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Abstract

Quasi-linear utility functions are widely used in economics and game theory as

a convenient assumption on agents. Quasi-linearity ignores income effects on in-

dividual economic activities: Indeed, It is captured by the condition of no-income

effects. However, we can observe many social/economic problems, such as in hous-

ing markets, where income effects are non-negligible relative to agents’ economic

activities. In this paper, we consider how quasi-linearity holds for large incomes for

agents. We give an axiomatic approach to this problem, and study its implications

and applications to some economic and game theoretic problems.

Key words: Quasi-linear Utility Function, Approximate Quasi-Linearity, Cauchy

Condition, Normality, Cooperative Game, Lindahl-ratio Equilibrium

1. Introduction

Quasi-linear utility functions are widely used in economics and game theory. This

assumption simplifies developments of theories a lot; for example, in the theory of TU

cooperative games, Pareto optimality for a given coalition of players can be expressed by

a one-dimensional value of the maximum total surplus, while in the theory without the

assumption, Pareto optimality should be described by a set of feasible utility vectors for

the coalition. In the cost-benefit analysis, similarly, the total surplus (minus the total

cost) from a policy is used as the criterion to recommend it or not.

Quasi-linearity ignores income effects in individual economic activities. Indeed, it is

captured by the no-income effect condition: a simple axiomatization of quasi-linearity

is found in Aumann [1] and Kaneko [7] (see also Kaneko-Wooders [10], Mas-Collel et

al.[16]). Thus, quasi-linearity is an approximation of the structure of a utility function
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in a domain of large incomes. However, income effects are typically observed when

expenditures for economic activities in question are non-negligible relative to incomes;

typical examples are individual behavior of purchase of a house, automobile etc. Hence,

it is desirable to study quasi-linearity from the domain allowing negligible income effects.

As far as the present author knows, only Miyake [12], [13], and [14] studied quasi-

linearity from the domain including income effects. In this paper, we study how much

the case of income effects and case of no income effects are reconciled: indeed, we give

an axiomatic approach to this problem and study its implications.

Miyake [12] studies the above problem in the classical economics context where the

consumption set is given as the nonnegative orthant R2+ of R
2 and the utility function

U is given as a function of C2. Under the normality condition on income effects as well

as quasi-concavity, he gave various conditions to guarantee the result that the utility

function U is approximated by a quasi-linear function for large incomes.1 In [13], he

studied the behavior of the demand function for large incomes under similar conditions.2

Miyake [14] is closer to our study, specifically, in Section 4.

Here, our treatment is more direct to approximate quasi-linearity than in [12]. We

start with the characterization of quasi-linearity. Let % be a given preference relation

over X × R+, where X is an arbitrary set of alternatives in question and R+ is the

set of nonnegative real numbers, interpreted as a consumption level measured by a

composite commodity (Marshall’s money, see Hicks [5], Chap.III, and [6], Chap.5). In

addition to certain basic conditions on %, when we add the no-income-effects condition
— C4NI in Section 2, we have a quasi-linear utility function u : X → R so that for all

(x, c), (x0, c0) ∈ X ×R+,
(x, c) % (x0, c0)⇐⇒ u(x) + c ≥ u(x0) + c0. (1.1)

Our main theorem (Theorem 3.1) replaces the no-income-effect condition C3NI by a

weaker condition, C4 — a Cauchy property, given in Section 3, and states that a utility

function U : X × R+ → R representing % is approximated by a quasi-linear utility

function u in the sense that for all (x, c) ∈ X ×R+, there is a c0 such that
|U(x, c)− (u(x) + c)| < ε for all c ≥ c0. (1.2)

Both functions U and u are derived from % with the basic conditions. Condition (1.2)
itself was first mentioned in Miyake [12]. We will show that under other basic conditions,

our condition C4 is equivalent to (1.2).

Condition (1.2) means that u(x) + c approximates U(x, c) for large c. The essential

part of this is that u(x) < ∞ is independent upon c. An implication of Theorem 3.1

1He used the term “asymptotic quasi-linearity”. We use “approximate quasi-linearity” to emphasize

approximation of a utility function including income effects by a quasi-linear utility function.
2There are a number of articles studying the behavior of the individual demand function with “small”

income effects. See [13] for this literature.
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is that (1.2) does not necessarily hold for a function U(x, c) familiar to us. We should

consider the meaning of “utility” from a given x for large c. The implication is justified

by assuming that x is tradable in society, though we exclude familiar mathematical

functions from the candidates of approximate quasi-linearity. This will be discussed in

the end of Section 3.1.

