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Abstract

We offer and axiomatize a new allocation rule for cooperative games, the priority-
regarding Shapley values, which takes into account both each player’s contribution
and a priority order among players to determine each player’s allocation. The
priority order is exogenously or endogenously determined. For the exogenous case,
we introduce two new axioms, fair evaluation for contribution (FEC) and relative
difference for null players (RDN), and show that the allocation rule satisfies these
two axioms with three standard axioms, efficiency, monotonicity and symmetry if
and only if it takes the convex combination of the Shapley value and the weighted
division. For the endogenous case, we also show that an allocation rule satisfies two
weak monotonicity axioms, efficiency, weak symmetry and additivity if and only if
the rule is the priority-regarding Shapley value. We also characterize the egalitarian
Shapley values, the Shapley value, the weighted divisions and the egalitarian division
as special cases of our priority-regarding Shapley values by imposing additional
axioms.

Keywords: Cooperative game, Priority, Contribution, Shapley value.
JEL Classification: C71, D63, H20.

1 Introduction

One of the main concerns in the cooperative game theory is to explore desirable allocation
rules and its axiomatic characterization. The most eminent allocation rule may be the
Shapley value introduced by Shapley (1953), which allocates the surplus depending on
each player’s contributions. Recently, some allocation rules which depend not only on
each player’s contributions are intensively studied. An example is the egalitarian Shap-
ley values, which is the convex combinations of the Shapley value and the egalitarinan
devision.

Our purpose is to characterize an allocation rule defined as convex combinations of
the Shapley value and the weighted division, which we call the priority-regarding Shapley
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values. In many studies for the cooperative game theory, we assume that players are
identical. However, there are many applications in which players have an exogenous
or endogenous priority order, or weights.1 The exogenous priority is thought of as a
priori order which is determined before their cooperation such as qualifications for ability,
educational backgrounds and seniority orders. In contrast, the endogenous priority can
be seen as an order which is determined after the cooperation such as a promotion in
firms, which is often associated with one’s contributions.

One of the most prominent allocation rules in this context is the weighted Shapley
value due to Shapley (1953), which is an efficient and linear rule such that players’ surplus
is proportionally distributed according to the weights of the non-null players in each
unanimity game. Although this rule is quite simple, each player’s contribution is not
always evaluated fairly: even if a player i increases his contribution as much as another
player j, according to the weighted Shapley value, player i may get less than player
j because of the difference of their weights. In other words, the evaluation for their
additional contributions may not be impartial. Moreover, according to the rule, null
players always obtain nothing, that is, it is a completely contribution-based allocation
rule. In contrast, it might be natural that even null players can obtain some amounts
like the minimal payment of the firms and social securities. Therefore, replacing the null
player axiom with a weaker axiom will enhance the equity among players.

Motivated by these observations, first, we consider the exogenous case by introducing
two new axioms: fair evaluation for contribution (FEC) and relative difference for null
players (RDN). The axiom (FEC) says that we should take each player’s contribution and
priority into consideration separately. In other words, if a player additionally contributes,
then a reward for his additional contribution should be evaluated impartially regardless
of his priority. The axiom (RDN) is a minimal fairness requirements for null players.
It describes that the payoff difference between two null players, i.e., the players whose
marginal contributions are zero, depends only on the relative difference of their priorities.
Combining these two axioms with efficiency, monotonicity, and symmetry, we obtain the
priority-regarding Shapley values with exogenously determined priorities.

Second, we characterize the family of priority-regarding Shapley values, where a pri-
ority profile is endogenously determined. Our axioms feature two monotonicity axioms,
which are weaker than the standard monotonicity studied by Young (1985) and weak
monotonicity by Casajus and Huettner (2014). Our first monotonicity is total mono-
tonicity for null players (TMN). The axiom (TMN) says that even a null player (i.e.,
a no-contributed player) should be allocated more if the total amount of resources to
be distributed increases. The second one is contribution monotonicity (CM). The axiom
(CM) states that a player gets more if his contributions increase with keeping the total
amount unchanged. In addition to monotonicity, symmetry also plays an important role.
By symmetry axiom, we usually mean equal treatment property, which requires that two
symmetric players in the sense of their contributions should receive the same amount.
Combining these monotonicity axioms and weaker symmetry axiom with efficiency and
additivity, we characterize the family of priority-regarding Shapley values.

Our rules subsume many well-known allocation rules in the literature such as the
egalitarian Shapley values, the Shapley value, the weighted divisions and the egalitarian
division. By imposing additional axioms, we show that our allocation rule coincides with

1See, for example, Kalai and Samet (1987), Chun (1991), Nowak and Radzik (1995) for these argu-
ments.
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those rules.

1.1 Literature Review

As we stated above, our study is closely related to three allocation rules: the Shapley
value, the weighted divisions and the egalitarian Shapley values. We briefly review the
literature and mention a relationship with our study.

There are numerous axiomatizations of the Shapley value. Shapley (1953) initially
characterizes the allocation rule with efficiency, symmetry (namely, the equal treatment
property), additivity and the null player property. Young (1985) replaces additivity and
the null player property with its marginality axiom. Young (1985) shows that the Shapley
value allocates the surplus solely depending on each player’s productivity measured by
her marginal contribution.

Moreover, our paper is related to the weighted Shapley value, which uses weights
to aggregate players’ contribution. Kalai and Samet (1987) and Chun (1991) propose
their axiomatizations for the endogenous weight case; Nowak and Radzik (1995) offer an
axiomatization for the exogenous weight case. As for the weighted division, a leading
work is provided by Béal et al (2016). The weighted division assigns the share of the total
surplus to each player proportionally depending on their weights. The simplest example
is the equal division, which regards all players as equal. The approach to the weighted
division is technically close to Chun (1988) and Roth (1979). They study the proportional
allocation for bankruptcy problems and bargaining problems, respectively. These studies
assume that a weight profile is endogenously induced.

The egalitarian Shapley value is initially defined by Joosten (1996) as a convex com-
bination of the Shapley value and the equal division. Many properties of the egalitarian
Shapley value are clarified by Casajus and Huettner (2013, 2014) and van den Brink,
Funaki and Ju (2013). van den Brink, Funaki and Ju (2013) propose three different ax-
iomatizations and a non-cooperative implementation of the rule. Casajus and Huettner
(2013) focus on the fact that the egalitarian Shapley value provides even null players with
non-negative payoffs. They replace the null player property by the new axiom representing
this fact (with slightly strengthening symmetry). Moreover, Casajus and Huettner (2014)
drop additivity and characterize it with the three axioms: efficiency, weak monotonicity,
and symmetry (the equal treatment property). Our set of axioms is closely related to
that of Casajus and Huettner (2014). Nevertheless, this paper is different from their pa-
per for two reasons. First, they consider only a cooperative game as primitive (and the
equal priority is endogenously induced), whereas we also consider the case where priority
profiles as primitives. Second, they study only the case where the priority is equal among
agents, whereas we study general cases. Therefore, the egalitarian Shapley value can be
seen as a corollary of our result when players have equal priorities.

