).

• For any ϕ, we have CUB(V ϕ∗
v ) ⊇ C(V ϕ∗

v ) ⊇ C(v). Hence, balanced games are sufficient for them

to be nonempty.

• For any ϕ, if ϕ(v) ⊆ C(v) (or ϕ(v) ∈ C(v)), then CUB(V ϕ
v ) and C(V ϕ

v ) are nonempty.

Remark 3.11. For any single-valued solution ϕ, vector (ϕ(v|S))S⊆N can be seen as an allocation scheme

of v, namely, a vector assigning an allocation xS ∈ RS to every S ⊆ N . Sprumont (1990) defines

population monotonicity for allocation schemes: for any S, T with S ⊆ T , xS
j ≤ xT

j for any j ∈ S. We

can think of Cϕ(v) as another stability for allocation schemes because it requires ϕj(v|S) ≤ ϕj(v) for any

S ⊆ N and any j ∈ S. This stability is weaker than population monotonicity. Population monotonicity

guarantees a process of coalition formation to the grand coalition, while our concept prevents the grand

coalition from breaking up into partial coalitions.

4 The balancedness of the unbinding core

In this section, we provide a general sufficient condition for the unbinding core to be nonempty. This

is an extension of Shapley and Vohra (1991)’s approach using Kakutani’s fixed point theorem.*10

Let V +(S) = {x′ ∈ RN |∃x ∈ V (S) such that x′
j ≤ xj∀j ∈ S}. Define D̂OM

S
(y, V ) = {x ∈ RN |yj >

xj for all j ∈ S} and η̂S(V ) = the closure of
∩

y∈V (S) D̂OM
S
(y, V ). Throughout this section, we assume

that |V ({i})| = 1 and V ({i}) ∈ R++ for any i ∈ N . Define eS ∈ RN as eSi = 1 if i ∈ S and 0 if i ̸∈ S. A

collection of coalitions, B, is balanced if there exist nonnegative weights λS ∈ R+, S ∈ B, such that∑
S∈B

λSeS = eN .

Definition 4.1. A game V is unbindingly balanced if for any balanced collection B,∩
S∈B

η̂S(V ) ⊆ V +(N).

Proposition 4.2. If a game V is unbindingly balanced, then CUB(V ) ̸= ∅.

The proof is provided in the appendix. The game in Example 2.1, namely, the stag hunt game,

is unbindingly balanced. In this paper, our “game” does not necessarily mean an NTU game, which

is usually supposed to satisfy comprehensiveness, convexity, and closedness.*11 In the proof, we extend

Shapley and Vohra’s (1991) approach to our settings. We can also extend the condition for the traditional

core to our framework. The extended condition for the traditional core is weaker than the condition above.

*10 For a constructive proof of the core for NTU games, see Scarf (1967). A necessary and sufficient condition is provided

by Predtetchinski and Herings (2004).
*11 If V (S) is closed for every S ⊆ N , we can use ηS(V ) instead of its closure η̂S(V ).
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5 Credible coalitions

Ray (1989) introduces the notion of credible coalition and proposes a modified core concept called the

credible core. He shows that the traditional core and the credible (traditional) core are identical. His

investigation is also motivated by a similar concern: Clearly, coalitions incapable of reaching an agreement

within its members are not “credible” (Ray 1989, p. 186). In this section, we extend his notion to the

unbinding core. We begin with the definition of credible coalition.

Definition 5.1. A coalition S is credible if for some x ∈ V (S), there is no credible coalition T ⊊ S such

that T dev x. Every one-person coalition is credible.

Let CC(V ) be the credible core of game V , namely, the set of allocations from which no credible

coalition deviate. Clearly, C(V ) ⊆ CC(V ) for any game V . Ray (1989) shows that C(V ) = CC(V ) for

any game V . Now, how do we describe credibility for unbinding deviations? We introduce the following

two plausible forms of credibility for unbinding deviation.

Definition 5.2.

• A coalition S is credibleUB if for some x ∈ V (S), there is no credibleUB coalition T ⊊ S such that

T devUB x. Every one-person coalition is credibleUB.