To study quasi-linearity as well as the implication mentioned above more clearly,

we give another set of sufficient conditions for (1.2) in terms of normality, which is a

weakening of the no-income effect condition C4NI . This will be given Section 4.

Since economic theory and/or game theory with quasi-linear utility functions are

well investigated, it is convenient to have connections from these cases to the large

finite cases. Specifically, we ask the question of how we can convert results obtained

with quasi-linear utility functions to cases with large finite incomes. In this paper, we

apply our theorem to the theory of cooperative (TU) game theory, and to the theory of

Lindahl-ratio equilibrium in a public goods economy.

Diagram 1.1 gives a schematic explanation of these applications. We start with a

base model E and its quasi-linear approximation Eq, which is the arrow −→ in Diagram

1.1. Then, some results are obtained in Eq, described in the right-bottom corner; then

they are converted to the left-bottom corner. By our result (1.2), the converted results

hold approximately in Eq.

Base model E −→
large incomes

TU-model Eq

⇑ approximately ⇓ analysis
Results ←−

conversion
Results

Diagram 1.1

This paper is written as follows: Section 2 reviews the characterization of a quasi-

linear utility function in terms of a preference relation by Kaneko [7]. In Section 3,

we give a characterization for a preference relation to be approximately represented

by a quasi-linear utility function, and we consider its application to the theory of TU

cooperative games. Section 4 gives another axiomatization in terms of normality, and

an application to the theory of Lindahl-ratio equilibrium. Section 5 extends the result in

Section 3 to expected utility theory. Section 6 concludes this paper with a few remarks.

2. Quasi-linear Utility Function

A preference relation % is a binary relation over X×R+. An expression (x, c) % (x0, c0)
means that (x, c) is weakly preferred to (x0, c0). First, we assume Condition C0:

C0 (Complete preordering): % is complete and transitive over X ×R+.
Under C0, we define the strict part Â and the indifference part ∼ as follows: (x, c) Â
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(x0, c0) ⇐⇒ not (x0, c0) % (x, c); and (x, c) ∼ (x0, c0) ⇐⇒ (x, c) % (x0, c0) and (x0, c0) %
(x, c).

We assume the following three basic conditions. Some results holds without some

of them, but we do not discuss such details.

C1 (Monotonicity): for any x ∈ X, if c > c0, then (x, c) Â (x, c0);
C2 (Monetary substitutability): if (x, c) Â (x0, c0), then there is an α > 0 such that
(x, c) ∼ (x0, c0 + α).

C3 (Fixed reference): There is an x0 ∈ X such that (x, 0) % (x0, 0) for all x ∈ X.
Condition C1 is coherent with the interpretation of R+ in terms of the composite com-

modity. Condition C2 may be interpreted as meaning that the economic activities

behind the composite commodity R+ is rich enough to substitute for a transition from

x0 to x. Condition C3 means that xo is the worst alternative inX with zero consumption.

This is guaranteed by C0 when X is a finite set.3

Quasi-linearity can be captured by adding Condition C4NI ;

C4NI (No income effects): if (x, c) ∼ (x0, c0) and δ > 0, then (x, c+ δ) ∼ (x0, c0 + δ).

This was given in the case of the domain X ×R, instead of X ×R+, in Kaneko [7] (cf.,
also Kaneko-Wooders [10]), where ξ of (x, ξ) ∈ X×R means the increment or decrement
from the normalized initial consumption level 0. In the domain X × R+, c ∈ R+ is a
nonnormalized consumption level, and we can impose an explicit income constraint.

Proposition 2.1 (Quasi-linearity). A preference relation % on X × R+ satisfies

Conditions C0 to C3, and C4NI if and only if there is a function u : X → R such that

u(x) ≥ u(x0) for all x ∈ X and (1.1) holds for all (x, c), (x0, c0) ∈ X ×R+.
Proof. The only-if part is essential. Then, let (x, c) ∈ X × R+. Since (x, 0) % (x0, 0)
by C3, we have a unique αx ≥ 0 by C1 and C2 so that (x, 0) ∼ (x0,αx). Then, by C4NI ,
(x, c) ∼ (x0,αx + c). Define u : X → R by u(x) = αx for all x ∈ X.

