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Abstract

We characterize perfect and proper rationalizabilities of 2-person games in incomplete
information framework. We de�ne the lexicographic model with incomplete information,
and show that a choice is perfectly (properly) rationalizable in the complete information
framework if and only if there is a corresponding belief hierarchy within the incomplete in-
formation framework that expresses common full belief in caution, opponent's utilities that
primarily belief in the original utility function (centered around and as close as possible to
the original one and to that belief hierarchy that choice is optimal).

JEL Classi�cation: C72

Keywords: epistemic game theory, lexicographic belief, perfect rationalizability, proper ra-
tionalizability, incomplete information

1. Introduction

The purpose of noncooperative game theory is to study an individual's decision making in an
interrelated situation. Since in such a situation, one's payo� is not completely determined by his
own choice, to make a decision he needs to form a belief on every other participant's choice, each
other participant's belief on others' choices, and so on. Studying the structures of those belief
hierarchies and choices supported by a belief hierarchy satisfying some particular conditions
opened up a �eld called epistemic game theory (cf. Perea [14]).

In epistemic game theory, various concepts have been developed to describe some speci�c
belief structure. One is lexicographic belief (Blume et al. [3], [4]). A lexicographic belief
describes an player's subjective conjecture about the game situation by a sequence of probability
distributions over choice and states, which is di�erent from the adoption of a single probability
distribution in classic probabilistic belief. The interpretation is that every choice-state pairs
in the sequence is considered likely, while a pair appearing ahead in the sequence is deemed
in�nitely more likely than one appearing later. Based on lexicographic belief various concepts
are developed. Perfect and proper rationalizabilities are two important and interrelated concepts
among them.
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Abraham Nayman for their valuable comments and encouragement. She thanks all teachers and students in the
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teaching, stimulating discussions, and new ideas. She gratefully acknowledge the support of Grant-in-Aids for
Young Scientists (B) of JSPS No.17K13707 and Grant for Special Research Project No. 2017K-016 of Waseda
University.

yFaculty of Political Science and Economics, Waseda University, 1-6-1 Nishi-Waseda, Shinjuku-Ku, 169-8050,
Tokyo, Japan (shuige liu@aoni.waseda.jp).



Perfect rationalizability is originated in Selten [18]'s perfect equilibrium. It is de�ned and
studied from epistemic viewpoint of based on lexicographic belief in Blume et al. [4], Branden-
burger [8], B�orgers [6], and Asheim and Dufwenberg [2]. Perfect rationalizability is based on
two notions: caution and primary belief in the opponents' rationality. A lexicographic belief is
said to be cautious if it does not exclude any choice of opponents; it is said to primarily believe
in the opponents' rationality if in its �rst level belief it only deems possible those choice-state
pairs where the choice is optimal based on the belief of the state.

Proper rationalizability is originated in Myerson [13]'s perfect equilibrium which is intended
to be a re�nement of perfect equilibrium. It is de�ned and studied in Schuhmacher [17] and
Asheim [1] as an epistemic concept. Proper rationalizability shares the same notion of caution
with perfect rationalizability while uses a stronger notion called respecting the opponents' pref-
erences to replace primary belief in the opponents' rationality. A lexicographic belief is said to
respect the opponents' preferences if a \better" choice is always located in front of a \worse"
choice in the sequence.

We explain these two concepts by an example. Consider a game with the following utility
function u2 for player 2:

u2 D E F

A 3 2 1

B 3 2 1

C 3 2 1

Caution requires that all choices of player 2 appears in player 1's belief. Note that for player
2, choice D is most preferred no matter what belief he holds. Therefore, a lexicographic belief
of player 1 primarily believes in 2's rationality must put A in its �rst order. Also, since D is
preferred to E and E is preferred to F for player 2, a lexicographic belief of player 1 respecting
2's preferences should deem D in�nitely more likely than E and E in�nitely more likely than F;
that is, put D before E and E before F in the sequence.

One purpose for the development of lexicographic belief is to alleviate the tension between
caution and rationality (Blume et al. [3], Brandenburger [8], B�orgers [6], B�orgers and Samuleson
[7]). The de�nitions of perfect and proper rationalities above tried to solve this tension by
sacri�cing rationality in di�erent ways. That is, though perfect rationality requires that the
level-1 belief contains only rational choices and proper rationality requires that choices should
be ordered according to the level of their \irrationality", both allow the appearance of irrational
choices. However, there is another approach which can solve that tension without hurting
rationality. That is, instead of considering the uncertainty about opponents' rationality in
complete information framework, we can take the uncertainty of the objective game and consider
states in incomplete information framework. Then the appearance of a non-optimal choice can
be explained from the uncertainty about which is the \real" game situation. Both perfect and
proper rationalizabity should also be de�nable in this incomplete information framework. This
is the basic idea of this paper.

We use the above example to explain this idea. As mentioned before, caution requiresD;E; F
appear in player 1's belief, while only D is a rational choice for 2. In complete information
framework, the appearance of E and F are explained as a possibility of player 2's irrationality.
In incomplete information framework, that can be explained by that the possibility that \real"
utility function of player 2 is not u2 but v2 or v

0
2 as follows:

v2 D E F

A 2 2 1

B 2 2 1

C 2 2 1

;

v02 D E F

A 2 2 2

B 2 2 2

C 2 2 2

2



Choice E is optimal in v2 and F is optimal in v
0
2: In this manner, uncertainty in the rationality

of the opponents in a complete information framework is transferred into uncertainty in oneself
about the real situations in incomplete information framework. It can be seen that primary
belief in the opponent's rationality in complete information framework is equivalent to that
one deems u2 in�nitely more likely to be the real situation than v2 and v

0
2, and respecting the

opponent's preferences requires that those alternative utility functions should be ordered by
their \similarity" to u2.

In this paper, we study these equivalences formally. We discuss we characterize perfect and
proper rationalizabilities of 2-person games in incomplete information frameworks. We de�ne
the lexicographic model with incomplete information, which is the counterpart of probabilistic
epistemic model with incomplete information de�ned by Dekel and Fudenberg [10]. We show that
a choice is a choice is perfectly (properly) rationalizable in the complete information framework if
and only if there is a corresponding belief hierarchy within the incomplete information framework
that expresses common full belief in caution, opponent's utilities that primarily belief in the
original utility function (centered around and as close as possible to the original one and to that
belief hierarchy that choice is optimal).

This paper is not the �rst one considering characterizing concepts in epistemic game theory
within incomplete information framework. Perea and Roy [16] characterized "-proper rational-
izability in this approach by using probabilistic model. They showed that a state in a (prob-
abilitstic) epistemic model with complete information expresses full common belief in caution
and "-trembling condition if and only if there is a state in model with incomplete information
which expresses common belief in caution, "-centered belief around u, and belief in rationality
under closest utility function. Since proper rationalizability is the limit of "-proper ones, the
conditions in their characterizations are invaluable for us. Two conditions used in our character-
izition of proper rationalizability, that is, caution and u-centered belief, are faithful translations
of their de�nitions into lexicographic model. However, as show in Section 2.1, the most critical
condition in their characterization, that is, belief in rationality under closest utility function,
is unable to be adopted here since the nearest utility function does not exist in lexicographic
models in general. We de�ned a weaker condition called \belief under a closer utility function"
and show that the three conditions characterize proper rationalizability.