The remainder of this paper is organized as follows. In Section 2, we provide ba-
sic definitions and notations. In Section 3, we offer the characterization in the case of
exogenous priority profiles. In Section 4, we offer the characterization for the family of
priority-regarding Shapley values. Section 5 is the concluding remarks of this paper.
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2 Preliminaries

Let N = {1, · · · , n} be the set of players and a function v : 2N → R with v(∅) = 0 denote
a characteristic function. A coalition of players is defined as a subset of the player set:
S ⊆ N , or S ∈ 2N . Let |S| denote the cardinality of coalition S. We sometimes use n
to denote |N |. We call (N, v) a cooperative game with transferable utility or a TU game.
We denote GN the set of all TU games with the player set N . For each v ∈ GN , we say
that player i ∈ N is a null player in v if v(S ∪ {i}) − v(S) = 0 for all S ⊆ N \ {i}. For
any T ∈ 2N \ {∅}, unanimity game uT ∈ GN is defined as follows: for any S,

uT (S) =

{
1 if T ⊆ S,
0 otherwise.

Any game v ∈ GN is uniquely described as a linear combination of unanimity games:

v =
∑

T∈2N\{∅}

λT (v)uT ,

where λT (v) is called dividend of the coalition T and given by

λT (v) =
∑
R⊆T

(−1)|T\R|v(R).

By using unanimity games, the Shapley value Sh(N, v) is given as follows: for any player
i ∈ N ,

Shi(N, v) =
∑

T∈2N\{∅}: i∈T

λT (v)

|T |
.

Let w = (wi)i∈N ∈ RN
+ such that

∑
i∈N wi = 1 be a priority profile and W be the

set of all possible priority profiles. The weighted Shapley value Shwi (v) is defined as the
unique linear solution (of cooperative games) satisfying, for each unanimity game uT and
a given weight w ∈ RN

++ such that
∑

j∈N wj = 1,

Shwi (uT ) =

{
wi∑

j∈T wj
if i ∈ T,

0 otherwise.

The weighted Shapley value allows us to allocate players’ surplus based not only on
their contributions but also on their weights. The rule’s evaluation for contribution mainly
depends on the weights. To see this, we fix an arbitrary player, say, player 1. Consider
unanimity games uN and uN\{1}. In the latter case, player 1 is a null player. Then,
the difference of the amount the player 1 receives is given by f1(uN)− f1(uN\{1}), which
depends upon the players’ priorities:

Shw1 (uN)− Shw1 (uN\{1}) =
w1∑
j∈N wj

̸= w′
1∑

j∈N w
′
j

= Shw
′

1 (uN)− Shw
′

1 (uN\{1}),

where w1 ̸= w′
1. That is, even if additional contribution for player 1 is same in the two

situations (w and w′), the difference of the allocations depends on the player’s priority,
which seems unfair. In addition to this observation, any null-player obtains nothing in
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any situation. In this sense, this rule is a completely contribution-based in contrast to,
say, the minimal payment of the firms and social securities.

To avoid such unfairness and enhance equity among players, we then introduce the
following allocation rule priority-regarding Shapley value for the priority profile w:

fi(v) = δ · Shi(v) + (1− δ) · wiv(N) where δ ∈ [0, 1].

Note that the allocation rule is specified by the parameter δ ∈ [0, 1]. If δ = 1, the
allocation rule coincides with the Shapley value and distribute the surplus v(N) based only
on the players’ contribution. If δ = 0, the assignment is determined by their prioritities.
Moreover, if weight is symmetric, i.e, wsym = ( 1

n
, ..., 1

n
), the allocation rule is called the

egalitarian Shapley value introduced by Joosten (1996).

3 Axiomatizations of the Priority-Regarding Shapley

Values

In this section, we assume that a profile w = (wi)i∈N ∈ W is exogenously given. That is,
we consider an allocation rule f : GN ×W → RN .

3.1 The Axiomatic Characterization

We first introduce three basic axioms. These are variants of the axioms used in Casajus
and Huettner (2014).

Axiom 1 (Efficiency (E)). For any v ∈ GN and w ∈ W ,
∑

i∈N fi(v, w) = v(N).

Axiom 2 (Monotonicity (M)). For any v, v′ ∈ GN , w ∈ W and i ∈ N , if v(N) ≥ v′(N)
and v(S ∪ {i})− v(S) ≥ v′(S ∪ {i})− v′(S) for all S ⊆ N \ {i}, then fi(v, w) ≥ fi(v

′, w).

Axiom 3 (Weak Symmetry (SYM-)). For any v ∈ GN , w ∈ W and i, j ∈ N , if v(S ∪
{i}) − v(S) = v(S ∪ {j}) − v(S) for all S ⊆ N \ {i, j} and wi = wj, then we have
fi(v, w) = fj(v, w).

(SYM-) requires that two players whose contributions and priorities are same should
receive the same amount. Note that (SYM-) is weaker than the symmetry used in Casajus
and Huettner (2014) (see Axiom 6 of this paper for the formal definition) because, to be
symmetric, players must have not only the same contribution but also the equal weight.
If we fix w to the equal weight ( 1

n
, ..., 1

n
), (SYM-) is equal to their symmetry.

Axiom 4 (Relative Difference for Null players (RDN)). For any v ∈ GN , w ∈ W and any
null players i, j ∈ N , we have wi · fj(v, w) = wj · fi(v, w).

(RDN) distinguishes our allocation rule from the Shapley value and the egalitarian
Shapley value through its attitude to null players: the Shapley value assigns zero, the
egalitarian Shapley value assigns v(N)/n, whereas our value gives wiv(N) with respect
to their weights to null players.

Axiom 5 (Fair Evaluation for Contribution (FEC)). For any v ∈ GN , w,w
′ ∈ W and

i ∈ N , fi(v, w)− fi(v(N)uN\{i}, w) = fi(v, w
′)− fi(v(N)uN\{i}, w

′).
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(FEC) states that player i’s contribution should be evaluated separately from his
priorities (wi and w

′
i). This axiom describes the independence between contributions and

priorities. Taking an example in the payment in a firm, (FEC) says that if a boss’s
contribution is equal to that of a freshman, then their contribution must be equally
evaluated.