Now, let (x, c), (x0, c0) ∈ X ×R+. Then, by the above definition of αx and B1,

(x, c) % (x0, c0)⇐⇒ (x0,αx + c) ∼ (x, c) % (x0, c0) ∼ (x0,αx0 + c0)
⇐⇒ αx + c ≥ αx0 + c

0 ⇐⇒ u(x) + c ≥ u(x0) + c0.

3When X is an infinite set with some topology, under C0, a sufficient condition for C3 is: for any

y ∈ Y, {(x, 0) ∈ X × R : (y, 0) % (x, 0)} is a compact set in X × R. This is proved by using the finite
intersection property.
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3. Approximate Quasi-Linearity

We give a condition for a preference relation % to be approximated by a quasi-linear

utility function as idealization. This approximate representation theorem is given as

Theorem 3.1. Also, we give an application to the theory of TU cooperative games.

3.1. Condition for approximate quasi-linearity

Consider the problem of when Condition C4NI holds approximately for large incomes.

This is answered by relaxing C4NI in the following way:

C4 (Approximate monetary Substitutes): Let x, x0 ∈ X. For any ε > 0, there

is a c0 ≥ 0 such that for any c, c0 ≥ c0 and α,α0 ≥ 0, if (x, c) ∼ (x0, c + α) and

(x, c0) ∼ (x0, c0 + α0), then |α− α0| < ε.

The additional α,α0 are compensations for the transitions from x to x0 with consump-
tions c, c0, and C4 requires these to be close for large c and c0. This is a kind of the
Cauchy property of a sequence {aν} (cf., Royden-Fitzpatrick [17], Section 1.5); it will
be shown that α,α0 converge as c becomes large. Condition C4 is an weakening of C4NI

under C1; when C4NI is assumed, the conclusion of C4 becomes |α− α0| = 0.
It is informative to state the following separately from the main theorem.

Lemma 3.1. Suppose that % satisfies C0 to C3. Then there is a real-valued function

δ : X ×R+ → R such that

(x, c) ∼ (x0, δ(x, c) + c) for all (x, c) ∈ X ×R+; (3.1)

for any (x, c), (x0, c0) ∈ X ×R+, (x, c) % (x0, c0)⇐⇒ δ(x, c) + c ≥ δ(x0, c0) + c0. (3.2)

Proof. Consider any (x, c) ∈ X × R+. Then, (x, c) % (x0, 0) by C0, C1, and C3.

Thus, there is a unique δ(x, c) + c by C1 and C2 such that (x0, δ(x, c) + c) ∼ (x, c).
Here, δ(x, c) may be negative but δ(x, c)+ c is nonnegative. Thus, we have the function

δ(·, ·) : X×R+ → R satisfying (3.1).We show (3.2). Let (x, c), (x0, c0) ∈ X×R+. Then,
by C0 and C1, (x0, δ(x, c) + c) ∼ (x, c) % (x0, c0) ∼ (x0, δ(x0, c0) + c0) ⇐⇒ δ(x, c) + c ≥
δ(x0, c0) + c0.¥

Define U : X ×R+ → R by

U(x, c) = δ(x, c) + c for all (x, c) ∈ X ×R+. (3.3)

Then, C4 implies that this U is approximated by a quasi-linear function.
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Theorem 3.1 (Approximate Quasi-Linearity). Let % be a preference relation on

X ×R+ satisfying C0 to C3, and U the function given by (3.3). Then, % satisfies C4 if
and only if for each x ∈ X,

−∞ < u(x) = lim
c→+∞ δ(x, c) <∞, (3.4)

for any ε > 0, there is some c0 ≥ 0 such that (3.5)

for any c ≥ c0, |U(x, c)− (u(x) + c)| < ε.

Proof. (If): Suppose that the function u given by (3.4) satisfies (3.5). We show that

C4 holds for %. Let x, x0 ∈ X. Let ε > 0 be given. Then, by (3.5), there is some c0 ≥ 0
such that for any d, d0 ≥ c0, |U(x, d)− (u(x) + d)| < ε

4
and |U(x0, d0)− (u(x0) + d0)| < ε

4
.