Also, there are essential di�erences between Perea and Roy [16]'s proof and ours. Equivalence
of belief hieracrchies generated by states in di�erent models and type morphism (B�oge and Eisele
[5], Heifetz and Samet [12], Perea and Kets [15]) play important roles in Perea and Roy [16]'s
proof. The If part in their proof starts from the assumption of equivalence of belief hierarchies
and shows that conditions on a state with incomplete information implies proper conditions
of states in complete information sharing the same belief hierarchy. Their Only-if part uses a
construction and it works through belief hierarchy and type morphism. In contrast, our proofs
are based on constructing a speci�c correspondence from one model to the other. We show that
some conditions in states of one model implies some proper one in those of its corresponding
model. Equivalence of hierarchies can be implied from the construction. In Section 4 we show
our construction can also be used in proving Perea and Roy [16]'s Theorem 6.1.

Our results, as well as that of Perea and Roy [16] also provide insights in decision theory
and general epistemology. They imply that any choice rationalizable in a complete information
framework is also rationalizable in an incomplete one and vice versa. In other words, it is
impossible to know the exact information structure of a game play by just looking at its outcome.

This paper is organized as follows. Section 2 gives de�nitions about lexicographic epistemic
model with incomplete information and a survey of concepts in models with complete infor-
mation. Section 3 gives the two characterization results and their proof. Section 4 gives some
concluding remarks.
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2. Models

2.1. Incomplete Information

In this subsection, we de�ne the lexicographic model with incomplete information, which is the
counterpart of probabilistic epistemic model with incomplete information de�ned by Dekel and
Fudenberg [10]. We also de�ne some concepts related to states in such a model. For a detailed
introduction of lexicographic belief structure, see Perea [14], Chapter 4.

De�nition 2.1 (Lexicographic epistemic model with incomplete information). Con-
sider a �nite 2-person static game form G = (Ci)i2I : For each i 2 I; let Vi be the set of utility
functions vi : C1 � C2 ! R: A �nite lexicographic epistemic model for G with incomplete infor-
mation is a tuple M in = (�i; wi; �i)i2I where

(a) �i is a �nite set of types,

(b) wi is a mapping that assigns to each �i 2 �i a utility function wi(�i) 2 Vi; and
(c) �i is a mapping that assigns to each �i 2 �i a lexicographic belief over �(Cj � �j); i.e.,
�i(�i) = (�i1; �i2; :::; �iK) where �ik 2 �(Cj ��j) for k = 1; :::;K:

Let �i 2 �i with �i(�i) = (�i1; �i2; :::; �iK): For (cj ; �j) 2 Cj � �j ; we say �i deems (cj ; �j)
possible i� �ik(cj ; �j) > 0 for some k 2 f1; :::;Kg: We say �i deems �j 2 �j possible i� �i deems
(cj ; �j) possible for some cj 2 Cj . For each �i 2 �i; we use �j(�i) to denote the set of states
in �j deemed possible by �i. For each �i 2 �i and vi 2 Vi; �vii is the type satisfying that
wi(�

vi
i ) = vi and �i(�

vi
i ) = �i(�i). For (cj ; �j); (c

0
j ; �

0
j) 2 Cj � �j ; we say that �i deems (cj ; �j)

in�nitely more likely than (c0j ; �
0
j) i� there exists k 2 f0; :::;K � 1g such that the following two

conditions are satis�ed:

(a) �it((cj ; �j)) = �it((c
0
j ; �

0
j)) = 0 for t = 1; :::; k; and

(b) �i;k+1((cj ; �j)) > 0 and �i;k+1((c
0
j ; �

0
j)) = 0.

De�nition 2.2 (Caution). �i 2 �i is cautious i� for each cj 2 Cj and each �j 2 �j(�i), there
is some utility function vj 2 Vj such that �i(�i) deems (cj ; �

vj
j ) possible.

This is a faithful translation of Perea and Roy [16]'s de�nition of caution in probabilistic
context (p.312) into lexicographic model. It is a parallel of the standard de�nition of a cautious
type in lexicographic belief in complete information (cf. Perea [14], p.199) since both require
that for each opponent's type �j deemed possible by �i; (cj ; �j) should also be deemed possible by
�i for each cj 2 Cj ; the only di�erence is that in incomplete information model we allow di�erent
utility function since cj needs to be \supported" by some vj (i.e., cj needs to be optimal for the
paired type).

For each ui; vi 2 Vi; we de�ne the distance d(ui; vi) between ui; vi by d(ui; vi) = [�c2C(ui(c)�
vi(c))

2]1=2:

De�nition 2.3 (Primary belief on u and u-centered belief). Consider a static game
form G = (Ci)i2I ; a lexicographic epistemic model M

in = (�i; wi; �i)i2I for G with incomplete
information for G; and a pair u = (ui)i2I of utility functions.

(3.1) A type �i primarily believes on u if �i's level-1 belief only assigns positive probability to
(cj ; �j) with wj(�j) = uj :

(3.2) A type �i has u-centered belief if for any cj ; cj0 2 Cj ; any �j 2 �j , and any vj ; v0j 2 Vj such
that (cj ; �

vj
j ) and (c

0
j ; �

v0j
j ) are deemed possible by �i; it holds that �i deems (cj ; �

vj
j ) in�nitely

more likely than (c0j ; �
v0j
j ) if and only if d(vj ; uj) < d(v

0
j ; uj):

De�nition 2.4 (3.2) is also a faithful translation of Perea and Roy [16]'s De�nition 3.2 into
lexicograhic model. It gives a regulation on the order of states in a lexicographic belief. That
is, the farther a state's corresponding payo� function is from u; the later that state appears in
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the order of a lexicographic belief.

De�nition 2.4 (Belief in rationality). Consider a static game form G = (Ci)i2I ; a lexico-
graphic epistemic model M in = (�i; wi; �i)i2I for G with incomplete information. A type �i
believes in j's rationality i� �i(�i) deems (cj ; �j) possible only if cj is optimal for �j :

The essential di�erence between our and Perea and Roy [16]'s conditions for characterization
lies in the following de�nition.

De�nition 2.5 (Belief under a closer utility function). Let u = (ui)i2I be a pair of utility
functions. A type �i has a belief under a closer utility function i� �i(�i) deems (cj ; �j) possible
only if there is no �0j 2 �j satisfying the following two conditions:
(a) �j(�j) = �j(�

0
j) and d(wj(�

0
j); uj) � d(wj(�j); uj)

(b) �i(�i) deems (c
0
j ; �

0
j) possible for some c

0
j 2 Cj less preferred to cj in uj under �j(�j):

We say a state believes in rationality under a closer utility function i� it has a belief in
rationality and under a closer utility function. De�nition 2.5 regulates on that what conditions
are needed for a function (corresponding to a state) to be paired with a choice. It is requires
here that a more \unrealistic" utility function (i.e., one that support c0j) should be farther from
ui than a more \realistic" one (i.e., one that support cj ; for example, wj(�j)) in �i(�i).