Now we are ready to state our axiomatization result.

Theorem 3.1. Suppose that n ≥ 3. An allocation rule f : GN × W → RN satisfies
(E), (M), (SYM-), (RDN) and (FEC) if and only if there exists a δ ∈ [0, 1] such that
fi(v, w) = δ · Shi(v) + (1− δ) · wiv(N).

Proof. See Appendix A.

The independence of axioms is shown by examples in Appendix B. Note that the
uniqueness of the Theorem does not hold for the case of n = 2. The counterexample is
found in Appendix C.

To clarify the difference between our allocation rule and the egalitarian Shapley value,
we consider the following axiom. Using the following strong axiom (together with (E)
and (M)), we can obtain the egalitarian Shapley value for any w ∈ W .

Axiom 6 (Strong Symmetry (SYM+)). For any v ∈ GN and w ∈ W , if v(S∪{i})−v(S) =
v(S ∪ {j})− v(S) for all S ⊆ N \ {i, j}, then we have fi(v, w) = fj(v, w).

To characterize the egalitarian Shapley value, we should remove (RDN) and (FEC)
because the value is independent of w ∈ W . This result immediately follows from Casajus
and Huettner (2014) because, regardless of w, the three axioms (E) (M) (SYM+) coincide
with the axioms they used.

Theorem 3.2. Suppose that n ≥ 3. An allocation rule f : GN ×W → RN satisfies (E),
(M), (SYM+) if and only if it is the egalitarian-Shapley value.

3.2 Special Cases

As we mentioned above, if δ = 1, our allocation rule coincides with the Shapley value
and, if δ = 0, the weighted division. In this section, we characterize the Shapley value
and the weighted division as the special cases of the rule.

The Shapley Value

We consider the following additional axioms.

Axiom 7 (Constant amount for Null Player (C-Null)). For any v ∈ GN and w ∈ W ,
there exists d ∈ R such that fi(v, w) = d for any null player i ∈ N .

Axiom 8 (Null Player Property (Null)). For any v ∈ GN , w ∈ W and null player i ∈ N ,
fi(v, w) = 0.

Note that (Null) implies (RDN) and (C-Null) respectively. Moreover, we have the
following lemma.

Lemma 3.3. (Null) ⇐⇒ (RDN) and (C-Null).
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Proof. Since (Null) implies (RDN) and (C-Null), it suffices to show that (RDN) and (C-
Null) implies (Null). Let i, j ∈ N be any null players. By (C-Null), for any v and w, there
exists d ∈ R such that fi(v, w) = fj(v, w) = d. By (RDN), wi · fj(v, w) = wj · fi(v, w).
Hence, we have (wi − wj)d = 0. Since this must be satisfied for any w ∈ W , we obtain
d = 0.

Theorem 3.1 states that, within the domain GN × W , our allocation rule fi(v, w) =
δ · Shi(v) + (1 − δ) · wiv(N) is the only solution satisfying (E), (M), (SYM-), (RDN)
and (FEC). The Shapley value, which is the special case of δ = 1, is the unique solution
satisfying these axioms and (Null), because if δ is less than 1, null players can receive the
positive amount. Therefore, by this argument and Lemma 3.3, we obtain the following
corollary.

Corollary 3.4. Suppose that n ≥ 3. An allocation rule f : GN ×W → RN satisfies (E),
(M), (SYM-), (RDN), (FEC), and (C-Null) if and only if it is the Shapley value.

The Weighted Division

We now consider the following axiom which is the counterpart of (Null).

Axiom 9 (No Priority Property (NP)). For any v ∈ GN , w ∈ W and i ∈ N , if wi = 0,
then we have fi(v, w) = 0.

The weighted division, which is the special case of δ = 0, is the unique solution
satisfying (E), (M), (SYM-), (RDN), (FEC) and (NP) because if δ is greater than 0, a
player whose priority is 0 can receive positive amount. Formally, we have the following
corollary.

Corollary 3.5. Suppose that n ≥ 3. An allocation rule f : GN × W → RN satisfies
(E), (M), (SYM-), (RDN), (FEC), and (NP) if and only if it is the weighted division
fi(v, w) = wiv(N).

Our axiomatization results are summarized as Table 1 in which P-Sh, Eg-Sh, Sh, and
WD represent the priority-regarding Shapley value, the egalitarian Shapley value, the
Shapley value and the weighted division, respectively. Symbol “+” means the solution
satisfies the axiom. Symbol “⊕” shows that the axiom is used for the axiomatization.

E M SYM- SYM+ RDN FEC Null C-Null NP
P-Sh (Thm. 3.1) ⊕ ⊕ ⊕ - ⊕ ⊕ - - -
Eg-Sh (Thm. 3.2) ⊕ ⊕ + ⊕ - + - + -
Sh (Cor. 3.4) ⊕ ⊕ ⊕ + ⊕ ⊕ + ⊕ -
WD (Cor. 3.5) ⊕ ⊕ ⊕ - ⊕ ⊕ - - ⊕

Table 1: The axioms and the solutions
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4 Axiomatizations of the Family of Priority-Regarding

Shapley Values

In this section, we characterize the family of the priority-regarding Shapley values. In
contrast to the previous section, we do not assume that the priority profile w ∈ W is
exogenously given and induce the profile from the imposed axioms below. That is, we
consider the allocation rules f : GN → RN .

4.1 The Axiomatic Characterization

Let us consider the following axioms. Some axioms are almost identical with these in the
previous section.

Axiom 10 (Efficiency (E)). For each v ∈ GN ,
∑

i∈N fi(v) = v(N).

Axiom 11 (Total Monotonicity for Null Players (TMN)). For each v, v′ ∈ GN and each
player i ∈ N such that i is a null player in both v and v′, if v(N) ≥ v′(N) then fi(v) ≥
fi(v

′).

Axiom 12 (Contribution Monotonicity (CM)). For each v, v′ ∈ GN with v(N) = v′(N),
if v(S)− v(S\{i}) ≥ v′(S)− v′(S\{i}) for all S ⊆ N with i ∈ S, then fi(v) ≥ fi(v

′).

(TMN) states that if resources to be allocated become bigger, even null players should
receive more. (CM) describes that if a player contributes more and the total resource
remains unchanged, she gets more. It is important that both (TMN) and (CM) are
weaker than weak monotonicity (Mo−) defined by van den Brink et.al (2013).2

Clearly, our value does not obey symmetry properties.3 Hence, one might conjecture
that our allocation rule can be axiomatized only by weak monotonicity and efficiency.
However, this is not true. For example, the weighted Shapley value satisfies these two
axioms, but it is not represented by the priority-regarding Shapley value. The following
symmetry axiom can be the property which distinguishes our rule from the egalitarian
Shapley values.