Also, these function values such as u(x) + d can be all positive. Now, let and c, c0 ≥ co,
and suppose U(x, c) = U(x0, c+ α) and U(x, c0) = U(x0, c0 + α0). Using the second with
d0 = c, we have¯̄

(u(x0) + c+ α)− (u(x) + c)
¯̄
<

¯̄
U(x0, c+ α) + ε

4
− (u(x) + c)

¯̄
(3.6)

≤ |U(x, c)− (u(x) + c)|+ ε
4
≤ ε

4
+ ε

4
= ε

2
,

where the equality is obtained since U(x, c) = U(x0, c + α) and the inequality is from

|U(x, d)− (u(x) + d)| < ε
4
.Replacing c,α by c0,α0, we have |(u(x0) + c0 + α0)− (u(x) + c0)| <

ε
2
. Now, we evaluate |α− α0| :¯̄

α− α0
¯̄
=

¯̄
[(u(x0) + c+ α)− (u(x0) + c))]− [(u(x) + c0 + α0)− (u(x) + c0))]

¯̄
=

¯̄
[(u(x0) + c+ α)− (u(x) + c))]− [(u(x0) + c0 + α0)− (u(x) + c0))]

¯̄
< ε

2
+ ε
2
= ε.

The first equality is a tautological formula, and the second is obtained from the first by

exchanging the second u(x0) with the first u(x). The last inequality follows from (3.6)

with c,α and c0,α0.
(Only-if): Let δ(x, c) be the function given by (3.1).We show that for each fixed x ∈ X,
there is a u(x) ∈ R with (3.4). Consider the sequence {δ(x, ν)} = {δ(x, ν) : ν = 1, ...}. C4
states that for any ε > 0, there is a ν0 such that for any ν, ν

0 ≥ ν0, |δ(x, ν)− δ(x, ν0)| < ε.

This means that {δ(x, ν)} is a Cauchy sequence. Hence, it converges to some real

number, which is denoted by u(x). This is (3.4). Now, each δ(x, ν) in {δ(x, ν)} is
defined for a natural number ν ≥ 1. However, we prove limc→+∞ δ(x, c) = u(x). Let

ε be an arbitrary positive number. Then there is a ν0 such that for any ν ≥ ν0,

|δ(x, ν)− u(x)| < ε/2. By C4, there is a c0 such that for any ν ≥ c0 and c ≥ c0,

|δ(x, ν)− δ(x, c)| < ε/2. Now, let ν1 = max(ν0, c0). Then, for any c ≥ ν1, we have
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|δ(x, c)− u(x)| ≤ |δ(x, c)− δ(x, ν1)|+ |δ(x, ν1)− u(x)| < ε. Thus, limc→+∞ δ(x, c) =

u(x). This is (3.4).

By Lemma 3.1 and (3.3), the function U(x, c) = δ(x, c) + c represents - in the

sense of (3.1). Then, since limc→∞ δ(x, c) = u(x), we have |U(x, c)− (u(x) + c)| =
|(δ(x, c) + c)− (u(x) + c)| = |δ(x, c)− u(x))|→ 0 as c→∞. This is (3.5).

Approximate quasi-linearity is first studied in Miyake [12]. He aimed to study the

Marshallian demand theory: he starts with the domain X × R+ = R+ × R+, and
assumes that a utility function U of C2 (twice continuously differentiable in the interior

of R+ × R+) is given. Also, U is assumed to be quasi-concave and satisfies normality

(formulated in terms of first and second partial derivatives) in R+×R+. Then, he gave
some other conditions to guarantee approximate quasi-linearity in the sense (3.5), and

various results on the limit demand function (see also Miyake [13]).

Quasi-linearity is usually justified in the case where the expenditures for choices from

X are small relative to an income. It would be natural to ask whether this interpretation

is applied to an arbitrarily given utility function. Consider U(x, c) = u(x) +
√
c, which

satisfies the law of diminishing marginal utility for c and differentiability at any c (i.e.,

it is locally approximated at c by a linear function). Thus, this function appears to be a

candidate for approximate quasi-linearity. In fact, this observation is incorrect. To see

it, consider the following necessary condition of (3.5): for each x ∈ X,

{δ(x, c) : c ∈ R+} is bounded, (3.7)

since δ(x, c) converges to u(x) as c→∞ by (3.4) of Theorem 3.1. Thus, the compensa-

tion for x from xo is bounded even if c is very large.

Indeed, U(x, c) = u(x) +
√
c (and its monotone transformation) for (x, c) ∈ X ×

R+ violates (3.7). Choose an x with u(x) > u(xo) and let h = u(x) − u(x0). Then,
u(x)+

√
c = u(x0)+

p
c+ δ(x, c), i.e., h =

p
c+ δ(x, c)−√c; so δ(x, c) = (h+√c)2− c

= h2 + 2h
√
c. Hence, δ(x, c) → +∞ as c → +∞; (3.7) is violated. A positive example

is: U(x, c) = (1− 1
1+c
)u(x) + c. In this case, (3.5) holds, and (3.7) holds. Nevertheless,

a lot of familiar examples are excluded from approximate quasi-linearity.