• A coalition S is consistently credibleUB ( credible∗UB) if for all x ∈ V (S), there is no credible∗UB

coalition T ⊊ S such that T devUB x. Every one-person coalition is credible∗UB.

The former is a simple extension of Definition 5.1, where we replace dev with devUB . In other

words, for some x ∈ V (S) and for any proper subcoalition T of S, T does not unbindingly deviate from

x. On the other hand, the latter requires that for any x ∈ V (S) and any proper subcoalition T of S, T

does not unbindingly deviate from x. Therefore, the latter version of credibility may more consistently

exhibit the spirit of the unbinding deviation. We define CCUB(V ) and CC∗UB(V ) in the same manner:

CCUB(V ) = {x ∈ V (N)| ̸ ∃ credibleUB S ⊂ N such that S devUB x},
CC∗UB(V ) = {x ∈ V (N)| ̸ ∃ credible∗UB S ⊂ N such that S devUB x}.

It follows that CUB(V ) ⊆ CCUB(V ) and CUB(V ) ⊆ CC∗UB(V ) for any V . The following result shows

that CUB, CCUB(V ), and even CC∗UB(V ) are identical. The proof is provided in the appendix.

Proposition 5.3. For any game V , CUB(V ) = CCUB(V ) = CC∗UB(V ).

Given the consistent recursion of credibility∗UB, credibilityUB should be compatible with binding devi-

ation. We associate unbindingness with credibility∗UB and bindingness with credibilityUB. Proposition

5.3 shows that whether bindingness or unbindingness, whichever supports each deviating coalition’s cred-

ibility, the unbinding core is identical. The traditional core does not obey this property. To see this, we

define credible∗ in the same manner as Definition 5.2.

Definition 5.4. A coalition S is credible∗ if for all x ∈ V (S), there is no credible∗ coalition T ⊊ S such
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that T dev x. Every one-person coalition is credible∗.

We use CC∗(V ) to denote the credible core based on Definition 5.4. It is worth mentioning that the

two credibility concepts, Definitions 5.1 and 5.4, are independent as follows. Let N = {1, 2, 3},

V (N) = {x ∈ R3|
∑
j∈N

xj = 1},

V ({i, j}) = {(0.4, 0.4), (0.7, 0.1), (0.1, 0.7)} for all i, j ∈ N (i ̸= j),

V ({i}) = {(0.2)} for all i ∈ N.

In this example, two-person coalitions are credible but not credible∗. Moreover, we have CC ⊊ CC∗; for

example, (0.6, 0.2, 0.2) ∈ CC∗ \ CC. Now, let N = {1, 2, 3, 4}.

V (N) = {x ∈ R4|
∑
j∈N

xj = 1},

V ({i, j, k}) = {(0.3, 0.3, 0.3)} for all i, j, k ∈ N (i ̸= j ̸= k ̸= i),

V ({i, j}) = {(0.4, 0.4), (0.7, 0.1), (0.1, 0.7)} for all i, j ∈ N (i ̸= j),

V ({i}) = {(0.2)} for all i ∈ N.

In this example, three-person coalitions are credible∗ but not credible. Similarly, the unbinding versions

of credibility in Definition 5.2 are mutually independent.

6 Concluding remarks

We conclude this paper with remarks on weak deviation and future work. In this paper, we employ

the strict form of deviation: yj > xj for any j ∈ S. In many preceding works (in particular, TU games),

weak deviation is also studied. A coalition S weakly deviates from an allocation x ∈ RN if there exists

y ∈ V (S) such that yj ≥ xj for any j ∈ S and yi > xi for some i ∈ S. This change similarly applies

to the unbinding deviation, DOM , η, and µ. The results provided in this paper hold even with weak

deviation. Below is a brief technical remark for the balancedness.

As defined in Section 4, as long as we employ strict deviation, D̂OM
S
(y, V ) is a open set. In contrast,

if we employ weak deviation, D̂OM
S
(y, V ) is a closed set whenever V (S) is not a singleton. If V (S)

consists of a single vector, then D̂OM
S
(y, V ) is neither open nor closed. This needs a slight modification.