Axiom 13 (Null Symmetry (NSYM)). For any i, j ∈ N and v, v′ ∈ GN such that i, j are
null players in v, if v′(S ∪ {i}) − v′(S) = v′(S ∪ {j}) − v′(S) for all S ⊆ N \ {i, j} and
v(N) = v′(N), then fi(v)− fi(v

′) = fj(v)− fj(v
′).

This axiom states that if two players are initially null players in v and they contribute
the same amount in v′ with keeping the total amount unchanged, then their contributions
should be evaluated impartially.4

Note that the weighted Shapley value does not satisfy (NSYM).

Axiom 14 (Additivity (AD)). For any v, v′ ∈ GN , f(v) + f(v′) = f(v + v′), where
(v + v′)(S) = v(S) + v′(S) for any S ⊆ N .

2They define weak monotonicity (Mo−) as follows: For each v, v′ ∈ GN with v(N) ≥ v′(N), if v(S)−
v(S\{i}) ≥ v′(S)− v′(S\{i}) for all S ⊆ N with i ∈ S, then fi(v) ≥ fi(v

′).
3The formal definition of (usual) symmetry axiom is given in Section 4.2
4This axiom is similar to differential marginality defined by Casajus (2010, 2011). Formally, differential

marginality is defined as follows: For any i, j ∈ N and v, v′ ∈ GN , if v(S ∪ {i}) − v(S ∪ {j}) = v′(S ∪
{i})− v′(S ∪ {j}) for all S ⊆ N \ {i, j}, then fi(v)− fj(v) = fi(v

′)− fj(v
′). In general, both two axioms

are logically independent.
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We admit that (AD) is a technically strong requirement. However, we can show
that these axioms are mutually independent. For the independence among axioms, see
Appendix E.

Next, we define some helpful axioms: (TR) and (NPE).

Definition 4.1 (Triviality (TR)). Let 0 be the null game. For any i ∈ N , fi(0) = 0.

Lemma 4.2. (AD) ⇒ (TR).

Proof. Let f be a function satisfying (AD). Assume that f violates (TR). Since f violates
(TR), there exists i ∈ N such that fi(0) ̸= 0. Define x := fi(0) ̸= 0. We have

fi(0) + fi(0) = 2x ̸= x = fi(0) = fi(0+ 0).

This contradicts (AD).

The following definition is due to Casajus and Huettner (2013).

Definition 4.3 (Null Player in a Productive Environment, (NPE)). For any null player
i ∈ N in v ∈ GN with v(N) ≥ 0, fi(v) ≥ 0.

Lemma 4.4. For any function satisfying (TR), we have (TMN) ⇒ (NPE).

Proof. Let f be a function satisfying (TR) and (TMN). For any i ∈ N , let v be a game
in which the player i is a null player and v(N) ≥ 0. Hence, for the game v and the null

game 0, we have fi(v)
(TMN)

≥ fi(0)
(TR)
= 0.

Corollary 4.5. For any function satisfying (AD), we have (TMN) ⇒ (NPE).

Now, we are ready to offer our main axiomatization result as follows.

Theorem 4.6. An allocation rule f : GN → RN satisfies (E), (TMN), (CM), (NSYM)
and (AD) if and only if there exists a δ ∈ [0, 1] and a priority profile w ∈ W such that
fi(v) = δ · Shi(v) + (1− δ) · wiv(N).

Proof. See Appendix D.

4.2 Special Cases

In this section, we characterize some allocation rules as the special cases of our allocation
rule. In particular, we consider the egalitarian Shapley values, the Shapley value, the
weighted divisions and the egalitarian division. To this end, we consider the following
axioms.

Axiom 15 (Symmetry (SYM)). For any v ∈ GN and any i, j ∈ N , if v(S ∪{i})− v(S) =
v(S ∪ {j})− v(S) for all S ⊆ N \ {i, j}, then fi(v) = fj(v).

Axiom 16 (Null Player Property (Null)). For any v ∈ GN and any i ∈ N , if i is a null
player, then fi(v) = 0.

The following definition is due to Casajus and Huettner (2014).

Axiom 17 (Grand Coalition Monotonicity (GMo)). For any v, v′ ∈ GN and any player
i ∈ N , if v(N) ≥ v′(N) then fi(v) ≥ fi(v

′).
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The Egalitarian Shapley Values

Replacing (NSYM) with (SYM), we obtain the egalitarian Shapley values.

Corollary 4.7. An allocation rule f : GN → RN satisfies (E), (TMN), (CM), (AD) and
(SYM) if and only if there exists a δ ∈ [0, 1] such that fi(v) = δ ·Shi(v)+ (1− δ) · 1

n
v(N).

Proof. Let a function f satisfy (E), (TMN), (CM), (AD) and (SYM). Since (SYM)
implies (WSYM), Theorem 4.6 shows that f takes the following form:

fi(v) = δShi(v) + (1− δ)wiv(N).

Assume that w ̸= ( 1
n
, ..., 1

n
). There exist at least two players i, j such that wi ̸= wj

because w is a weight. For a game v satisfying v(S ∪ {i})− v(S) = v(S ∪ {j})− v(S) for
all S ⊆ N \ {i, j}, we must have fi(v) ̸= fj(v). This contradicts (SYM).

Note that this axiomatization of the egalitarian Shapley values are tight in the sense
that all axioms are logically independent. We show this point in Appendix B. Comparing
with Casajus and Huettner (2014), this result implies that (Mo-) can be decomposed into
(TMN), (CM) and (AD) under (E) and (SYM).

The Shapley Value

We additionally impose (Null) and obtain the Shapley value.

Corollary 4.8. An allocation rule f : GN → RN satisfies (E), (TMN), (CM), (AD),
(NSYM) and (Null) if and only if fi(v) = Shi(v)

Proof. Let a function f satisfy these axioms. Since w is a weight, there exists a player i
such that wi > 0. Assume that δ < 1. For a game v ∈ GN such that v(N) > 0 and i is a
null player, we have fi(v) > 0. This contradicts (Null).

The Weighted Divisions and The Egalitarian Division

When we strengthen (TMN) to (GMo), we obtain the weighted devisions.