De�nition 2.5 is a parallel to Perea and Roy [16]'s De�nition 3.3, which requires that wj(�j)
to be the nearest utility function in Vj to uj among those under which cj is optimal. Lemma 5.5
in our De�nition 2.5 is weaker than Perea and Roy [16]'s De�nition 3.3. We adopt De�nition
2.5 here since such a nearest utility function does not in general exist for lexicographic beliefs.
That is, given uj 2 Vj ; cj 2 Cj , and a lexicographic belief bj ; there may not exist vj 2 Vj such
that (1) cj is optimal for vj under bj ; and (2) there is no v

0
j 2 Vj such that cj is optimal for v0j

under bj and d(v
0
j ; uj) < d(vj ; uj): See the following example:

Example 2.1 (No nearest utility function). Consider the following game � :

u1 D E F

A 1 1 1

B 1 1 0

C 1 0 1

Let b1 = (D;E; F ). In u1; A is optimal under b1 but B is not. Now we show that there is
no nearest utility function to u1 under which B is optimal. Suppose there is such a function
v1 2 V1: Let d = d(v1; u1): It can be seen that d > 0: Consider the following v01 :

v01 D E F

A 1 1 1

B 1 + d
2 1 0

C 1 0 1

B is also optimal for v01 under b1; while d(v
0
1; u1) =

d
2 < d = d(v1; u1); which is a contradiction.

Also, even though B is preferred to C under b1; it can be seen that for each utility function v
B
1

in which B is optimal under b1, there is some v
C
1 2 V1 satisfying (1) C is optimal in vC1 under b1;

and (2) d(vC1 ; u1) < d(v
B
1 ; u1): Indeed, this can be done by letting v

C
1 (C;D) = 1 + d(v

B
1 ; u1)=2

and v1(c1; c2) = u1(c1; c2) for all other choice pairs.

Example 2.1 shows that the relation between preferences of choices and the distance of their
corresponding utility functions are more complicated in lexicographic beliefs. That is why we
adopt De�nition 2.5 here. The following lemma guarantees the existence of utility functions
satisfying conditions in De�nition 2.5. It plays the role of Lemma 5.5 in Perea and Roy [16] in
our characterizations.
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Lemma 2.1 (Weakened choice ranking lemma). Let ui 2 Vi, bi = (bi1; bi2; :::; biK) be a
lexicographic belief, and Ci = fc1i ; :::; cNi g. Without loss of generality, we assume that ui(c1i ; bi) �
ui(c

2
i ; bi) � ::: � ui(cNi ; bi): Then there is a sequence v1i ; :::; vNi 2 Vi satisfying

(a) v1i = ui;

(b) For each n = 1; :::; N; cni is optimal for v
n
i under bi; and

(c) For each n = 1; :::; N � 1; d(vni ; ui) = d(vn+1i ; ui) whenever ui(c
n
i ; bi) = ui(c

n+1
i ; bi); and

d(vni ; ui) < d(v
n+1
i ; ui) whenever ui(c

n
i ; bi) > ui(c

n+1
i ; bi):

Proof. We construct such a sequence by induction. First, let v1i = ui: For v
2
i ; if ui(c

2
i ; bi) =

ui(c
1
i ; bi); then we just let v

2
i = v

1
i : If ui(c

2
i ; bi) < ui(c

1
i ; bi); then make some change in fui(c1i ; cj) :

cj 2 suppbi1g to de�ne fv2i (c1i ; cj) : cj 2 suppbi1g satisfying that v2i (c1i ; bi1) < v1i (cNi ; bi1) while
keep other payo�s the same. It can be seen that c2i is optimal for v

2
i under bi and d(v

2
i ; ui) >

0 = d(v1i ; ui):
Now suppose for some n 2 f1; :::; N � 1g we have de�ned v1i ; :::; vni satisfying (a)-(c). We

show how to de�ne vn+1i : If ui(c
n
i ; bi) = ui(c

n+1
i ; bi); we let v

n+1
i = vni : Suppose that ui(c

n
i ; bi) >

ui(c
n+1
i ; bi): Let

n
1ci; :::;

N
1 ci be an order from the most preferred choice to the least preferred

on in Ci under v
n
i with c

n+1
i =k1 ci and v

n
i (
k�1
1 ci; bi) > vni (

k
1ci; bi): We make some change in

fvni (t1ci; cj) : t = 1; :::; k � 1; cj 2 suppbi1g to de�ne fvn+1i (t1ci; cj) : t = 1; :::; k � 1; cj 2
suppbi1g satisfying that vn+1i (t1ci; bi1) < v

n
i (
N
1 ci; bi1) for all t = 1; :::; k�1 while keep other payo�s

the same. It can be seen that cn+1i is optimal for vn+1i under bi and, since d(v
n+1
i ; vni ) > 0,

d(vn+1i ; ui) = d(vn+1i ; vni ) + d(v
n
i ; ui) > d(vni ; ui): By induction, we can construct a sequence

v1i ; :::; v
N
i 2 Vi satisfying (a)-(c). //

The basic idea behind this inductive construction is depicted as follows.�
c1i ; c

2
i ; c

3
i ; :::; c

N
i

�
v2i�!

�
c2i ; c

3
i ; :::; c

N
i ; c

1
i

�
v3i�!

�
c3i ; :::; c

N
i ; c

1
i ; c

2
i

�
... vNi�!

�
cNi ; c

1
i ; :::; c

N�1
i

�
We move choice one by one to the end of the sequence. When there is a tie, we just move the
whole equivalence class to the end of the sequence. We use the following example to show how
this construction works.

Example 2.1 (Continued). Consider u1 in Example 2.1. Under b1 = (D;E; F ), A is preferred
to B and B is preferred to C in u1: We can de�ne v

1
1; v

2
1; v

3
1 as follows:

u1 = v
1
1 D E F

A 1 1 1

B 1 1 0

C 1 0 1

�!

v21 D E F

A 1
2 1 1

B 1 1 0

C 1 0 1

�!

v31 D E F

A 1
2 1 1

B 1
4 1 0

C 1 0 1

It should be noted that v11; :::; v
N
1 satisfying (a) - (c) are not unique, which will be seen in Example

3.1 and 3.4. Also, such a sequence can be seen as de�ned to equivalent classes of indi�erent
choices under a belief rather than to individual choices. This is important in constructing
correspondence between states of complete and incomplete information models.

2.2. Complete Information

In this subsection we give a survey of lexicographic epistemic model with complete information.
For details, see Perea [14], Chapters 5-6.