If V (S) is a singleton for any S ⊊ N , then we can replace the definition of η̂S(V ) with the following

form:

η̂S(V ) =
∩

y∈V (S)

D̂OM
S
(y, V ),

where we note that the intersection of (finite/ infinite number of) closed sets is closed. Proposition 4.2

remains true by this modification.

The notion of an unbinding core can be a useful approach to the problems that have empty (traditional)

core and discrete allocations – for example, Shapley-Scarf’s trading economy with multiple types of

indivisible goods. Shapley and Scarf’s (1974) well-known result is that the core is nonempty as long as

the number of types of indivisible goods, say, Q, is 1. The same question in the case of Q = 2 is brought
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up by Moulin (1995). Konishi et al. (2001) answer this question and show that the core may be empty

if Q ≥ 2. Precisely, even if players’ preferences are strict and additively separable, the nonemptiness of

the core is not necessarily guaranteed.*12 As discussed through this paper, the unbinding core becomes a

superset of the traditional core. We conjecture that the unbinding core can be nonempty even for Q ≥ 2.

In addition, the unbinding core may be helpful for analyzing the vNM stable set (von Neumann and

Morgenstern 1944). As briefly mentioned in Subsection 3.3, the equal division core CED∗ can be thought

of as a specific form of unbinding core and coincides with the vNM stable set for some simple games; e.g.,

for the three-person symmetric majority game, they are {(0.5, 0.5, 0), (0.5, 0, 0.5), (0, 0.5, 0.5)}. Consider-
ing the difficulty of analyzing the vNM stable set, “approximating” the vNM stable set by the unbinding

core might become a good step for studying the vNM stable set.

Appendix

Proof of Lemma 3.1

Proof. C. We first show that C(V ) ⊆ V (N) \
∪

S⊆N µS(V ). Let x ∈ C(V ). By the definition of C,

there is no S such that S dev x. Hence, there is no S such that for some y ∈ V (S), yj > xj for any

j ∈ S, or equivalently, there is no S such that for some y ∈ V (S), x ∈ DOMS(y, V ). In other words, for

any S, we have x ̸∈ DOMS(y, V ) for any y ∈ V (S). Hence, for every S ⊆ N , x ̸∈ µS(V ). We obtain

x ̸∈
∪

S⊆N µS(V ). The opposite inclusion relation holds by proceeding from bottom to top.

CUB. Now, we show that CUB(V ) ⊆ V (N)\
∪

S⊆N ηS(V ). Let x ∈ CUB(V ). By the definition of CUB,

there is no S such that S devUB x. Hence, there is no S such that for all y ∈ V (S), yj > xj for any

j ∈ S, or equivalently, there is no S such that for all y ∈ V (S), x ∈ DOMS(y, V ). In other words, for

any S, there exists y ∈ V (S) such that x ̸∈ DOMS(y, V ). Hence, for every S ⊆ N , x ̸∈ ηS(V ). We

obtain x ̸∈
∪

S⊆N ηS(V ). The opposite inclusion relation holds in the same manner.

Proof of Proposition 3.2

Proof. It is clear from Lemma 3.1 that 1 is equivalent to 2. We show that 1 is equivalent to 3.

(⇐=) We show that C(V ) ⊇ CUB(V ). Let x ∈ CUB(V ). The allocation x must satisfy either (i) or

(ii). If x satisfies (i), it follows from Lemma 3.1 that x ̸∈ CUB(V ), which contradicts the assumption

x ∈ CUB(V ). Hence, the allocation x satisfies (ii), namely, x ̸∈
∪

S⊆N µS(V ). By Lemma 3.1, x ∈ C(V ).

(=⇒) Assuming that there exists x ∈ V (N) satisfying neither (i) nor (ii), we show that x ∈ CUB(V ) \
C(V ). From the assumption, it follows that [for any S, x ̸∈ ηS(V )] and [there exists S such that

x ∈ µS(V )]. By Lemma 3.1, the former implies x ∈ CUB(V ), and the latter x ̸∈ C(V ). This completes

the proof.