The exclusion may give raise to some inconvenience. This could be avoided by

allowing nondifferentiablity (some kink) with respect to c; up to some co, a familiar

functional form is adopted but beyond co, some other functional form compatible with

approximate quasi-linearity can be adopted. Hence, the above inconvenience is not a

serious problem.4

4Kaneko-Ito [11] conducted an equilibrium-econometric analysis to study how utility functions have

“significant income effects”, adopting the utility functions of the form U(x, c) = u(x) + cα (0 < α < 1).

It was shown that this α is bounded away from 1 using rental housing market data in Tokyo. Since

incomes of households are distributed in some interval, (3.5) is not contradictory to this empirical study.

7



Since boundedness (3.7) is a key for consideration of approximate quasi-linearity,

we study it in a formal manner. We represent boundedness in terms of the preference

relation % . This will be used in another characterization of approximate quasi-linearity
in Section 4.

C5 (Boundedness for compensations): For any x ∈ X, there is an m > 0 such that

(xo, c+m) % (x, c) for any c ∈ R+.
That is, there is a compensation m for xo from x independent of consumption level c.

Under C0 to C3, this is equivalent to boundedness of δ(x, ·) with fixed x ∈ X.
Lemma 3.2. Suppose that % satisfies C0 to C3. Then, % satisfies C5 if and only if

(3.7) holds for δ(x, ·) for each x ∈ X.
Proof. If : By (3.7), there is an m ∈ R+ such that m > δ(x, c) for all c ∈ R+. By (3.1),
we have (xo, c+ δ(x, c)) ∼ (x, c) for any c. By C1, we have (xo, c+m) % (x, c) for any c.
Only-if : By (3.1), (xo, c + δ(x, c)) ∼ (x, c) for any c ∈ R+. However, (xo, c + m) %
(xo, c+ δ(x, c)) ∼ (x, c) for any c ∈ R+. By C1, we have m ≥ δ(x, c)) for any c ∈ R+.¥

We now raise the question of whether or not approximate quasi-linearity is an appro-

priate concept from the viewpoint of economics. Our theory formulates “large income”

simply as “c tends to ∞”. Mathematically, there are two possibilities: (A) δ(x, c) is in
a bounded region, and (B) it goes to ∞. A subtlety is in the interpretation of “large

incomes”. To have a meaningful interpretation, we should consider how much richness is

hidden behind the compound commodity c and/or richness of X. The two mathematical

possibilities are examined from the socio-economic point of view.

When income gets larger for a person, his scope of consumption (economic behav-

ior in general) gets larger. Suppose that there is an alternative y, hidden behind the

composite commodity c or in X, similar to x in the sense that he can switch from x to

y. When this is applied to any person in a similar economic situation, a value of each

of x or y is more or less determined in the socioeconomic situation. In this interpreta-

tion, δ(x, c) is not very different from the social/market value. Here, possibility (A) is

justified, and approximate quasi-linearity is applied.

In possibility (B), alternative x is unique and has no substitution for the person

either behind the composite commodity or in X; x may be indispensable for him and its

value may be unbounded when c → ∞. In this case, approximate quasi-linearity does
not hold.

3.2. An application to the theory of TU cooperative games

Here, we consider an application of Theorem 3.1 to the theory of TU cooperative games

(cf., Osborne-Rubinstein [18], Chap.13, Maschler et al. [15], Chap.16). This is one

example for Diagram 1.1.
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We denote the set of players byN = {1, ..., n}. For each nonempty subset S ⊆ N, XS
is given as a finite nonempty set of social alternatives controlled by S, and CS : XS → R

be a cost function. It can be assumed that XS ∩XS0 = ∅ if S 6= S0. The value CS(x)
for each x ∈ XS is allocated among the members in S. Let Xi = ∪i∈S⊆NXS. Each
player i ∈ N has a preference relation %i over the set Xi × R+, and has an initial
income Ii ≥ 0. Here, (x, ci) ∈ XS × R+ means that an alternative x for S is chosen,
and player i’s consumption is ci after paying his cost assignment. This economy is

expressed as E = ({CS}S⊆N , {%i}i∈N , {Ii}i∈N), which we call the base economy. The
above formulation includes market games (cf., Maschler et al. [15]), voting games (cf.,

Kaneko-Wooders [10]), and some others.