De�nition 2.5 (Epistemic model). Consider a �nite two-player static game � = (Ci; ui)i2I .
A �nite lexicographic epistemic model for � is a tuple M co = (Ti; bi)i2I where

(a) Ti is a �nite set of types, and

(b) bi is a mapping that assigns to every ti 2 Ti a lexicographic belief over �(Cj � Tj); i.e.,
bi(ti) = (bi1; bi2; :::; biK) where bik 2 �(Cj � Tj) for k = 1; :::;K:
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For each ti 2 Ti; we denote by Tj(ti) the set of all tj 's deemed possible by ti.
De�nition 2.6 (Caution) Type ti 2 Ti is cautious i� whenever it deems an tj 2 Tj possible,
then for every choice cj 2 Cj it deems (cj ; tj) possible.
De�nition 2.7 (Primary belief in the opponent's rationality) Let ti 2 Ti with bi(ti) =
(bi1; bi2; :::; biK): ti primarily believes in j's rationality i� ti's primary belief bi1 only assigns pos-
itive probability to those (cj ; tj) where cj is rational for tj :

De�nition 2.8 (Respect the opponent's preferences) Let ti 2 Ti with bi(ti) = (bi1; bi2; :::; biK):
ti respects the opponent's preferences i� for any tj 2 Tj(ti) and any cj ; c0j 2 Cj where tj prefers
cj to c

0
j ; ti deems (cj ; tj) in�nitely more likely than (c

0
j ; tj):

De�nition 2.9 (Common full belief in some property) Let P be an arbitrary property of
lexicographic beliefs.

(a) ti 2 Ti expresses 1-fold full belief in P i� ti only deems possible j's types that satisfy P ;
(b) For each n 2 N; ti 2 Ti expresses (n + 1)-fold full belief in P i� ti only deems possible j's
types that express n-fold full belief in P:

ti expresses common full belief in P i� it expresses n-fold full belief in P for each n 2 N:
De�nition 2.10 (Perfect and proper rationalizabilities). Given a lexicographic model
M co = (Ti; bi)i2I for a game � = (Ci; ui)i2I . ci 2 Ci is perfectly rationalizable i� it is optimal to
some ti 2 Ti which expresses common full belief in caution and primary belief in rationality. ci
is properly rationalizable i� it is optimal to some ti 2 Ti which expresses common full belief in
caution and respect of preferences.

3. Characterizations

3.1. Statements and Examples

Theorem 3.1 (Characterization of perfect rationality). Consider a �nite 2-person static
game � = (Ci; ui)i2I ; the corresponding game form G = (Ci)i2I , a �nite lexicographic epistemic
model M co = (Ti; bi)i2I for �:

Then, c�i 2 Ci is perfectly rationalizable inM co if and only if there is some �nite lexicographic
epistemic modelM in = (�i; wi; �i)i2I with incomplete information for G and some �

�
i 2 �i with

wi(�
�
i ) = ui such that

(a) ��i expresses common full belief in caution, primary belief on u; and rationality, and

(b) c�i is optimal to �
�
i :

Theorem 3.2 (Characterization of proper rationality). Consider a �nite 2-person static
game � = (Ci; ui)i2I ; the corresponding game form G = (Ci)i2I ; a �nite lexicographic epistemic
model M co = (Ti; bi)i2I for �:

Then, c�i 2 Ci is properly rationalizable inM co if and only if there is some �nite lexicographic
epistemic model M in = (�i; wi; �i)i2I for G and some �

�
i 2 �i with w�i (��i ) = ui such that

(a) ��i expresses common full belief in caution, u-centered belief, and rationality under a closer
utility function

(b) c�i is optimal to �
�
i .

To show these statements, we need to construct a correspondence between states of complete
and incomplete information models. Before we go to the formal proof, we use the following three
examples to show the intuition.

Example 3.1 (for Theorem 3.1). Consider the following game � (Perea [14], p.188):

u1nu2 C D

A 1; 0 0; 1

B 0; 0 0; 1
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and the lexicographic epistemic model M co = (Ti; bi)i2I with complete information for � where
T1 = ft1g; T2 = ft2g, and

b1(t1) = ((D; t2); (C; t2)); b2(t2) = ((A; t1); (B; t1)):

It can be seen that t1 expresses common full belief in caution and primary belief in rationality.
We can construct a corresponding lexicographic epistemic model M in = (�i; wi; �i)i2I with
incomplete information where �1 = f�11; �12g; �2 = f�21; �22g; and

w1(�11) = u1; �1(�11) = ((D; �21); (C; �22)); (3.1)

w1(�12) = v1; �1(�12) = ((D; �21); (C; �22));

w2(�21) = u2; �2(�21) = ((A; �11); (B; �12));

w2(�22) = v2; �2(�22) = ((A; �11); (B; �12));

where
v1 C D

A 0:5 0

B 0:5 0

;

v2 C D

A 0:5 0:5

B 0:5 0:5

It can be seen that �11 expresses common full belief in caution, primary belief on u; and ratio-
nality. Also, �11 generates the same belief hierarchy as t1 does.

Example 3.2 (for Theorem 3.2). Consider the following game � (Perea [14], p.211):

u1nu2 D E F

A 0; 5 1; 2 1; 1

B 1; 3 0; 4 1; 1

C 1; 3 1; 2 0; 3

Consider the lexicographic model M co = (Ti; bi)i2I for � where T1 = ft1g; T2 = ft2g, and

b1(t1) = ((D; t2); (F; t2); (E; t2)); b2(t2) = ((C; t1); (B; t1); (A; t1)):

It can be seen that t1 expresses common full belief in caution and respect of preferences. We can
construct a corresponding lexicographic epistemic model M in = (�i; wi; �i)i2I with incomplete
information for G = (Ci)i2I where �1 = f�11; �12; �13g; �2 = f�21; �22; �23g; and

w1(�11) = u1; �1(�11) = ((D; �21); (F; �22); (E; �23));

w1(�12) = v1; �1(�12) = ((D; �21); (F; �22); (E; �23));

w1(�13) = v01; �1(�13) = ((D; �21); (F; �22); (E; �23));

w2(�21) = u2; �2(�21) = ((C; �11); (B; �12)); (A; �13));

w2(�22) = v2; �2(�22) = ((C; �11); (B; �12)); (A; �13));

w2(�23) = v02; �2(�23) = ((C; �11); (B; �12)); (A; �13)):

where

v1 D E F

A 0 1 1

B 1:1 0 1

C 1 1 0

;

v01 D E F

A 1 1 1

B 1 0 1

C 1 1 0

;

v2 D E F

A 5 2 1

B 3 4 1

C 3 2 3:1

;

v02 D E F

A 5 2 1

B 3 4 1

C 2 3 3

;

It can be seen that �21 expresses common belief in caution, u-centered belief, and rationality
under a closer utility function and generates the same belief hierarchy as t2:
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We can also use this example to compare Theorems 3 2 and 3. Consider the lexicographic
epistemic model (T 0i ; b

0
i)i2I for � where T

0
1 = ft01g; T 02 = ft02g, and

b01(t
0
1) = ((A; t

0
2); (B; t

0
2); (C; t

0
2)); b

0
2(t

0
2) = ((C; t

0
1); (A; t

0
1); (B; t

0
1)):

It can be seen that t01 is expresses common full belief in caution and primary belief in rationality.
We can construct the corresponding lexicographic epistemic model M in = (�0i; w