*12 To be even more precise, the core is nonempty if (n = 3 and Q = 2), n ≤ 2, or Q = 1.
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Proof of Proposition 3.4

Proof. Let x ∈ CUB(V ). From the definition of CUB , it follows that

CUB(V ) = {x′ ∈ V (N)| ̸ ∃S ⊆ N s.t. for any y ∈ V (S) and any j ∈ S, yj > x′
j}.

Hence, x satisfies (i) and there is no S ⊆ N such that for any y ∈ V (S) and any j ∈ S, yj > xj , and (ii)

x ∈ V (N). Condition (i) is the same as the following statement:

for all S ⊆ N , there exist y ∈ V (S) and j ∈ S such that yj ≤ xj .

Hence, from the assumption V ′(S) ⊇ V (S) for all S ⊆ N , we obtain (i’)

For all S ⊆ N , there exist y ∈ V ′(S) and j ∈ S such that yj ≤ xj .

and (ii’) x ∈ V ′(N). Condition (i’) means that there is no S ⊆ N such that for any y ∈ V ′(S) and any

j ∈ S, yj > xj . Thus, we obtain

x ∈ {x′ ∈ V ′(N)| ̸ ∃S ⊆ N s.t. for any y ∈ V ′(S) and any j ∈ S, yj > x′
j} = CUB(V ′).

Proof of Proposition 3.5

Proof. The proof is an analog of Proposition 3.4. Let x ∈ C(V ′). From the definition of C, it follows

that

C(V ′) = {x′ ∈ V ′(N)| ̸ ∃S ⊆ N s.t. for some y ∈ V ′(S) and any j ∈ S, yj > x′
j}.

Hence, x satisfies (i) there is no S ⊆ N such that for some y ∈ V ′(S) and any j ∈ S, yj > xj , and (ii)

x ∈ V ′(N). Condition (i) is the same as the following statement:

for all S ⊆ N and any y ∈ V ′(S), there exists j ∈ S such that yj ≤ xj .

Hence, from the assumptions V ′(S) ⊇ V (S) for all S ⊊ N and V ′(N) = V (N), we obtain (i’)

For all S ⊆ N and any y ∈ V (S), there exists j ∈ S such that yj ≤ xj .

and (ii’) x ∈ V ′(N). Condition (i’) means that there is no S ⊆ N such that for some y ∈ V (S) and any

j ∈ S, yj > xj . Thus, we obtain

x ∈ {x′ ∈ V (N)| ̸ ∃S ⊆ N s.t. for some y ∈ V (S) and any j ∈ S, yj > x′
j} = C(V ).
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Proof of Proposition 3.6

Proof. We fix S ⊊ N (this fixed S is the S∗ in the statement of Proposition 3.6. We omit ∗ in this

proof for simplicity). From Lemma 3.1, it suffices to show that ηS(V ) = ηS(V ′).

ηS(V ) ⊇ ηS(V ′). We have V ′(S) = co(V (S)) ⊇ V (S). Hence, we have

ηS(V ) =
∩

y∈V (S)

DOMS(y, V )

=
∩

y∈V (S)

{x ∈ V (N)|yj > xj∀j ∈ S}

V ′(S)⊇V (S)

⊇
∩

y∈V ′(S)

{x ∈ V (N)|yj > xj∀j ∈ S}

V ′(N)=V (N)
=

∩
y∈V ′(S)

{x ∈ V ′(N)|yj > xj∀j ∈ S}

=
∩

y∈V ′(S)

DOMS(y, V ′)

= ηS(V ′).