Under C0-C4 for the preference relations %i for each i ∈ N, we have two functions
ui : X

i → R and Ui : X
i×R+ → R satisfying (3.3) and (3.5). The TU-economy is given

as Eq = ({CS}S⊆N , {ui}i∈N , {Ii}i∈N). In Eq, we can define the characteristic function
game (TU game) (N, v) by, for all S ⊆ N,

v(S) = max
x∈XS

µP
i∈S
ui(x)− CS(x)

¶
. (3.8)

Here, this maximization is well-defined for each S, since each XS is a finite set. This is

the maximum total surplus obtained by S.

We ask the question of how (N, v) is related to the base economy E. The aim of

(N, v) is to consider a distribution of the total surplus for each S expressed by v. Such

a distribution is described by an imputation: A vector αS = {αi}i∈S is called an S-
imputation iff Σi∈S αi = v(S) and αi ≥ v({i}) for all i ∈ S. We denote the set of all
S-imputations in (N, v) by IS(N, v). Then, the question is what the set IS(N, v) is in

the base economy E, in particular, what corresponds to αi in αS ∈ IS(N, v).
Let αS = {αi}i∈S ∈ IS(N, v) and x∗S a solution for (3.8). The cost assignment for

player i ∈ S is given as γi(αi) := ui(x∗S) − αi. Indeed, αi = ui(x
∗
S) − γi(αi) is the net

surplus for player i. We can construct an S-allocation in the base economy E :

ψ(αS) = (x
∗
S, {Ii − γi(αi)}i∈S). (3.9)

When Ii is large enough for each i ∈ S, this ψ(αS) satisfies the budget constraints for
all i ∈ S. In the TU-economy Eq, the utility level for player i is given as

ui(x
∗
S) + Ii − γi(αi) = ui(x

∗
S) + Ii − (ui(x∗S)− αi) = Ii + αi. (3.10)

That is, the surplus αi obtained from cooperation of S in (N, v) is the increment of

utility from the initial Ii. If the initial state is normalized as 0, the utility level is

exactly αi.

We look at (3.10) in the base economy E.We fix an S. The question is how the cost

allocation {γi(αi)}i∈S is interpreted in E. Recall that under C0 to C4 for the preference
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relations %i for each i ∈ S, we have two functions ui : Xi → R and Ui : X
i ×R+ → R

satisfying (3.3) and (3.5).

Theorem 3.2 (Approximation by a TU-game): For any ε > 0, there is an I∗ ≥ 0
such that for all Ii ≥ I∗ (i ∈ S) and for all αS = {αi}i∈S ∈ IS(N, v), 5

Ii ≥ γi(αi) for all i ∈ S; (3.11)

|Ui(x∗S, Ii − γi(αi))− (Ii + αi)| < ε for all i ∈ S, (3.12)

Proof. First, we fix a player i ∈ S. The set {γi(αi) : αS ∈ IS(N, v)} is bounded above.
Let I0i be an income level greater than the maximum of this set. Hence, for all Ii ≥ I0i ,
we have (3.11) for i.

Consider (3.12) for i. Applying Theorem 3.1 to i, we have some c∗i such that for
any ci ≥ c∗i , |Ui(x∗S , ci)− (ui(x∗S) + ci)| < ε. Since I1i − γi(αi) = I

1
i − (ui(x∗S)− αi) and

αi ≥ v({i}) for all αS ∈ IS(N, v), we can take an I1i so that I1i − (ui(x∗S)− αi) ≥ c∗i for
all αS ∈ IS(N, v). Then, we have, for all Ii ≥ I1i ,

|Ui(x∗S, Ii − (ui(x∗S)− αi))− (Ii + αi)|
= |Ui(x∗S, Ii − (ui(x∗S)− αi))− (ui(x∗S) + Ii − (ui(x∗S)− αi))| < ε

for all αS ∈ IS(N, v). We take I∗ = max{I0i , I1i : i ∈ S}. Then, for this I∗, (3.11) and
(3.12) hold for all i ∈ S.

In Theorem 3.2, we focus on a particular coalition S. The theorem can be extended

to the existence of I∗ uniformly for all S ⊆ N. Once this is obtained, we can apply it to
a solution theory for (N, v). For example, the core of (N, v) can be translated into the

approximate core in the base economy E. Thus, the theory of TU cooperative games

is viewed as an ideal approximation of the theory without the TU assumption for large

incomes. This is the conversion described in the bottom of Diagram 1.1.