0
i; �

0
i)i2I with

incomplete information for G = (Ci)i2I where �
0
1 = f�011; �012; �013g; �2 = f�021; �022; �023g; and

w01(�
0
11) = u1; �

0
1(�

0
11) = ((D; �

0
21); (E; �

0
22); (F; �

0
23));

w01(�
0
12) = v01; �

0
1(�

0
12) = ((D; �

0
21); (E; �

0
22); (F; �

0
23));

w01(�
0
13) = v1; �

0
1(�

0
13) = ((D; �

0
21); (E; �

0
22); (F; �

0
23));

w02(�
0
21) = u2; �

0
2(�

0
21) = ((C; �

0
11); (A; �

0
12)); (B; �

0
13));

w02(�
0
22) = v02; �

0
2(�

0
22) = ((C; �

0
11); (A; �

0
12)); (B; �

0
13));

w02(�
0
23) = v2; �

0
2(�

0
23) = ((C; �

0
11); (A; �

0
12)); (B; �

0
13));

It can be seen that �021 expresses common full belief in caution, primary belief on u; and ratio-
nality, and generates the same belief hierarchy as t02 does. On the other hand, it can be seen
that t02 does not respect 1's preferences, since under type t

0
1; B should be preferred to A; while

t02 deems A in�nitely more likely than B: This is shown in the violation of rationality under a
closer utility function of �021. Indeed, �

0
1(�

0
12) = �01(�

0
12) and d(w

0
1(�

0
12); u1) = d(v01; u1) = 1 >

d(w01(�
0
13); u1) = d(v1; u1) = 0:1 while �

0
21 deems (A; �

0
12) in�nitely more likely than (B; �

0
13):

3.2. Proof of Theorem 3.1

To show the Only-if part of Theorem 3.1, we construct the following mapping from �nite lexico-
graphic epistemic models with complete information to those with incomplete information. Let
� = (Ci; ui)i2I and M

co = (Ti; bi)i2I be a �nite lexicographic epistemic model for �: We �rst
de�ne states in a incomplete information model in the following two steps:

Step 1. For each i 2 I and ti 2 Ti; de�ne �i(ti) = (Ci1; :::; Ci`) to be a partition of Ci satisfying
that (1) for each r = 1; :::; ` and each ci; c

0
i 2 Cir; ui(ci; bi(ti)) = ui(c0i; bi(ti)); and (2) for each

r = 1; :::; ` � 1 and cir 2 Cir; ci;r+1 2 Ci;r+1; ui(cir; bi(ti)) > ui(ci;r+1; bi(ti)): That is, �i(ti) is
a sequence of equivalent classes of choices in Ci ordered from the most to the least preferred
under bi(ti): By lemma 2.1, for each Cir there is some vir(ti) 2 Vi such that each choice in Cir
is optimal under vir(ti); and 0 = d(vi1(ti); ui) < d(vi2(ti); ui) < ::: < d(vi`(ti); ui):

Step 2. We de�ne �i(ti) = f�i1(ti); :::; �i`(ti)g where for each r = 1; :::; `; the state �ir(ti) satis-
�es that (1) wi(�ir(ti)) = vir(ti); and (2) �i(�ir(ti)) has the same distribution on choices at each
level as bi(ti) does, and for each (cj ; �j) corresponding to (cj ; tj) in bi(ti); wj(�j) is the utility
function fvjr(tj)g for which cj is the optimal under bi(ti); in other words, if cj 2 Cjr 2 �j(tj)
for some r; then �j = �jr(tj):

Let �i = [ti2Ti�i(ti): In this manner we construct a �nite lexicographic epistemic model
M in = (�i; wi; �i)i2I with incomplete information for G: It should be noted that so far we did
not put any restriction on ti: In the following example we show how this construction works.

Example 3.4 (1). Consider the game � in Example 3.1:

u1nu2 C D

A 1; 0 0; 1

B 0; 0 0; 1

and the lexicographic epistemic model M co = (Ti; bi)i2I � where T1 = ft1g; T2 = ft2g, and

b1(t1) = ((D; t2); (C; t2)); b2(t2) = ((A; t1); (B; t1)):

9



We show how to construct a corresponding model M in = (�i; wi; �i)i2I . First, by Step 1 it can
be seen that �1(t1) = (fAg; fBg) and �2(t1) = (fDg; fCg): We can de�ne v11(t1) = u1; where
A is optimal under b1(t1); and v12(t1) as follows, where B is optimal under b1(t1): Similarly, we
can de�ne v21(t2) = u2 and v22(t2) as follows:

v12(t1) C D

A 0 �1
B 0 0

;

v22(t2) C D

A 0 �1
B 0 1

Then we go to Step 2. It can be seen that �1(t1) = f�11(t1); �12(t1)g; where

w1(�11(t1)) = v11(t1); �1(�11(t1)) = ((D; �21(t2)); (C; �22(t2)));

w1(�12(t1)) = v12(t1); �1(�12(t1)) = ((D; �21(t2)); (C; �22(t2))):

Also, �2(t2) = f�21(t2); �22(t2)g; where

w2(�21(t2)) = v21(t2); �2(�21(t2)) = ((A; �11(t1)); (B; �12(t1)));

w2(�22(t2)) = v22(t2); �2(�22(t2)) = ((A; �11(t1)); (B; �12(t1))):

(2) Since it can be seen that both t1 and t2 expresses common full belief in caution and primary
belief in rationality, to show that our construction also works for general cases, consider the
following states in a complete information model:

b1(t
0
1) = ((C; t

0
2); (D; t

0
2)); b2(t

0
2) = ((A; t

0
1); (B; t

0
1)):

First, by Step 1 it can be seen that �1(t
0
1) = (fAg; fBg) and �2(t01) = (fDg; fCg): We can

de�ne v11(t
0
1) = u1; where A is optimal under b1(t

0
1); and v12(t

0
1) as follows, where B is optimal

under b1(t
0
1): Similarly, we can de�ne v21(t

0
2) = u2 and v22(t

0
2) as follows:

v12(t
0
1) C D

A �1 0

B 0 0

;

v22(t
0
2) C D

A 0 �1
B 0 1

Then we go to Step 2. It can be seen that �1(t
0
1) = f�11(t01); �12(t01)g; where

w1(�11(t
0
1)) = v11(t

0
1); �1(�11(t

0
1)) = ((C; �22(t

0
2)); (D; �21(t

0
2)));

w1(�12(t
0
1)) = v12(t

0
1); �1(�12(t

0
1)) = ((C; �22(t

0
2)); (D; �21(t

0
2))):

Also, �2(t
0
2) = f�21(t02); �22(t02)g; where

w2(�21(t2)) = v21(t
0
2); �2(�21(t

0
2)) = ((A; �11(t

0
1)); (B; �12(t

0
1)));

w2(�22(t
0
2)) = v22(t

0
2); �2(�22(t

0
2)) = ((A; �11(t

0
1)); (B; �12(t

0
1))):

It can be seen that, by construction, each ti shares the same belief hierarchy (as can be
de�ned in a similar way as in Perea and Roy [16]) with any �i 2 �i(ti). For each ti 2 Ti; we use
�i(ti) to denote the state in �i(ti) which has utility function ui: It is clear that any ci optimal
to ti is also optimal to �i 2 �i(ti) with wi(�i) = ui: Then, to show the Only-if part of Theorem
3.1, we show that if ti expresses common full belief in caution and primary belief in rationality,
then �i(ti) expresses common belief in caution, primary belief on u; and rationality. We need
the following lemmas.