ηS(V ) ⊆ ηS(V ′). Suppose that there exists x such that x ∈ ηS(V ) and x ̸∈ ηS(V ′). First, it follows

from x ∈ ηS(V ) that for any y ∈ V (S), x ∈ DOMS(y, V ). Hence, we have

for any y ∈ V (S) and any j ∈ S, xj < yj . (A.1)

Next, x ̸∈ ηS(V ′) implies that x ̸∈
∩

y∈V ′(S) DOMS(y, V ′). Hence, there exists y∗ ∈ V ′(S) such that

x ̸∈ DOMS(y∗, V ′), equivalently, in view of V ′(N) = V (N),

there exists y∗ ∈ V ′(S) such that x ̸∈ {x′ ∈ V (N)|y∗j > x′
j∀j ∈ S}. (A.2)

Since y∗ ∈ V ′(s) and V ′(S) = co(V (S)), there exist y1, ..., ym ∈ V (S) and coefficients a1, ..., am such

that a1 + ...+ am = 1, 0 ≤ al ≤ 1 for every 1 ≤ l ≤ m, and

y∗j = a1y1j + ...+ amymj for any j ∈ S. (A.3)

Moreover, it follows from (A.2) that there exists j∗ ∈ S such that xj∗ ≥ y∗j∗ . By (A.3), we have

xj∗ ≥ a1y1j∗ + ...+ amymj∗ .

In view of (A.1), we have

y1j∗ > a1y1j∗ + ...+ amymj∗ ,

y2j∗ > a1y1j∗ + ...+ amymj∗ ,

...

ymj∗ > a1y1j∗ + ...+ amymj∗ ,

which implies

a1y1j∗ + ...+ amymj∗ > (a1 + ...+ am)(a1y1j∗ + ...+ amymj∗)

= (a1y1j∗ + ...+ amymj∗).

15



This is a contradiction.

Proof of Proposition 3.9

Proof. C(v) ⊆ C(Vv). Let x ∈ C(v). There is no (S, y) satisfying yj > xj for any j ∈ S and
∑

j∈S yj ≤
v(S). Hence, there is no (S, y) satisfying yj > xj for any j ∈ S and

∑
j∈S yj = v(S). By the definition

of Vv(S), no (S, y) satisfies yj > xj for any j ∈ S and y ∈ Vv(S), which implies x ∈ C(Vv).

C(v) ⊇ C(Vv). Let x ∈ C(v). Similar to the above, there is no (S, y) satisfying yj > xj for any j ∈ S

and
∑

j∈S yj = v(S). Assume that some y∗ satisfies y∗j > xj for any j ∈ S and
∑

j∈S y∗j < v(S). Then,

we define z∗ as z∗j = y∗j +
v(S)−

∑
j∈S y∗

j

|S| and obtain
∑

j∈S x∗
j = v(S). This is a contradiction. Thus,

x ∈ C(v).

CUB(Vv) ⊆ I(v). Let x ∈ C(Vv). No coalition S unbindingly deviates from x. Hence, for any S ⊆ N ,

there exists y ∈ Vv(S) such that yj ≤ xj for some j ∈ S. Thus, for any i ∈ N , there exists yi ∈ Vv({i})
such that yi ≤ xi, or equivalently, v({i}) = yi ≤ xi for every i ∈ N .

CUB(Vv) ⊇ I(v). Let x ∈ I(v). We have xi ≥ v({i}) for any i ∈ N . Hence, for any S ⊆ N , if |S| = 1,

then S does not unbindingly deviate from x. If |S| ≥ 2, Vv(S) is given by Vv(S) = {x′ ∈ RS |
∑

j∈S x′
j =

v(S)}. Now, for any S (|S| ≥ 2), we fix s∗ ∈ S and define yS ∈ RS as ySs∗ = xs∗ and ySj = v(S)−ys∗
|S|−1 for

any j ∈ S \ {s∗}. Since
∑

j∈S ySj = v(S), we have yS ∈ Vv(S). In other words, for any S (|S| ≥ 2), there

exists yS ∈ Vv(S) such that ySs∗ = xs∗ . This implies that no coalition S (|S| ≥ 2) unbindingly deviates

from x.

Proof of Proposition 3.10

Proof. No coalition deviates from N (in the sense of equal division) if and only if

for any S ⊆ N , there exists j ∈ S such that v(S)
|S| ≤ v(N)

|N | .

