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Abstract

The goal of this paper is to evaluate the complexity of the linear index class by means of entropy
numbers, which are the logarithms of the number of balls or intervals needed to cover the class. The
results are applied to study asymptotic behavior of M -estimators for semiparametric regression models
indexed with the linear index class.
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1 Introduction

Asymptotic properties of non/semiparametric esti-
mation have been investigated by a number of au-
thors from the perspective of the complexity of sta-
tistical model sets [e.g. van de Geer (1993), Wong
and Shen (1995), Birgé et al. (1998), Gao and Well-
ner (2007)]. One way to measure complexity is to
use entropy numbers, which are essentially the num-
ber of balls or intervals needed to cover the model
set.
The goal of this paper is to compute the en-

tropy numbers of the linear index class, which is
a functional parameter set widely used in microe-
conometric modeling [e.g. Cosslett (1983), Man-
ski (1985), Han (1987), Horowitz (1992), Ichimura
(1993), Sherman (1993), Klein and Spady (1993)].
The main results of the paper are applied to show
the consistency and rates of convergence of semi-
parametric estimators for models indexed with the
linear index class.
The remainder of this paper is organized as fol-

lows. Section 2 defines the terms and concepts, and
Section 3 presents the main theorems of the paper
and provides their proofs. Section 4 provides exam-
ples of their application to semiparametric regres-
sions. Section 5 concludes the paper.

2 Definitions

Let (X ,A) be a k-dimensional Euclidean sample
space and let F be a class of bounded nondecreas-
ing functions defined on R and taking values in
[0, 1]. The linear index class is a set of functions

F ◦ b : X 7→ [0, 1] such that

F ◦ b(x) = F (b · x) (x ∈ X ), (2.1)

where F ∈ F and b ∈ B ⊆ Rk. When identification
of b = (b1, · · · , bk) matters, the first element of b
is set equal to one; the normalized coefficient set
is B1 = {(1, b−1) : b−1 ∈ B−1(⊆ Rk−1)}, and the
normalized linear index class is Θ1 = {F ◦ b : F ∈
F , b ∈ B1}.
Let P be a probability measure on (X ,A); for

1 ≤ r < ∞, ∥ · ∥P,r is a semi norm defined by

∥g∥P,r =
(∫

|g|r dP
)1/r

; Lr(P ) is a set of functions
g such that ∥g∥P,r < ∞; an open ball in Lr(P )
with center τ ∈ Lr(P ) and radius δ > 0 is a set of
functions g ∈ Lr(P ) such that ∥g − τ∥P,r < δ.

Definition 2.1 Let Pn be a set of finite probabil-
ity measures on (X ,A) with n supporting points.
Given a set G of functions on X , the covering num-
ber N(δ,G, ∥·∥Pn,r) is the minimum number of open
balls in Lr(Pn) needed to cover G. The n-uniform
entropy is a number given by

Hn,r(δ,G) = sup
Pn∈Pn

logN(δ,G, ∥ · ∥Pn,r). (2.2)

Definition 2.2 Given two functions ℓ and u on
(X ,A, P ), the bracket [ℓ, u] is the set of all func-
tions f with ℓ ≤ f ≤ u. A δ-bracket is a bracket
[ℓ, u] with ∥u − ℓ∥P,r < δ. The bracketing num-
ber N[](δ,G, ∥ · ∥P,r) is the minimum number of δ-
brackets needed to cover G. The entropy of G with
bracketing is a number given by

H[](δ,G, ∥ · ∥P,r) = logN[](δ,G, ∥ · ∥P,r). (2.3)
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Example 2.3 The class F satisfies

H[](δ,F , ∥ · ∥P,r) ≤
Kr

δ
(2.4)

for every probability measure P , every r ≥ 1, and
a constant Kr that depends only on r (see e.g.,
van der Vaart and Wellner (1996), pp.159-162).