4. Characterization in terms of Normality

We have shown that under C0 to C3, Condition C4 is exactly equivalent to approximate

quasi-linearity. However, it may be more convenient to have a sufficient condition for

approximate quasi-linearity to study applications in economics. Here, we weaken Con-

dition C4NI (No income effects) in a different manner from C4; it is normality, which

together with C5 (Boundedness) implies C4. Then, we will apply this result to the

theory of Lindahl-ratio equilibrium in a public good economy, which is another example

of conversion suggested in Diagram 1.

5The set IS(N, v) is nonempty under some additional condition, e.g., v(S) ≥ Σi∈Sv({i}).
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4.1. Normality and approximate quasi-linearity

We relax Condition C4NI as follows:

C4NM (Normality): Let (x, c), (x0, c0) ∈ X ×R+ and α ≥ 0. Then, if (x, c) ∼ (x0, c0)
and c ≤ c0, then (x, c+ α) % (x0, c0 + α).

That is, an additional income α gives more satisfaction if consumption c is less.6 It is

the normality condition, meaning that if an income is increased, a better choice x would

be more demanded than the other x0.7

Recall that δ : X ×R+ → R is the function given in Lemma 3.1. Condition C4NM

is closely related to the monotonicity of δ(x, c) with respect to c ∈ R+.
Lemma 4.1 (Monotonicity): Suppose C0 to C3 and C4NM for %. Let x, x0 ∈ X.
(1): If (x, 0) % (x0, 0), then (x, c) % (x0, c) for all c ≥ 0.
(2): δ(x, c) ≥ 0 for all c ∈ R+, and δ(x, c) is a (weakly) increasing function of c.

(3): For each c ∈ R+, if (x, 0) % (x0, 0), then δ(x, c) ≥ δ(x0, c).

Proof. (1): Since (x, 0) % (x0, 0), we have (x, 0) ∼ (x0,α) for some α ≥ 0 by C1. Hence,
we have (x, 0 + c) % (x0,α+ c) by C3NM . By C1, we have (x, c) % (x0, c).
(2): By definition, (x, c) ∼ (xo, δ(x, c) + c) for any c ∈ R+. Since (x, c) % (xo, c) by (1),
it holds by C1 that δ(x, c) ≥ 0. Now, let ε ≥ 0. Then since (x, c) ∼ (xo, δ(x, c) + c), we
have, by C4NM , (x, c+ε) % (xo, δ(x, c)+c+ε). Since (x, c+ε) ∼ (xo, δ(x, c+ε)+c+ε),

we have (xo, δ(x, c + ε) +c + ε) % (xo, δ(x, c) + c + ε) by C0. This and C1 imply

δ(x, c+ ε) ≥ δ(x, c).

(3): Let (x, 0) % (x0, 0). By (3.1) and (1), (xo, c + δ(x, c)) ∼ (x, c) % (x0, c) ∼ (xo, c +
δ(x0, c)). By C0 and C1, we have δ(x, c) ≥ δ(x0, c).¥

Under C5 in addition to C0 to C3, the function δ(x, c) is bounded for each x ∈ X,
and under C4NM , it is increasing with respect to c ∈ R+. Hence, for each x ∈ X, δ(x, c)
converges to some real number, denoted by u(x), as c→∞. This is (1) of Theorem 4.1.

Then, C4 is derived.

6The strict version of this condition is used in Kaneko [9] (also, see Kaneko-Wooders [10]).
7When we assume X = R+, we can show that the demand for the commodity in X = R+ is

weakly monotonic with an income under the assumption that % is weakly monotonic with respect to

x ∈ X = R+. Let p > 0. Suppose that (x, I − px) % (x0, I − px0) and x > x0. Then, by C1 and C2,
(x, I − px) ∼ (x0, I − px0 + α) for some α ≥ 0. Let I 0 > I. Then, since I − px < I − px0 + α, we have

(x, I 0 − px) % (x0, I 0 − px0 + α) % (x0, I 0 − px0) by C3NM . This means that the quantity demanded is
weakly increasing when an income increases.
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Theorem 4.1 (Characterization by normality). Suppose C0 to C3, C4NM , and

C5 on %.
(1): For each x ∈ X, limc→+∞ δ(x, c) = u(x) < +∞ and δ(x, c) ≤ u(x) for all c ≥ 0.
(2): C4 holds for %.
Proof. We show (2). By Theorem 3.1, it suffices to show (3.5). Since δ(x, c) converges

to u(x), for any ε > 0, there is a co ∈ R+ such that |δ(x, c)− u(x)| < ε for any c ≥ co.
This is written as |(δ(x, c) + c)− (u(x) + c)| < ε for any c ≥ co, which is (3.5).¥

Miyake [13] gave a result (Theorem 2 in p.561) corresponding to Theorem 4.1 in

a similar framework. We have focused to approximate quasi-linearity, and our Theo-

rem 4.1 is more direct than his. He studied the behavior of “willingness-to-pay” and

willingness-to-accept”, and he gave many results on the behavior of these concepts.