Corollary 4.9. An allocation rule f : GN → RN satisfies (E), (CM), (NSYM), (AD) and
(GMo) if and only if fi(v) = wi · v(N)

Proof. Let a function f satisfy these axioms. Note that (GMo) implies (TMN), namely,
we can apply Theorem 4.6 as well. Assume that δ > 0. Let i, j ∈ N (i ̸= j). Consider
unanimity games u{i} and u{j}. We have Shi(u{i}) = 1 ̸= 0 = Shi(u{j}). The assumption
δ > 0 implies fi(u{i}) ̸= fi(u{j}), which contradicts (GMo) because u{i}(N) = u{j}(N).

If we additionally impose (SYM) for the weighted divisions, we obtain the egalitarian
division.

Corollary 4.10. An allocation rule f : GN → RN satisfies (E), (CM), (AD), (SYM),
(GMo) if and only if fi(v) =

1
n
· v(N)

Proof. It follows from Corollaries 4.7 and 4.9.
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Since Casajus and Huettner (2014) axiomatize the egalitarian division by only (E),
(SYM) and (GMo), (CM) and (AD) are not needed to obtain the tight axiomatization.

Our axiomatization results are summarized in Table 2, in which P-Sh, Eg-Sh, Sh,WD,
and ED represent the priority-regarding Shapley value, the egalitarian Shapley values, the
Shapley values, the weighted divisions and the egalitarian division, respectively. Symbol
“+” means the solution satisfies the axiom. Symbol “⊕” shows that the axiom is used
for the axiomatization.

E TMN CM NSYM AD SYM Null GMo Mo−

PR-Sh (Thm. 4.6) ⊕ ⊕ ⊕ ⊕ ⊕ - - - +
Eg-Sh (Cor. 4.7) ⊕ ⊕ ⊕ + ⊕ ⊕ - - +
Eg-Sh ⊕ + + + + ⊕ - - ⊕
Sh (Cor. 4.8) ⊕ ⊕ ⊕ ⊕ ⊕ + ⊕ - +
WD (Cor. 4.9) ⊕ + ⊕ ⊕ ⊕ - - ⊕ +
ED (Cor. 4.10) ⊕ + ⊕ + ⊕ ⊕ - ⊕ +

Table 2: The axioms and the solutions

5 Concluding Remarks

In this paper, we propose and axiomatically characterize the new allocation rule called
priority-regarding Shapley value. This allocation rule integrates two different measures,
namely, contributions and priorities among players. This rule, moreover, can be seen as
a generalization of the egalitarian Shapley value, which premises that each player has the
equal priority.

In addition to the example of the payment system in a firm mentioned in Section 1,
we believe that the idea of ”two measures” would be useful for some problems as follows.

One example is a variant of the polluted lake initially studied by Shapley and Shubik
(1969). There are n cities with different populations around a lake. It costs ci for a city
i to purify its own water supply from the lake.5 It costs a constant amount for every
city to purify its water before discharging it into the lake. To simplify the discussion, let
the worth of a coalition (of cities) denote how much money the coalition saves through
their cooperation, and the allocation represent the redistribution of the saved money.
The allocation rule based on two measures, namely, costs and population in this example,
respects each city’s population, which exhibits the number of citizens who make use of
the water.

The other example is a redistribution of wealth through taxes. Casajus (2015) consid-
ers the simple model, which is not a cooperative game, and axiomatizes his redistribution
rule in the spirit of egalitarian Shapley value. In the model, each agent is identified with
a real number (i.e., the agent’s contribution to the total wealth) and, except for the real
number, all agents are treated equally. However, in reality, how much tax people must
pay should vary depending on their social status. For example, some people may have
tax exempt status; resident tax may vary from city to city. Our priority-regarding value
captures the difference which can not be measured by contribution or productivity. This
topic is also studied by Abe and Nakada (2017).

5The technique to purify water (or, ci) is independent of the population of a city.
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Appendix A. Proof of Theorem 3.1

Let Gc
N ⊂ GN denote the set of games such that v(N) = c. Also, for any player i ∈ N and

c ∈ R, let Gc,i
N denote the set of games such that v(N) = c and i is null player. Note that

Gc,i
N ⊂ Gc

N for all i ∈ N and c ∈ R. Our proof is divided into 4 steps. In the step 1, we
show that, by (M) and (FEC), the allocation rule fi(v, w) is decomposed into the sum of
two function ϕc

i(v) : G
c,i
N → R and ψc

i (w) : G
c,i
N ×W → R. In the step 2, by the result of

Casajus and Huettner (2014), we show that, by (M), (FEC), (E) and (SYM-), ϕc
i(v) can

be written as ϕ
v(N)
i (v) = δshi(v)+d

v(N)
i for some δ ∈ [0.1] and d

v(N)
i ∈ R when w = wsym.

In the step 3, by (RDN), ψ
v(N)
i (w) = (1− δ) ·wiv(N)− d

v(N)
i for each w ∈ W . In the step

4, we combine the above arguments and show that fi(v, w) = δ ·Shi(v)+ (1− δ) ·wiv(N).
As a benchmark, we first show that (E), (M), (SYM-) characterizes the egalitarian

Shapley value when we fix w = wsym. We use this result in the step 2 of the proof.

Theorem .1. Suppose that W = {wsym} and n ≥ 3. Then, an allocation rule f :
GN × W → RN satisfies (E), (M), (SYM-) if and only if it is the Egalitarian-Shapley
value.

Proof. This follows from the axioms and arguments in Casajus and Huettner (2014) if
w = ( 1

n
, ..., 1

n
).

Proof of Theorem 3.1

Proof. Claim 1: For any c ∈ R, v ∈ Gc,i
N and w ∈ W , there are two functions ϕc

i(v) :
Gc,i
N → R and ψc

i (w) : G
c,i
N ×W → R such that fi(v, w) = ϕc

i(v) + ψc
i (w).

It follows from (FEC) that for any c ∈ R and i ∈ N , there is a function ϕc
i : Gc

N → R
such that

ϕc
i(v) = fi(v, w)− fi(cuN\{i}, w) (.1)

for any v ∈ Gc
N and w ∈ W .

Moreover, it follows from (M) that for any c ∈ R and i ∈ N , there is a function
ψc
i : W → R such that

ψc
i (w) = fi(cuN\{i}, w) (.2)

for any w ∈ W , because for any v′ ∈ Gc,i
N , in which player i is null player, we have

ψc
i (w) := fi(v

′, w) = fi(cuN\{i}, w) by (M).

For any i ∈ N , c ∈ R, v ∈ Gc
N , v

′ ∈ Gc,i
N and w ∈ W , we have

ϕc
i(v)

(.1)
= fi(v, w)− fi(cuN\{i}, w)

(.2)
= fi(v, w)− ψc

i (w).
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Hence, we obtain fi(v, w) = ϕc
i(v) + ψc

i (w).