The inequality does not depend on any player in S because the allocation is the equal division of v(S).

Hence, the statement above holds if and only if

for any S ⊆ N , v(S)
|S| ≤ v(N)

|N | .

Proof of Proposition 4.2

Proof. For any coalition S, let xS ∈ RS be a restriction of x on S, namely, xS
i = xi for every i ∈ S. For

notational convenience, we write x ≥ y (x > y) to denote xi ≥ yi (xi > yi) for any i ∈ N .

Let V be an unbindingly balanced game. We define Q and W as follows. Let Q = {x ∈ RN |x ≤ qeN},
where q is a positive real number satisfying for any S ∈ 2N ,

xS ∈ η̂S(V ) and xS ≥ 0 =⇒ xj < q for any j ∈ S. (A.4)
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We define W as

W =

 ∪
S⊆N

η̂S(V )

 ∩Q. (A.5)

Note that W is also comprehensive because η̂S(V ) and Q are comprehensive.

The set W has the following two properties:

i. u ∈ ∂W and u′ > u ⇒ u′ ̸∈ ∂W ,

ii. u ∈ ∂W and uj = 0 for some j ∈ N ⇒ ui = q for some i ∈ N ,

where ∂W is the boundary of W . The second property follows from the assumption V ({i}) ∈ R++ for

any i ∈ N .

Let A be a standard simplex: A = {x ∈ RN
+ |

∑
j∈N xj = 1}. We now define

f(x) = {y ∈ ∂W |y = tx for some t ≥ 0} for any x ∈ A. (A.6)

Claim 1. f is nonempty, single-valued, and continuous.

Proof. We first show that f(x) ̸= ∅ for any x ∈ A. From (A.5), q > 0, and V ({i}) ∈ R++ for any i ∈ N ,

it follows that 0 ∈ W . Moreover, W ⊆ Q implies that n(q + 1)x ̸∈ W for any x ∈ A. Hence, for any

x ∈ A, there exists t ∈ [0, n(q + 1)] such that tx ∈ ∂W .

Next, we show that f is single-valued. Assume that f is not single-valued. Then, for some x ∈ A, there

exist y, ȳ ∈ f(x) (y ̸= ȳ) such that y = tx and ȳ = t̄x. Hence, t ̸= t̄ and let t̄ > t. We consider two cases.

Case 1: xi > 0 for any i ∈ N . Then, we have ȳi = t̄xi > txi = yi for any i ∈ N . However, (i) of W ’s

properties contradicts ȳ ∈ f(x) ⊆ ∂W . Case 2: xi = 0 for some i ∈ N . Define K = {k ∈ N |xk = 0} and

I = {i ∈ N |xi > 0}. For any i ∈ I, we have txi < t̄xi ≤ q, where ≤ follows from t̄x ∈ f(x) ⊆ ∂W ⊆ Q.

For any k ∈ K, txk = 0. However, this contradicts (ii) of W ’s properties.

Finally, we show that f is continuous. To see this, we show that f(A) = {f(x)|x ∈ A}∂W is closed.

Let yk → y∗ (yk ∈ f(A) for any k). Assume that y∗ ̸∈ f(A). Then, we have two cases: Case 1: y∗ ̸∈ ∂W

or Case 2: y∗ ̸= tx for any x ∈ A and any t ≥ 0. We begin with Case 1. If y∗ ̸∈ ∂W , then y∗ lies in

the interior or exterior of W . We assume that y∗ is an interior point of W . We denote the interior of

W by intW . There exists an open set U∗ ⊆ intW such that y∗ ∈ U∗. Since y∗ is the point to which

the sequence yk converges, for the open set U∗, there exists k∗ such that yk
∗ ∈ U∗. By U∗ ⊆ intW , we

have yk
∗ ∈ intW . However, from yk ∈ f(A) for any k, it follows that yk

∗ ∈ f(A) ⊆ ∂W , a contradiction.