3 Theorems

Theorem 3.1 For arbitrary n ≥ 2 and δ > 0,

Hn,r(δ,Θ) ≤ ⌊1/δ⌋ log(n+ ⌊1/δ⌋) + 2klog n.

(Proof) Choose arbitrary Pn ∈ Pn and let Xn =
{x1, . . . , xn} be the support of Pn. For every b ∈ B,
define the rank-order function ρb : Xn 7→ {1, . . . , n}
by

ρb(x
i) = 1 +

∣∣{ ξ ∈ Xn : b · xi > b · ξ }
∣∣ , (3.1)

where | · | denotes the cardinality of a set: b · xi =
min{b ·x1, . . . , b ·xn} if and only if ρb(x

i) = 1, while
b · xi = max{b · x1, . . . , b · xn} if ρb(x

i) = n.

Define an equivalent relation
n∼ on B by

a
n∼ b ⇐⇒ ρa = ρb.

In words, a is equivalent to b if and only if a finite
sequence a · x1, . . . , a · xn shares the same ordering
as b·x1, . . . , b·xn. If b·x1 < · · · < b·xn, for example,
a · x1 < · · · < a · xn must hold for all a

n∼ b.
Choose arbitrary small δ > 0. Let Sδ

n be a
set of nondecreasing mappings from {1, 2, · · · , n}
to {0, δ, 2δ, · · · , ⌊1/δ⌋ · δ}. Then, for every θ =
F ◦ b ∈ Θ, there exists S ∈ Sδ

n such that ∥θ − S ◦
ρa∥Pn,r < δ for any a

n∼ b. Therefore, the covering

number of Θ is bounded by |Sδ
n| × |Rk/

n∼ |. Since

|Sδ
n| ≤

(
n+ ⌊1/δ⌋

n

)
≤ (n+ ⌊1/δ⌋)⌊1/δ⌋,

|Rk/
n∼ | is to be evaluated to complete the proof.

Suppose that k = 1 and that x1 ≤ · · · ≤ xn.
Then, bx1 ≤ · · · ≤ bxn if b > 0, bx1 ≥ · · · ≥ bxn

if b < 0, and bx1 = · · · = bxn if b = 0. Therefore,
R1/

n∼ = {(0,∞), {0}, (−∞, 0)}, so that |R1/
n∼| =

3. Now suppose that k = 2. Write xi = (xi1, x
i
2)

for i = 1, . . . , n and b = (b1, b2). Without any loss
of generality, assume that b1x

1
1 ≤ · · · ≤ b1x

n
1 and

that x12 > · · · > xn2 . If b2 ≤ 0, then b · x1 ≤ · · · ≤
b · xn holds. As b2 ↑ ∞, mutual exchanges among
b · x1, . . . , b · xn take place until b · x1 > · · · > b · xn
is attained. The mutual exchange takes place at
most (n− 1)+ (n− 2)+ · · ·+1 = n(n− 1)/2 times.

Therefore, |R2/
n∼| ≤ 3× n(n− 1)/2. Recursively,

|Rk/
n∼| ≤ 3

(
n(n− 1)

2

)k−1

≤ n2k

is obtained for general k.

Theorem 3.2 Given r ≥ 1 and P on (X ,A), as-
sume the following: (i) E|x−1|r <∞, where x−1 =
(x2, · · · , xk) for x ∈ X . (ii) P possesses the density
p = dP/dµ with respect to a reference measure µ,
and the conditional density p(x1|x−1) of x1 condi-
tioned on x−1 is uniformly bounded on X . (iii) B1

is a bounded subset of {1} × Rk−1. Then, there is
a constant K such that

H[](δ,Θ1, ∥ · ∥P,r) ≤
K

δ
(3.2)

for any small δ > 0.

(Proof) For every a = (1, a−1) and b = (1, b−1)
in B1 and for every u ∈ R,

P {a · x ≤ u < b · x}

=

∫ (∫ u−a−1·x−1

u−b−1·x−1

p(x1|x−1)dx1

)
p(x−1)µ(dx−1)

≤ C0|a− b|, (3.3)

where C0 = (supx p(x1|x−1))E|x−1| < ∞ by As-
sumptions (i) and (ii).