Claim 2: For any v ∈ GN , there exists δ ∈ [0, 1] and d
v(N)
i ∈ R such that ϕ

v(N)
i (v) =

δshi(v) + d
v(N)
i .

Let w∗ = (1/n, · · · , 1/n) ∈ W , i.e., the equal weight. For any c ∈ R and any v ∈ Gc
N ,

by Claim 1, we have
fi(v, w

∗) = ϕc
i(v) + ψc

i (w
∗), (.3)

and, by Theorem .1, there exists δ ∈ [0, 1] such that

fi(v, w
∗) = δshi(v) + (1− δ)

1

n
c. (.4)

Note that δ does not depend on c ∈ R. For any v′ ∈ Gc,i
N , we have

ϕc
i(v

′) + ψc
i (w

∗)
(.3)
= fi(v

′, w∗)
(.4)
= δshi(v

′) + (1− δ)
1

n
c

= (1− δ)
1

n
c. (.5)

Note that player i is null player in game v′ ∈ Gc,i
N . Hence, for any v′, v′′ ∈ Gc,i

N , we have

ϕc
i(v

′) + ψc
i (w

∗)
(.5)
= (1 − δ) 1

n
c

(.5)
= ϕc

i(v
′′) + ψc

i (w
∗) and, so, denote dci := ϕc

i(v
′) = ϕc

i(v
′′).

We obtain

ψc
i (w

∗)
(.5),dci= (1− δ)

1

n
c− dci . (.6)

Therefore, for every v ∈ Gc
N , we must have

ϕc
i(v)

(.3)(.4)(.6)
= δshi(v) + dci . (.7)

Setting v(N) = c ∈ R, we obtain ϕ
v(N)
i (v) = δshi(v) + d

v(N)
i for all v ∈ GN .

Claim 3: ψ
v(N)
i (w) = (1− δ) · wiv(N)− d

v(N)
i for each w ∈ W .

Case 1 There is a player i ∈ N such that wi = 0.
There is at least one player k∗ such that wk∗ > 0, because w is a weight and

∑
j∈N wj =

1. For a player i ̸= k∗, consider an unanimity game ui. By (RDN), for any l ∈ N \ {i},
wk∗(ψ

v(N)
l (w)+d

v(N)
l ) = wl(ψ

v(N)
k∗ (w)+d

v(N)
k∗ ). Hence, if wl = 0, we must have ψ

v(N)
l (w) =

−dv(N)
l .

Case 2 For any i ∈ N , wi > 0.
Consider any w ∈ W and player k∗ ∈ N such that k∗ ∈ argmini∈Nwi. For any player

i ̸= k∗ and any c ∈ R, let cui(S) := c · ui(S) for any S ⊆ N . By Claim 2, we have the
following formula: for any k ∈ N ,

fk(cu{i}, w) =

{
δc+ dck + ψc

k(w) if k = i,
dck + ψc

k(w) otherwise.

Hence, we have ∑
k∈N

(ψc
k(w) + dck)

(E)
= c(1− δ). (.8)
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Moreover, for any i ̸= k∗, j (j ̸= i, j ̸= k∗) and unanimity game uj, we have

ψc
i (w) + dci

(RDN)
=

wi

wk∗
(ψc

k∗(w) + dck∗), (.9)

because i and k∗ are null players in uj.
For any i ∈ N , we have

ψc
i (w) + dci − (1− δ)wic

(.9)
= wi ·

[
(ψc

k∗(w) + dck∗)
1

wk∗
− (1− δ)c

]
(.8)
= wi ·

[
(ψc

k∗(w) + dck∗)
1

wk∗
−

∑
k∈N

(ψc
k(w) + dck)

]
(.9)
= wi ·

[
(ψc

k∗(w) + dck∗)
1

wk∗
−

∑
k∈N

wk

wk∗
(ψc

k∗(w) + dck∗)

]
∑

k wk=1
= wi ·

[
(ψc

k∗(w) + dck∗)
1

wk∗
− (ψc

k∗(w) + dck∗) ·
1

wk∗

]
= 0.

Hence, setting v(N) = c ∈ R, we obtain ψv(N)
i (w) = (1−δ) ·wiv(N)−dv(N)

i for all v ∈ GN .

Claim 4: For any v ∈ GN and w ∈ W , there exists δ ∈ [0, 1] such that fi(v, w) =
δ · Shi(v) + (1− δ) · wiv(N).

For any v ∈ GN and w ∈ W , we have

fi(v, w)
C1
= ϕ

v(N)
i (v) + ψ

v(N)
i (w)

C2
= δshi(v) + d

v(N)
i + ψ

v(N)
i (w)

C3
= δshi(v) + d

v(N)
i + (1− δ) · wiv(N)− d

v(N)
i

= δshi(v) + (1− δ) · wiv(N).

This completes the proof.

Appendix B. Independence of Axioms for Theorem 3.1

The independence of these axioms is shown in the examples listed below.

Example .2. Define fE : GN ×W → RN by, for any v and any w,

fE
i (v, w) = 0.

Then, the function satisfies all axioms except (E).

Example .3. Define fM : GN ×W → RN by

fM
i (v, w) = 2Shi(v)− wiv(N).

Then, the function satisfies all axioms except (M).
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Example .4. Let fSYM- : GN ×W → RN be given by

fSYM-
i (v, w) = δ · Shzi (v) + (1− δ) · wiv(N),

where Shzi (v) is the weighted Shapley value defined as the unique linear solution (of coop-
erative games) satisfying for each unanimity game uT and a given weight z ∈ RN

++ such
that

∑
j∈N zj = 1,

Shzi (uT ) =

{
zi∑

j∈T zj
if i ∈ T,

0 otherwise.
(.10)

Note that Shzi (v) is defined with respect to a given weight profile z, which is different from
the priority profile w. For example, we first fix the weight profile z1 =

2
3
and zj =

1
3(n−1)

for j = 2, ..., n and define Shzi (v). Then, we define f 3
i (v, w) as above. Since anonymity is

defined over GN and W , the function satisfies all axioms except (SYM-).

Example .5. Define fRDN : GN ×W → RN by

fRDN
i (v, w) = δ · v(N)

|N |
+ (1− δ) · wiv(N).

The function satisfies all axioms except (RDN).

Example .6. Define fFEC : GN ×W → RN by

fFEC
i (v, w) = wmin · Shi(v) + (1− wmin)wiv(N),

where wmin = minj∈N wj. This function satisfies all axioms except (FEC).