Next, we consider Case 2. If for any x ∈ A and any t ≥ 0, y∗ ̸= tx, then, given that A is a standard

simplex, there exists i ∈ N such that y∗i < 0. Since y∗ is the point to which the sequence yk converges,

for some k∗, we have yk
∗

i < 0. However, this contradicts that for any x ∈ A, f(x) ≥ 0. Hence, f(A) is

closed. Given that f(x) is bounded and A is compact, f(A) is bounded. Hence, f(A) is compact, and f

has a closed graph, which implies f is UHC. Since f is single-valued, f is continuous.

We define G : A → A as

G(x) =

{
eS

|S|

∣∣∣∣S ⊆ N, S ̸= ∅, and f(x) ∈ η̂S(V )

}
. (A.7)
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Claim 2. G is UHC.

Proof. First, we show that for any x ∈ A, G(x) ̸= ∅. By the nonemptiness of f and (A.6), f(x) ∈ ∂W

for any x ∈ A. It follows from (A.5) that f(x) ∈ ∂W ⊆ W and f(x) ∈
∪

S⊆N η̂S(V ). This implies

G(x) ̸= ∅.
Next, we show that G is UHC. Let xp → x (xp ∈ A, ∀p) and yp ∈ G(xp) for any p. Given that G(x) is

finite and compact for every x ∈ A, it suffices to show that if yp → y, then y ∈ G(x). The finiteness of

G(x) implies that there exists p̂ such that yp = y for any p ≥ p̂. Hence, for any p > p̂, y ∈ G(xp). Thus,

for any p > p̂, there exists a coalition S∗ such that y = eS
∗

|S∗| and f(xp) ∈ η̂S
∗
(V ). From the continuity of

f , f(xp) → f(x). Moreover, as η̂S
∗
(V ) is closed, we have f(x) ∈ η̂S

∗
(V ). Hence, y ∈ G(x).

Let h : A×A → A be a function given by, for any i ∈ N ,

hi(x, g) =
xi +max{gi − 1

n , 0}
1 +

∑
j∈N max{gi − 1

n , 0}
. (A.8)

Note that h is the same as the function defined by Shapley and Vohra (1991). This function is continuous.

We follow their step and define the following function:

h× co(G) : A×A → A×A, (A.9)

namely, h × co(G)(x, g) = {(h(x, g), co(G(x)))} ⊆ A × A.*13 Note that h × co(G) is convex-valued,

compact-valued, and UHC. According to Kakutani’s fixed point theorem, there is a fixed point (x∗, g∗) ∈
A×A. More specifically, x∗ = h(x∗, g∗) and g∗ ∈ co(G(x∗)). Hence, for any i ∈ N , we have

x∗
i =

x∗
i +max{g∗i − 1

n , 0}
1 +

∑
j∈N max{g∗i − 1

n , 0}
,

or equivalently,

x∗
i

∑
j∈N

max{g∗i − 1

n
, 0}

 = max{g∗i − 1

n
, 0}. (A.10)

Claim 3. eN = ( 1n , ...,
1
n ) ∈ co(G(x∗)).

Proof. As g∗ ∈ co(G(x∗)), it suffices to show eN = g∗. Assume that eN ̸= g∗. We have∑
j∈N

max{g∗i − 1

n
, 0} > 0. (A.11)

Define I = {i ∈ N |x∗
i > 0} and K = {k ∈ N |x∗

k = 0}. Note that N = I ∪K because x∗ ∈ A. For every

i ∈ I,

max{g∗i − 1

n
, 0} (A.10)

= x∗
i

∑
j∈N

max{g∗i − 1

n
, 0}

 (x∗
i >0),(A.11)

> 0. (A.12)

Hence, K ̸= ∅, because if not, then g∗ ∈ A contradicts g∗i > 1
n for any i ∈ I = N .

*13 We denote by co(X) the convex hull of X.
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Now, from g∗ ∈ co(G(x∗)) and (A.12) – i.e., g∗i > 1
n > 0 for any i ∈ I – it follows that for any i ∈ I,

there exists S such that i ∈ S and f(x∗) ∈ η̂S(V ). Hence, f(x∗) ∈ ∂W ⊆ W ⊆ Q implies fi(x
∗) < q for

any i ∈ I, and we have f(x∗) ≥ 0. On the other hand, for any k ∈ K ̸= ∅, we have fk(x
∗) = tx∗

k = 0 for

some t. However, this contradicts the second property of W .