Lemma 3.1(Redundancy). Let M co = (Ti; bi)i2I and M
in = (�i; wi; �i)i2I be constructed

from M co by the two steps above. Then for each ti 2 Ti and each �i; �0i 2 �i(ti); �i(�i) = �i(�0i):
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Lemma 3.1 follows directly by the construction, so we eliminate its proof. It implies that
the di�erence between any two states in a �i(ti) is their corresponding utility functions. This
redundancy is critical in our proof.

Lemma 3.2 (Caution). Let M co = (Ti; bi)i2I and M
in = (�i; wi; �i)i2I be constructed from

M co by the two steps above. If ti 2 Ti expresses common full belief in caution, so does each
�i 2 �i(ti):
Proof. We show this statement by induction. First we show that if ti is cautious, then each
�i 2 �i(ti) is also cautious. Let cj 2 Cj and �j 2 �j(�i): By construction, it can be seen that
tj 2 Tj corresponding to �j (i.e., �j 2 �j(tj)) is in Tj(ti): Since ti is cautious, ti deems (cj ; tj)
possible. Consider the pair (cj ; �

0
j) in �i(�i) corresponding to (cj ; tj): Since both �j and �

0
j are

in �j(tj); it follows from Lemma 3.1 that �i(�i) = �i(�
0
i): Hence it follows that (cj ; �

wj(�
0
j)

j ) is
deemed possible by �i: Here we have shown that �i is cautious.

Suppose we have shown that, for each i 2 I; if ti expresses n-fold full belief in caution
then each �i 2 �i(ti) also expresses n-fold belief in caution. Now suppose that ti expresses
(n + 1)-fold full belief in caution, i.e., it only deems possible j's types tj 's that express n-fold
full belief in caution. It follows that each �j 2 �j(tj) also express n-fold full belief in caution.
By construction, it follows that each �i 2 �i(ti) also expresses (n+ 1)-fold belief in caution. //
Lemma 3.3 (Rationality, and primary belief in rationality ! Primary belief on u).
LetM co = (Ti; bi)i2I andM

in = (�i; wi; �i)i2I be constructed fromM
co by the two steps above.

Then

(a) each �i 2 �i(ti) expresses common full belief in primary belief on u and rationality, and
(b) if ti 2 Ti expresses common full belief in primary belief in rationality, then each �i 2 �i(ti)
expresses common full belief in primary belief on u.

Proof. (a) holds by construction. We show (b) statement by induction. First we show that if ti
primarily believes in j's rationality, then each �i 2 �i(ti) expresses full belief in primary belief
on uj . Let (cj ; �j) be a pair deemed possible in the level-1 belief of �i: Consider its corresponding
(cj ; tj) in level-1 belief of ti: Since ti primarily believes in j's rationality, cj is optimal for ti: It
follows that cj 2 Cj1 2 �j(tj): By Lemma 2.1 and construction, it follows that wj(�j) = uj :
Here we have shown that �i primarily believes on uj :

Suppose we have shown that, for each i 2 I; if ti expresses n-fold full belief in primary
belief in rationality then each �i 2 �i(ti) also expresses n-fold belief in primary belief on u. Now
suppose that ti expresses (n+1)-fold full belief in primary belief in rationality, i.e., it only deems
possible j's types tj 's that express n-fold full belief in primary belief in rationality. It follows
that each �j 2 �j(tj) also express n-fold full belief in primary belief on u. By construction, it
follows that each �i 2 �i(ti) also expresses (n+ 1)-fold belief in primary belief on u. //
Proof of the Only-if part of Theorem 3.1. Let M co = (Ti; bi)i2I and M

in = (�i; wi; �i)i2I
be constructed from M co by the two steps above, c�i 2 Ci be properly rationlizable, and t�i 2 Ti
be a state supporting ci: Let �

�
i = �i(ti): By de�nition, wi(�

�
i ) = ui; and c

�
i is optimal to �

�
i :

Also, it follows from Lemmas 3.2-3 that ��i expresses common belief in caution, primary belief
on u; and rationality. //

To show the If part, we need a mapping from models with incomplete information to
those with complete information. Consider a �nite 2-person static game � = (Ci; ui)i2I ; the
corresponding game form G = (Ci)i2I ; and a �nite lexicographic epistemic model M

in =
(�i; wi; �i)i2I for G: We construct M

co = (Ti; bi)i2I for � as follows. For each �i 2 �i; we
de�ne Ei(�i) = f�0i 2 �i : �i(�0i) = �(�i)g: In this manner, �i is partitioned into some equivalent
classes Ei = fEi1; :::; Ei`g: For each Ei 2 Ei we assign a symbol ti(Ei) to represent a state. We
de�ne bi(ti(Ei)) to be a lexicographic belief on �(Cj � Tj) which has the same distribution of
choices at each level as any �i 2 Ei; and for each (cj ; tj) corresponding to (cj ; �j) in �i(�i);
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tj = tj(Ej(�j)):
Let Ti = fti(Ei)gEi2Ei : In this manner we construct a �nite lexicographic epistemic model

M co = (Ti; bi)i2I with complete information for � from M in: In the following example we show
how this construction works.

Example 3.4 (Continued). Consider the game in Example 3.1:

u1nu2 A B

A 1; 0 0; 1

B 0; 0 0; 1

and the lexicographic epistemic model M in = (�i; wi; �i)i2I for G = (Ci)i2I where �1 =
f�11; �12g; �2 = f�21; �22g; and

w1(�11) = u1; �1(�11) = ((B; �21); (A; �22));

w1(�12) = v1; �1(�12) = ((B; �21); (A; �22));

w2(�21) = u2; �2(�21) = ((A; �11); (B; �12));

w2(�22) = v2; �2(�22) = ((A; �11); (B; �12)):

It can be seen that E1 = ff�11; �12gg since �1(�11) = �1(�12): Similarly, E2 = ff�21; �22gg:
Corresponding to those equivalent classes we have t1(f�11; �12g) and t2(f�21; �22g); and

b1(t11(f�11; �12g)) = ((B; t2(f�21; �22g)); (A; t2(f�21; �22g)));
b2(t2(f�21; �22g)) = ((A; t1(f�11; �12g)); (B; t1(f�11; �12g))):

It can be seen that this construction can be seen as a reversion of the previous one. That is,
given M co = (Ti; bi)i2I and M

in = (�i; wi; �i)i2I be constructed from M co by the previous two
steps. Then Ei = f�i(ti)gti2Ti ; and ti(�i(ti)) = ti: We have the following lemmas.
Lemma 3.4 (Caution). Let M in = (�i; wi; �i)i2I and M

co = (Ti; bi)i2I be constructed from
M in by the above approach. If �i 2 �i expresses common full belief in caution, so does each
ti(Ei(�i)):