Appendix C. Counterexample to Theorem 3.1 for n = 2

Theorem 3.1 fails for n = 2. Consider the following allocation rule f♡ on N = {1, 2}:

(f♡
1 (v, w), f

♡
2 (v, w)) =



(Sh1(v), Sh2(v)), Sh1(v) ≥ 0 and Sh2(v) ≥ 0,
(0, v(N)), Sh1(v) < 0 and Sh2(v) > 0 ∧ v(N) ≥ 0,
(v(N), 0), Sh1(v) < 0 and Sh2(v) > 0 ∧ v(N) < 0,
(Sh1(v), Sh2(v)), Sh1(v) ≤ 0 and Sh2(v) ≤ 0,
(0, v(N)), Sh1(v) > 0 and Sh2(v) < 0 ∧ v(N) ≤ 0,
(v(N), 0), Sh1(v) > 0 and Sh2(v) < 0 ∧ v(N) > 0,

for all v ∈ GN and any w ∈ W . Note that this function does not depend on w. It is
clear that f♡ satisfies (E) and (M). It satisfies (SYM-) because if the players 1 and 2 are
symmetric in the sense of marginal contribution and have the same weight, they receive
(Sh1(v), Sh2(v)). It satisfies (RDN) because if the players 1 and 2 are null players, the
game v is the null game: v(12) = v(1) = v(2) = 0. Since f♡ does not depend on w, it
clearly satisfies (FEC).
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Appendix D. Proof of Theorem 4.6

Let ∆i(v) = (v(S ∪ {i})− v(S))S⊆N\{i} ∈ R2(N−1)
be a vector of marginal contributions of

i in v. By this notation, player i ∈ N is a null player in v if ∆i(v) = 0.

Proof. It is clear that the rule satisfies all the axioms. We suppose that a rule f : GN →
RN satisfies (E), (TMN), (CM), (NSYM) and (AD).

For any c ∈ R, let us define Gc
N = {v ∈ GN |v(N) = c}. For any player i, we denote the

set of games in which player i is a null player by Gi
N . Define Gc,i

N := Gc
N ∩ Gi

N . Moreover,
we use Λi

N to denote the set of marginal vectors of i: Λi
N = {∆i(v)|v ∈ GN}.

Claim 1: For each i ∈ N , there exist functions ϕi : Λ
i
N × R → R and αi : R → R such

that fi(v) = ϕi(∆i(v), v(N)) + αi(v(N)).

We first take any c ∈ R. For any i ∈ N and v ∈ Gc
N , we have the following equation:

for any v̄ ∈ Gc
N such that ∆i(v) = ∆i(v̄),

fi(v)
(CM)
= fi(v̄) =: αi(c,∆i(v)). (.11)

Specifically, we denote
αi(c) = αi(c,0). (.12)

Moreover, for any i ∈ N and v, v′ ∈ Gc
N , we have

fi(v)− fi(v
′)

(.11)
= αi(c,∆i(v))− αi(c,∆i(v

′))

=: ϕi(∆i(v),∆i(v
′), c). (.13)

Hence, for any i ∈ N and v ∈ Gc
N , we obtain the following equation: for any v′ ∈ Gc,i

N ,

ϕi(∆i(v),∆i(v
′), c)

(.13)
= fi(v)− fi(v

′)
(.11)
= fi(v)− αi(c). (.14)

Note that fi(v)− αi(c) is independent from v′ ∈ Gc,i
N . For any i ∈ N and v ∈ Gc

N let

ϕi(∆i(v), c) := fi(v)− αi(c). (.15)

Hence, for any i ∈ N and v ∈ GN , we obtain

fi(v)
(.15)
= ϕi(∆i(v), v(N)) + αi(v(N)). (.16)

This completes Claim 1.

Before moving to Claim 2, note that for any null player i ∈ N , αi(c) is nondecreasing
with respect to c, i.e., αi(v(N)) ≥ αi(v

′(N)) for v(N) ≥ v′(N). To see this, we first
confirm that for any c ∈ R,

ϕi(0, c)
(.15),(.14)

= ϕi(0,0, c)
(.13),(.11)

= αi(c,0)− αi(c,0) = 0. (.17)

Thus, for any v, v′ ∈ Gi
N with v(N) ≥ v′(N),

αi(v(N))− αi(v
′(N)) = [0 + αi(v(N))]− [0 + αi(v

′(N))]
(.17)
= [ϕi(0, v(N)) + αi(v(N))]− [ϕi(0, v

′(N)) + αi(v
′(N))]

(.15)
= fi(v)− fi(v

′)
(TMN)

≥ 0.
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Similarly, for any i ∈ N , ϕi(·, v(N)) is nondecreasing with respect to the first argument
with keeping the second argument unchanged, because of (CM).

Moreover, we show that ϕ is symmetric, namely, if v(S∪{i})−v(S) = v(S∪{j})−v(S)
for all S ⊆ N \{i, j}, then ϕi(∆i(v), v(N)) = ϕj(∆j(v), v(N)). To see this, for any i, j ∈ N
and v ∈ GN such that v(S ∪ {i}) − v(S) = v(S ∪ {j}) − v(S) for all S ⊆ N \ {i, j}, let
v′ = v(N)uN\{i,j}. We have

ϕi(∆i(v), v(N))
(.16)
= fi(v)− fi(v

′)
(NSYM)
= fj(v)− fj(v

′)
(.16)
= ϕj(∆j(v), v(N)). (.18)

Claim 2: ϕ(·, ·) does not depend on the value of second component and, for each i ∈ N ,
v ∈ GN and c ∈ R, ϕi(c∆i(v)) = cϕi(∆i(v)), and αi(cv(N)) = cαi(v(N)).

For any nonempty S ⊆ N , consider the unanimity game uS. In view of Claim 1, we
have fk(uS) = ϕk(uS, 1) + αk(1) for every k ∈ N . Since ∆k(uS) = 0 for each k /∈ S, each
player’s allocation is given as follows:

fk(uS) =

{
ϕk(∆k(uS), 1) + αk(1) if k ∈ S,
αk(1) otherwise.

(.19)

The rest of Step 2 is similar to Casajus and Huettner (2014). Now, take any S ⊊ N .
For any i /∈ S, by (.19), fi(uS) = αi(1). By (AD), for any q ∈ Q, fi(quS) = qfi(uS),
namely, αi(q) = qαi(1) for any i /∈ S. Since αi(·) is monotonically nondecreasing, i.e.,
αi(q) ≥ αi(q

′) for q ≥ q′ and Q is dense in R, we obtain αi(c) = cαi(1) for all c ∈ R. This
argument holds for each i ∈ N because S is taken arbitrarily.