Now let Tx∗ = {S ∈ 2N |f(x∗) ∈ η̂S(V )}. Since, in general, a collection B is balanced if and only if
eN

n ∈ co({ eS

|S| |S ∈ B}), it follows from Claim 3 and (A.7) that Tx∗ is balanced. Hence, we obtain the point

f(x∗) and the balanced collection Tx∗ such that f(x∗) ∈ ∂W
∩

RN
+ (by (A.6)) and f(x∗) ∈ ∩S∈Tx∗ η̂

S(V )

(by (A.7)).

As we assumed, V is unbindingly balanced. By Definition 4.1, we have

f(x∗) ∈ V +(N). (A.13)

We show that no coalition S unbindingly deviates from f(x∗). For simplicity, let u∗ = f(x∗). Assume

that some coalition S unbindingly deviates from u∗. By the definition of unbinding deviation, for every

ūS ∈ ηS(V ), we have ūS
j > u∗

j for any j ∈ S. We arbitrarily choose and fix ūS ∈ ηS(V ). Note that

ūS
j < q for any j ∈ S by the definition of Q. As u∗ = f(x∗), we have u∗ ≥ 0 and u∗ < qeN . Now, we

define a vector ūN ∈ RN as follows: ūN
j = ūS

j for any j ∈ S and ūN
j ∈ (u∗

j , q) for any j ∈ N \S. Thus, we
have ūN > u∗. Moreover, ūN ∈ η̂S(V ) and ūN < qeN , which implies that ūN ∈ W . As we mentioned,

u∗ = f(x∗) ∈ ∂W . However, in view of the first property of W , this contradicts ūN > u∗ and ūN ∈ W .

Finally, we show CUB(V ) ̸= ∅. From (A.13), we have u∗ = f(x∗) ∈ V +(N), and by the definition

of V +, there exists u∗∗ ∈ V (N) such that u∗∗ ≥ u∗. Hence, the fact that no coalition S unbindingly

deviates from u∗ implies that no coalition S unbindingly deviates from u∗∗. Thus, u∗∗ ∈ CUB(V ).

Proof of Proposition 5.3

Proof. Fix V and write CUB instead of CUB(V ) for simplicity. First, we show that CUB = CCUB. It

suffices to show that CUB ⊇ CCUB. We assume that there exists x ∈ V (N) such that x ∈ CCUB and

x ̸∈ CUB. From x ̸∈ CUB, it follows that

there exists Ŝ ⊆ N such that Ŝ devUB x. (A.14)

In view of the definitions of devUB , we have

for any s ∈ V (Ŝ) and any j ∈ Ŝ, sj > xj . (A.15)

Now, from x ∈ CCUB, it follows that for every credibleUB S, S does not unbindingly deviate from x.

Hence, (A.14) implies that Ŝ is not credibleUB. By the definition of credibleUB, it holds that

for any y ∈ V (Ŝ), there exists credibleUB T ⊊ Ŝ such that T devUB y. (A.16)

In view of the definitions of devUB , we have

for any y ∈ V (Ŝ), there exists a credibleUB T ⊊ Ŝ such that for any t ∈ V (T ), tj > yj . (A.17)
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By (A.15), (A.17) implies that

there exists a credibleUB T ⊊ Ŝ such that for any t ∈ V (T ), tj > xj . (A.18)

Hence, there exists a credibleUB coalition T such that T devUB x, which contradicts x ∈ CCUB.

Next, we show that CUB = CC∗UB in a similar manner. We replace “for all y ∈ V (Ŝ)” with “for some

y ∈ V (Ŝ)” in (A.16) and (A.17) (and, of course, CCUB with CC∗UB and credibleUB with credible∗UB

throughout the proof). However, (A.18) still holds because (A.15) is valid for all s ∈ V (Ŝ).
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