Proof. We show this statement by induction. First we show that if �i is cautious, then ti(Ei(�i))
is also cautious. Let cj 2 Cj and tj 2 Tj(ti(Ei(�i))): By construction tj corresponds to some
Ej 2 Ej ; and there is some �j 2 Ej which is deemed possible by �i: Since �i is cautious, there
is some �0j with �j(�

0
j) = �j(�j); i.e., �

0
j 2 Ej ; such that (cj ; �0j) is deemed possible by �i: By

construction it follows that (cj ; tj) is deemed possible by ti:
Suppose we have shown that, for each i 2 I; if �i expresses n-fold full belief in caution then

ti(Ei(�i)) also expresses n-fold belief in caution. Now suppose that �i expresses (n + 1)-fold
full belief in caution, i.e., it only deems possible j's types �j 's that express n-fold full belief in
caution. It follows that tj(Ej(�j)) also express n-fold full belief in caution. By construction, it
follows that ti(Ei(�i)) also expresses (n+ 1)-fold belief in caution. //

Lemma 3.5 (Primary belief on u + rationality! Primary belief in rationality). Let
M in = (�i; wi; �i)i2I and M

co = (Ti; bi)i2I be constructed from M in by the above approach.
If �i 2 �i expresses common full belief in primary belief on u and rationality, then ti(Ei(�i))
expresses common full belief in primary belief in rationality.

Proof. We show this statement by induction. First we show that if �i primarily believes on u
and j's rationality, then ti(Ei(�i)) primarily believes in j's rationality. Let (cj ; tj) be a choice-
type pair which is deemed possible in ti(Ei(�i))'s level-1 belief. By construction tj corresponds
to some Ej 2 Ej ; and for some �j 2 Ej ; (cj ; �j) is deemed possible in �i's level-1 belief. Since
�i primarily believes on u; it follows that wj(�j) = uj : Also, since �i believes j's rationality, it
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follows that cj is optimal for uj under the belief on choices of �j(�j), i.e., that of bi(tj): Therefore
cj is optimal for tj . Here we have shown that ti(Ei(�i)) primarily believes in j's rationality.

Suppose we have shown that, for each i 2 I; if �i expresses n-fold full belief in primary belief
on u and rationality then ti(Ei(�i)) also expresses n-fold belief in primary belief in rationality.
Now suppose that �i expresses (n+1)-fold full belief in primary belief on u and rationality, i.e.,
it only deems possible j's types �j 's that express n-fold full belief in primary belief on u and
rationality. It follows that tj(Ej(�j)) also express n-fold full belief in primary belief in rationality.
By construction, it follows that ti(Ei(�i)) also expresses (n + 1)-fold belief in primary belief in
rationality. //

Proof of the If part of Theorem 3.1. Let M in = (�i; wi; �i)i2I and M
co = (Ti; bi)i2I be

constructed from M in by the above approach, c�i 2 Ci be optimal to some ��i with wi(��i ) =
ui which expresses common belief in caution, primary belief on u; and rationality. Consider
ti(Ei(�

�
i )): By construction, ci is optimal to ti(Ei(�

�
i )): Also, it follows from Lemmas 3.4-5 that

ti(Ei(�
�
i )) expresses common full belief in caution and primary belief in rationality. Hence c

�
i is

perfectly rationalizable in �: //

3.3. Proof of Theorem 3.2

To show the Only-if part of Theorem 3.2, we need the following lemma.

Lemma 3.6 (Respect of preferences ! u-centered belief). Let M co = (Ti; bi)i2I and
M in = (�i; wi; �i)i2I be constructed from M co by the two steps in Section 3.1. If ti 2 Ti
expresses common full belief in respect of preferences, then each �i 2 �i(ti) expresses full belief
in u-centered belief.

Proof. We show this statement by induction. First we show that if ti respects j's preferences,
then each �i 2 �i(ti) expresses uj-centered belief. Let cj ; c0j 2 Cj ; �j 2 �j , and vj ; v0j 2 Vj such
that (cj ; �

vj
j ) and (c

0
j ; �

v0j
j ) be deemed possible by �i with d(vj ; uj) < d(v

0
j ; uj): By construction, it

follows that (1) for tj 2 Tj with �
vj
j ; �

v0j
j 2 �j(tj), ti deems both (cj ; tj) and (c0j ; tj) possible, and

(2) ui(cj ; bi(ti)) > ui(c
0
j ; bi(ti)): Since ti respects j's preferences, ti deems (cj ; tj) in�nitely more

likely than (c0j ; tj): By construction, it follows that �i deems (cj ; �
vj
j ) more likely than (c

0
j ; �

v0j
j ):

Here we have shown that �i expresses uj-centered belief.
Suppose we have shown that, for each i 2 I; if ti expresses n-fold full belief in respect of

preferences then each �i 2 �i(ti) also expresses n-fold u-centered belief. Now suppose that ti
expresses (n + 1)-fold full belief in respect of preferences, i.e., it only deems possible j's types
tj 's that express n-fold full belief in respect of preferences. It follows that each �j 2 �j(tj) also
express n-fold full belief in u-centered belief. By construction, it follows that each �i 2 �i(ti)
also expresses (n+ 1)-fold belief in u-centered belief. //

Proof of the Only-if part of Theorem 3.2. Let M co = (Ti; bi)i2I and M
in = (�i; wi; �i)i2I

be constructed from M co by the two steps Section 3.1, ci 2 Ci be perfectly rationlizable, and
t�i 2 Ti be a state supporting ci: Let ��i = �i(ti): By construction, ��i believes in rationality under
the closer utility function, wi(�

�
i ) = ui; and ci is optimal to �

�
i : Also, it follows from Lemmas

3.2-3 and 6 that ��i expresses common belief in caution, u-centered belief, and rationality under
the closer utility function. //

To show the If part, we still use the construction from M in to M co de�ned in the previous
subsection. We need the following lemma.

Lemma 3.7 (u-centered belief + rationality under the closer utility function ! re-
spect of preferences). Let M in = (�i; wi; �i)i2I and M

co = (Ti; bi)i2I be constructed from
M in by the approach in Section 3.1. If �i 2 �i expresses common full belief in u-centered belief
and rationality under a closer utility function, then ti(Ei(�i)) expresses common full belief in
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respect of preferences.