Note that ϕ is also additive, i.e.,

ϕi(∆i(v + v′), (v + v′)(N)) = ϕi(∆i(v), v(N)) + ϕi(∆i(v
′), v′(N)) (.20)

because, for any v ∈ GN , we have fi(v)
(C1)
= ϕi(∆i(v), v(N)) + αi(v(N)) and f satisfies

(AD). Moreover for any v ∈ GN and any c ∈ R with c ̸= v(N), there exists v′′ ∈ GN

satisfying ∆i(v
′′) = 0 and v′′(N) = c− v(N). We now define v′ := v+ v′′ and then obtain

v = v′ − v′′. Note that v′(N) = c. Hence, for any v ∈ GN ,

ϕi(∆i(v), v(N)) = ϕi(∆i(v
′ − v′′), (v′ − v′′)(N))

(.20)
= ϕi(∆i(v

′), v′(N))− ϕi(∆i(v
′′), v′′(N))

v′=v+v′′,∆i(v
′′)=0

= ϕi(∆i(v), v
′(N))− ϕi(0, v

′′(N))
(.17)
= ϕi(∆i(v), v

′(N)).

Therefore, ϕi(·, ·) only depends on the value ∆i(v), and we write ϕi : Λ
i
N → R. By (AD)

of f and linearity of αi(·), it holds that fi(qv) = qfi(v) ⇔ ϕi(q∆(v)) + αi(qv(N)) =
qϕi(∆(v)) + qαi(v(N)) ⇔ ϕi(qv) = qϕi(v) for any q ∈ Q. Moreover, the function Φ∆i(v) :
R → R defined as Φ∆i(v)(c) =: ϕi(c∆i(v)) for each v ∈ G is monotonically increasing

by (CM). Hence, we obtain Φ
∆i(v)
i (c) = cΦ

∆i(v)
i (1) by density of Q in R. Thus, we have

ϕi(c∆i(v)) = cϕi(∆i(v)) for all i ∈ N and c ∈ R. This completes Claim 2.

Claim 3: There exists δ ∈ R such that ϕi(∆i(v)) = δ ·Shi(v) for each i ∈ N and v ∈ GN .
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For any nonempty S ⊆ N , consider the unanimity game uS. In view of (.19), we have,
for any k ∈ N ,

fk(uS) =

{
ϕk(∆k(uS)) + αk(1) if k ∈ S,
αk(1) otherwise.

Similarly, for any i ∈ S and u{i}, we have, for any k ∈ N ,

fk(u{i}) =

{
ϕk(∆k(u{i})) + αk(1) if k = i,
αk(1) otherwise,

and, by Claim 1, for uN ,

fk(uN) = ϕk(∆k(uN)) + αk(1) for all k ∈ N .

It follows from (E) and symmetry of ϕ that for any S,

|S| · ϕk(∆k(uS))
(E)
= ϕk(∆k(u{i}))

(E)
= n · ϕk(∆k(uN)) =: δ (.21)

and, then, obtain

ϕk(∆k(uS))
(.21)
=

{
δ
|S| if k ∈ S,

0 otherwise.
(.22)

Again, recall that any game v has an unique linear expression: v =
∑

T⊆N :∅̸=T [λT (v) ·uT ].
By using (.22) and Claim 2, we obtain ϕi(∆i(v)) = δ · Shi(v) for each i ∈ N and v ∈ GN .

Claim 4: δ ≥ 0.

For any j ∈ N , we have δ = nϕk(∆k(uN))
(CM)

≥ nϕk(∆k(u{j})) = 0 because ∆k(u{j}) =
0 for any k ̸= j.

Claim 5: There exists a priority profile w ∈ W such that for any v ∈ GN , αi(v(N)) =
(1− δ) · wiv(N).

By Corollary 4.5, f satisfies (NN). In Claim 2, we have already shown that αi(c) =

cαi(1) for all c ∈ R. Hence, we have αi(1)
(.12)
= αi(1,0)

(.11)
= fi(v)

(NN)

≥ 0 for every i ∈ N
and v ∈ Gi

N .
Take any i ∈ N and consider the unanimity game u{i}. We have the following alloca-

tion:

fk(u{i})
(C1),(.21)

=

{
δ + αk(1) if k = i,
αk(1) otherwise.

Hence, we have ∑
i∈N

αi(1)
(E)
= 1− δ. (.23)
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If δ ̸= 1, then
∑

i∈N
αi(1)
1−δ

(.23)
= 1. By setting wi :=

αi(1)
1−δ

, we obtain a priority profile w =

(wi)i∈N ∈ W . Then, for any v ∈ GN , we have αi(v(N))
(C2)
= v(N)αi(1) = (1− δ) ·wiv(N).

If δ = 1, similarly, αi(v(N))
(C2),(.23),αi≥0

= 0 for any i ∈ N . Hence, we have

fi(v)
(C1)
= ϕi(∆i(v)) + 0
(C3)
= δShi(v) + 0
δ=1
= Shi(v).

This is the desired form regardless of the setting of w.

Claim 6: δ ≤ 1.

The equality δ
(.23)
= 1−

∑
i∈N αi(1) and the inequalities from Claim 5, αi(1) ≥ 0 for all

i ∈ N , imply Claim 6.

From Claim 1 to Claim 6, we conclude that there exists δ ∈ [0, 1] and a priority profile
w = (wi)i∈N ∈ W such that for any v ∈ GN , fi(v) = δ · Shi(v) + (1 − δ) · wiv(N). This
competes the proof.

Appendix E. Independence among Axioms for Theo-

rem 4.6

Example .7. Consider the function fE
i (v) = 0 for any i ∈ N and v ∈ GN . This function

satisfies all axioms except (E).

Example .8. Consider the following function: for any i ∈ N and v ∈ GN ,

fTMN
i (v) = 2Shi(v)−

v(N)

n
.

This function satisfies all axioms except (TMN).

Example .9. Consider the following function: for any i ∈ N and v ∈ GN ,

fCM
i (v) = 2

v(N)

n
− Shi(v).

This function satisfies all axioms except (CM).

Example .10. Let σ be a permutation of all players. A marginal vector with respect to
σ is given as follows:

fNSYM
i (v) = v(P σ

i ∪ {i})− v(P σ
i )

where P σ
i is the set of predecessors of i in σ. This function satisfies all the axioms except

(NSYM). Obviously, this function does not satisfy (SYM).

Example .11. Consider the following function: for any i ∈ N and v ∈ GN ,

fAD
i (v) =

{
shi(v) if v(N) < 0.
v(N)
n

if v(N) ≥ 0.

This function satisfies all axioms except (AD).
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