To avoid nonessential complexities, we focus on
the case of k = 2 in the following part of the proof.
Moreover, we assume that b ≥ 0, so that Assump-
tion (iii) implies B1 ⊂ {1} × [0,K) by sufficiently
large K > 0. The proof can be extended to the
general case of k ≥ 3 and B−1 ⊂ Rk−1 in a trivial
manner.
Fix arbitrary δ1 > 0 and let γj = (1, δ1j) ∈

{1} × [0,K + δ1) for j = 0, 1, · · · , NB , where NB =
⌊Kδ−1

1 ⌋+ 1. Define functions ℓ±j and u±j by

ℓ+j (x) = (γj−1 · x)Ix2≥0(x)

ℓ−j (x) = (γj · x)Ix2<0(x)

u+j (x) = (γj · x)Ix2≥0(x)

u−j (x) = (γj−1 · x)Ix2<0(x)

for j = 1, · · · , NB . Set ℓj = ℓ+j + ℓ−j and uj =

u+j + u−j , then [ℓj , uj ] is a δ1(E|x−1|r)1/r-bracket
for the linear mapping class {x 7→ b · x : b ∈ B+

1 }
(see Fig 3.1).
Fix arbitrary δ2 > 0. For every j = 0, 1, . . . , NB ,

let Pj be the law of γj · x, that is, PjA = P{γj ·
x ∈ A}; Mj = N[](δ2,F , ∥ · ∥Pj ,r), and [Lij , Uij ]
for i = 1, . . . ,Mj is the corresponding δ2-bracket
covering F . Without any loss of generality, all Lij

and Uij are assumed to be nondecreasing. Example
2.3 shows that max1≤j≤NB

logMj ≤ Krδ
−1
2 , where

Kr depends only on r.
For every θ = F ◦ b ∈ Θ1, there exist (ℓj , uj) and

(Lij , Uij) such that Lij ◦ ℓj ≤ θ ≤ Uij ◦ uj and that

∥Uij ◦ uj − Lij ◦ ℓj∥P,r
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≤ ∥(Uij ◦ u+j − Lij ◦ u+j )Ix2≥0∥P,r

+∥(Lij ◦ u+j − Lij ◦ ℓ+j )Ix2≥0∥P,r

+∥(Uij ◦ u−j − Lij ◦ u−j )Ix2<0∥P,r

+∥(Lij ◦ u−j − Lij ◦ ℓ−j )Ix2<0∥P,r.

By the definition of Pj and Pj−1,

∥(Uij ◦ u+j − Lij ◦ u+j )Ix2≥0∥P,r

+∥(Uij ◦ u−j − Lij ◦ u−j )Ix2<0∥P,r

≤ ∥Uij − Lij∥Pj ,r + ∥Ui,j−1 − Li,j−1∥Pj−1,r

≤ 2δ2.

Since Lij is bounded and nondecreasing, there is
a step function S =

∑
m smI(tm,∞) such that 0 ≤

sm ≤ 1, that
∑

m sm ≤ 1, and that supt |Lij(t) −
S(t)| < δ2. Therefore,

∥(Lij ◦ u+j − Lij ◦ ℓ+j )Ix2≥0∥P,r

≤ ∥(Lij ◦ u+j − S ◦ u+j )Ix2≥0∥P,r

+∥(S ◦ u+j − S ◦ ℓ+j )Ix2≥0∥P,r

+∥(S ◦ ℓ+j − Lij ◦ ℓ+j )Ix2≥0∥P,r

≤ 2δ2 + ∥(S ◦ u+j − S ◦ ℓ+j )Ix2≥0∥P,r.