Proof. We show this statement by induction. First we show that if �i has u-centered belief
and believes in j's rationality under the closest utility function, then ti(Ei(�i)) respects j's
preferences. Let cj ; c

0
j 2 Cj and tj 2 Tj(ti(Ei(�i))) where both (cj ; tj) and (c0j ; tj) are deemed

possible by ti(Ei(�i))
1and tj prefers cj to c

0
j : By construction tj corresponds to some Ej 2 Ej ;

and there are �j ; �
0
j 2 Ej such that �i deems (cj ; �j) and (c

0
j ; �

0
j) possible. Suppose that �i

deems (c0j ; �
0
j) in�nitely more or the same likely than (cj ; �j): Since �i has u-centered belief,

d(wj(�
0
j); uj) � d(wj(�j); uj): Also, since �i believes j's rationality, c0j is optimal to �0j : However,

since c0j is less preferred to cj in uj under bj(tj) (i,e, by construction, �j(�j)), it is a contradiction
to that �i believes in rationality under the closer utility function. Therefore �i deems (cj ; �j)
in�nitely more likely than (c0j ; �

0
j); and, consequently ti(Ei(�i)) deems (cj ; tj) in�nitely more

likely than (c0j ; tj): Here we have shown that ti(Ei(�i)) respects j's preferences.
Suppose we have shown that, for each i 2 I; if �i expresses n-fold full belief in u-centered

belief and rationality under a closer utility function, then ti(Ei(�i)) also expresses n-fold belief
in respect of preferences. Now suppose that �i expresses (n+1)-fold full belief in primary belief
on u and rationality, i.e., it only deems possible j's types �j 's that express n-fold full belief in
u-centered belief and rationality under a closer utility function. It follows that tj(Ej(�j)) also
express n-fold full belief in primary belief in respect preferences. By construction, it follows that
ti(Ei(�i)) also expresses (n+ 1)-fold belief in respect preferences. //

Proof of the If part of Theorem 3.2. Let M in = (�i; wi; �i)i2I and M
co = (Ti; bi)i2I be

constructed from M in by the above approach, c�i 2 Ci be optimal to some ��i with wi(��i ) = ui
which expresses common belief in caution, u-centered belief, and rationality under a closer
utility function. Consider ti(Ei(�

�
i )): By construction, ci is optimal to ti(Ei(�

�
i )): Also, it follows

from Lemmas 3.4 and 7 that ti(Ei(�
�
i )) expresses common full belief in caution and respect of

preference. Hence c�i is properly rationalizable in �: //

4. Concluding Remarks

4.1. Expression parallel to Perea and Roy [16]'s Theorem 6.1

Theorems 3.1 and 2 can be written as faithful parallels to Perea and Roy [16]'s Theorem 6.1
as follows, which focus on equivalence between states in complete and incomplete information
models.

Theorem 4.1 (Characterizing perfect rationalizability). Consider a �nite 2-person static
game � = (Ci; ui)i2I ; the corresponding game form G = (Ci)i2I ; the corresponding u = (ui)i2I ,
a �nite lexicographic epistemic model M co = (Ti; bi)i2I for �; and a type t

� 2 Ti:
Then, t�i 2 Ti expresses common full belief in caution and primary belief in rationality if and

only if there is some �nite lexicographic epistemic model M in = (�i; wi; �i)i2I with incomplete
information for G and some ��i 2 �i such that
(a) ��i expresses common belief in caution, primary belief on u; and rationality, and

(b) t�i and �
�
i has the same belief hierarchy.

2

Theorem 4.2 (Characterizing proper rationalizability). Consider a �nite 2-person static
game � = (Ci; ui)i2I ; the corresponding game form G = (Ci)i2I ; the corresponding u = (ui)i2I ,
a �nite lexicographic epistemic model M co = (Ti; bi)i2I for �; and a type t

� 2 Ti:
Then, t�i 2 Ti expresses common full belief in caution and respect of preferences if and only if

there is some �nite lexicographic epistemic model M in = (�i; wi; �i)i2I for G and some �
�
i 2 �i

1In our characterization, that both (cj ; tj) and (c
0
j ; tj) are deemed possible by ti(Ei(�i)) is guaranteed by

caution. Since here we did not assume that �i is cautious, we need this assumption.
2Belief hierarchy here can be de�ned in a similar way as in Perea and Roy [16], Section 4.

14



such that

(a) ��i expresses common full belief in caution, u-centered belief, and rationality under the closest
utility function

(b) t�i and �
�
i has the same belief hierarchy.

We adopt the expressions in Theorems 3.1 and 2 because (1) we want to take the view-
point of choices since we believe that reasoning about choices is the starting point of epistemic
game theory, and (2) the coincidence of belief hierarchy seems to be straightforward from our
construction, hence we think it is not needed to mention it independent in the statements.

4.2. Extending to n-person cases

Though both Perea and Roy [16] and this note focus on 2-person games, there is no fundamental
di�culty in extending those results into n-person cases. The only problem here is the distance be-
tween utility functions. In a 2-person game, a belief �i(�i) of i needs only to consider distribution
on �(Cj��j); a \cell" in �i(�i) is just a pair (cj ; �j); and its location in bi can be connected di-
rectly to the distance d(wj(�j); uj): On the other hand, in an n-person a \cell" of a belief contains
more than one pair, e.g., something like h(c1; �1); (c2; �2); :::; (ci�1; �i�1); (ci+1; �i+1); :::; (cn; �n)i,
and more than one distance, e.g.,., d(w1(�1); u1); :::; d(wn(�n); un) here. Then how to connect the
location of this cell and those distances? One direct way is to consider each player one-by-one.
In this way, all de�nitions and conditions in 2-person cases can be directly applied to n-person
cases, and the results in Perea and Roy [16] and this note still holds.

Another way is to de�ne a distance on the whole cell. For example, to de�ne d(v1; :::; vn;u1;
:::; un) = minifd(vi; ui)g seems still have the results in 2-person cases hold in general. However,
it should be noted that not very distance works. For example, �id(vi; ui) does not work since
it does not di�erentiate distances of utility functions among di�erent players. Further work is
expected in this direction.

4.3. Using our construction to show Perea and Roy [16]'s Theorem 6.1

Our proofs are based on construction of a speci�c correspondence between two models. It can
be seen that this construction can be translated directly into probabilistic context and be used
to show Perea and Roy [16]'s Theorem 6.1. Further, it can be seen that, by using our Lemma
2.1, belief in rationality under closest utility function in Perea and Roy [16] can be replaced by
the weaker one (De�nition 2.5) here.

4.4. Characterizing other rationalities

As Perea and Roy [16] did, this characterizes some rationalities by epistemic model with incom-
plete information. It is wondered whether there is some other rationalizability concepts which
can also be characterized in this way. However, it should be noted that using incomplete in-
formation model provides more insights when there is tension between caution and rationality,
and the \levels" of irrationality matters (or, in words of conditional probability, when we need
to consider conditional probabilities under impossible events. Cf. Blume et al. [3], [4], Halpern
[11]). That is why characterization of "-proper rationalizability in Perea and Roy [16] and that
of proper rationalizability here interesting since they show that the \levels" of irrationality (i.e.,
the order of preferences) in complete information models can be replaced by distances of \unre-
alistic" payo� functions from the original one in incomplete information models with rationality.

In this sense, we believe that some rationalizabiliy concepts may not be so suitable to be
characterized by incomplete information models, even though theoretically it can be. For exam-
ple, states assuming rationality (Brandenburger et al. [9]) seems not suitable since the \levels"
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of irrationality does not matter there. Actually, for each ti cautious, rational, and assuming the
opponent's rationality, we can construct a state �i as a faithful \copy" of ti; which automatically
satis�es caution, rationality, and assumption of opponent's rationality.
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