Inequality (3.3) together with
∑

m sm ≤ 1 implies
that

∥(S ◦ u+j − S ◦ ℓ+j )Ix2≥0∥P,r

≤ sup
j,t

{
P
∣∣∣{γj · x ≤ t} − {γj−1 · x ≤ t}

∣∣∣}1/r

≤ (C0δ1)
1/r.

In the same way, ∥(Lij ◦ u−j − Lij ◦ ℓ−j )Ix2<0∥P,r ≤
(C0δ1)

1/r + 2δ2 is shown, hence

∥Uij ◦ uj − Lij ◦ ℓj∥P,r ≤ δ := 2(C0δ1)
1/r + 6δ2.

Note that H[](δ,Θ1, ∥·∥P,r) ≤ log
∑NB

j=0Mj . In par-
ticular, by choosing δ1 = δr/4rC0 and δ2 = δ/12,

log

NB∑
j=0

Mj ≤ log

(
1 +

K

δ1

)
+
Kr

δ2
≤ 2r + 12Kr

δ

holds for any sufficiently small δ > 0.

4 Applications

4.1 Notations

Notations from empirical process theory are em-
ployed in this subsection. Let (Z,B, P ) be a proba-
bility space, and let G = {g} be a class of functions
on Z; Png = n−1

∑n
i=1 g(z

i), where z1, . . . , zn are
independently sampled from P ; Pg =

∫
g dP =

EP g(z); Gn maps g ∈ G into
√
n(Pn − P )g =

O

b2x2

(j − 1) · δ1x2

j · δ1x2

x2

Figure 3.1: A bracket [ℓj , uj ] of a linear mapping
x 7→ b · x.

n−1
∑n

i=1(g(z
i)− Eg(zi)) and is called the empiri-

cal process on G; G is said to be P -Glivenko-Cantelli
when supg∈G |(Pn − P )g| → 0 almost surely; G is P -
Donsker if there exists a tight random element Zg

indexed with g ∈ G such that Gng
w⇒ Zg as n→ ∞,

where “
w⇒” denotes weak convergence; for two func-

tions ϕ, ψ of δ, ϕ <∼ ψ means that there is a constant
C > 0 such that ϕ(δ) ≤ Cψ(δ) for all δ [Andrews
(1994), van der Vaart and Wellner (1996), van der
Vaart (1998)].

4.2 Consistency

Theorem 3.1 implies that n−1Hn,1(δ,Θ) → 0 as
n → ∞. This is a sufficient condition for Θ to
be P -Glivenko-Cantelli [Vapnik and C̆ervonenkis
(1982)]. The P -Glovenko-Cantelli property of Θ
plays an essential role in proving the consistency
of M -estimators for linear index models.

Example 4.1 Let Z ⊂ Rk+1 and z = (y, x) ∈ Z.
Suppose a semiparametric regression model,

y = θ0(x) + ϵ, θ0 ∈ Θ, (4.1)

with a moment condition E(ϵ|x) = 0. If |y| is
bounded by a positive constant, the model is con-
sistently estimated by the Least Squares (LS) esti-

mator θ̂LS
n = argmin Pngθ subject to θ ∈ Θ, where

gθ(z) = (y − θ(x))2.
To see this, let G = {gθ : θ ∈ Θ}. The defini-

tion of θ̂LS
n implies ∥θ̂LS

n − θ0∥2P,2 ≤ supg∈G (Pn −
P )(g−gθ0). Since |y| is bounded, there is a positive
constant C such that |gθ − gθ0 | ≤ C|θ − θ0| for any
θ. Therefore, Hn,1(δ,G) ≤ Hn,1

(
C−1δ,Θ

)
= o(n),

and G also becomes P -Glivenko-Cantelli. Thus,
∥θ̂LS

n − θ0∥2P,2 → 0 almost surely.

Example 4.2 If the moment condition for (4.1) is
replaced with median(ϵ|x) = 0, the Least Absolute

Deviation (LAD) estimator θ̂LAD
n = argmin Pnλθ

subject to θ ∈ Θ, where λθ(z) = y − θ(x), becomes
consistent for θ0.
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To see this, let L = {λθ : θ ∈ Θ}. Since
|λθ − λθ0 | ≤ |θ− θ0|, L is also P -Glivenko-Cantelli.

By the definition of θ̂LAD
n , on the other hand,

0 ≤ P (λθ̂LAD
n

− λθ0) ≤ |(Pn − P )(λθ̂LAD
n

− λθ0)|.
Hence, P (λθ̂LAD

n
−λθ0) → 0 almost surely. Now, let

p(ϵ|x) be the conditional density of ϵ conditioned
on x. Assume that πϵ := infX p(0|x) > 0, then
πϵ∥θ − θ0∥2P,2 ≤ P (λθ̂ − λθ0) for any θ in a neigh-

borhood of θ0. Thus, ∥θ̂LAD
n − θ0∥2P,2 → 0 almost

surely.

4.3 Rates of Convergence

Theorem 3.2 implies that J[](δ,Θ1, ∥ · ∥P,2) :=∫ δ

0

√
H[](t,Θ1, ∥ · ∥P,2) dt <∼

√
δ < ∞ for any small

δ > 0. The finite integrated entropy is a sufficient
condition for Θ1 to be a P -Donsker class [Donsker
(1952)]. Moreover, it bounds a modulus of conti-
nuity of the empirical process Gn defined on the
class. Suppose that M is a P -Donsker class with
J[](δ,M, ∥ · ∥P,2) <∼

√
δ, and that Mδ is a subset

of M satisfying (i) |µ − µ0| ≤ ∃M < ∞ and (ii)
∥µ− µ0∥ <∼ δ for any µ ∈ Mδ, then,

EP sup µ∈Mδ
|Gn(µ− µ0)| <∼ ϕn(δ), (4.2)

where ϕn(δ) =
√
δ + 1/(δ2

√
n) [Lemma 19.36 of

van der Vaart (1998)].
One consequence of (4.2) is the cubic rate of con-

vergence of M -estimators for linear index models.
Let M = {µτ : τ ∈ T } be a P -Donsker class and let
τ̂n be anM -estimator defined by τ̂n = argminPnµτ

subject to τ ∈ T . If ∥τ−τ∥2P,2
<∼ P (µτ−µτ0), and if

Ep sup{|Gn(µτ − µτ0)| : ∥τ − τ0∥P,2 < δ} ≤ ϕn(δ),
then ∥τ̂n − τ0∥P,2 ≤ Op(n

−1/3) [Theorem 3.2.5 of
van der Vaart and Wellner (1996)].

Example 4.1 (Cont.) Assume (i)-(iii) of Theo-
rem 3.2 and that θ0 ∈ Θ1. Normalize the LS es-
timator by solving θ̂LS

n = argmin Pngθ subject to

θ ∈ Θ1, then, ∥θ̂LS
n −θ0∥P,2 ≤ Op(n

−1/3). This rate
is immediately obtained from the boundedness of
|y| and P (gθ − gθ0) = ∥θ − θ0∥2P,2 for any θ ∈ Θ1.

Example 4.2 (Cont.) Assume (i)-(iii) of Theo-
rem 3.2 and that θ0 ∈ Θ1. Then, the normalized
LAD estimator θ̂LAD

n = argmin Pnλθ subject to

θ ∈ Θ1 satisfies ∥θ̂LAD
n − θ0∥P,2 ≤ Op(n

−1/3) since
∥θ− θ0∥2P,2 ≤ π−1

ϵ P (λθ − λθ0) in a neighborhood of
θ0.

5 Conclusions

In this paper, two types of entropy numbers of the
linear index class, n-uniform entropy and the en-
tropy with bracketing, are computed. The results
are applied to prove consistency and the n1/3-rate

of convergence of the Least Squares (LS) estimator
and the Least Absolute Distance (LAD) estimator
of a semiparametric regression model.
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