Now, let us see the convex structure on a preference relation - and the derived

function u : X → R. Suppose that X has a convex structure (not necessarily X = R+).

Then, - is said to be convex iff {(x0, c0) ∈ X ×R+ : (x, c) - (x0, c0)} is a convex set for
any (x, c) ∈ X ×R+. This is equivalent to that the utility function U given by (3.3) is

quasi-concave. In this case, we have the further result that the quasi-linear function u

approximating U is concave. Additionally, we give a monotonicity result on u.

Lemma 4.2. Suppose C0 to C3, C4NM , and C5 on %. Let u : X → R be the function

given by Theorem 3.1.

(1) (Convexity): If - is convex, then u is a concave function.
(2) (Monotonicity): If (x, 0) % (x0, 0), then u(x) ≥ u(x0).
Proof. (1): Let x, x0 ∈ X and c ∈ R+. Suppose (x0, c) - (x, c). Then, by C1, C2, we
have a unique c0 such that (x0, c0) ∼ (x, c). It implies δ(x0, c0) + c0 = δ(x, c) + c. Here,

c0 ≥ c by Lemma 4.1.(1), and we denote c0 = c0(c).
Let λ ∈ (0, 1). Then, by convexity for %, we have (λx + (1 − λ)x0,λc + (1 − λ)c0)

% (x, c) ∼ (x0, c0). Thus, δ(λx+(1−λ)x0,λc+(1−λ)c0) +(λc+(1−λ)c0) ≥ λ(δ(x, c)+

c) + (1− λ)(δ(x0, c0) + c0), which implies

δ(λx+ (1− λ)x0,λc+ (1− λ)c0) ≥ λδ(x, c) + (1− λ)δ(x0, c0). (4.1)

This holds for any c with c0 = c0(c). When c → ∞, c0(c) → ∞. Since limc→+∞ δ(x, c)

= u(x) and limc0→+∞ δ(x0, c0) = u(x0), we have, by (4.1), u(λx + (1 − λ)x0) ≥ uδ(x) +
(1− λ)u(x0).
(2): Let (x, 0) % (x0, 0). By Lemma 4.1.(3), δ(x, c) ≥ δ(x0, c). Then, we have u(x) =
limc→∞ δ(x, c) ≥ limc→∞ δ(x0, c) = u(x0).¥

Thus, convexity and monotonicity for % are preserved as concavity in the limit func-
tion u. On the other hand, continuity of % is not preserved in u (cf., Debreu [2] for conti-
nuity of %). For example, the preference relation % defined by U(x, c) = (1−( 1

x+1
)c)+c
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for all (x, c) ∈ R2+ is continuous, and δ(x, c) is given by 1 − ( 1
x+1

)c. Here, u(x) =

limc→∞ δ(x, c) is given as u(0) = 0 and u(x) = 1 for x > 0; this u is discontinuous.8

4.2. Lindahl-ratio equilibrium for a public goods economy

Here, we apply the above result on approximate quasi-linearity to the theory of Lindahl-

ratio equilibrium (simply, a ratio equilibrium) in a public goods economy (cf., Kaneko

[8] and van den Nouweland, et al. [19]). We consider a public good economy and its cost

allocation problem. Let X = R+. A cost function C : X → R+ is given as a convex and

strictly monotone function over X with C(0) = 0. Each player i ∈ N has a preference

relation %i over X ×R+ and an income Ii ≥ 0. We call E = (C; {%i}i∈N , {Ii}i∈N) the
base (public good) economy . We assume that each %i satisfies C0-C3, C4NM , and C5,
and that it is convex and weakly monotone over X ×R+.

We say that r = (r1, ..., rn) is a ratio vector iff Σi∈N ri = 1. A pair (x∗, r) =
(x∗, (r1, ..., rn)) of an x∗ ∈ R+ and an ratio vector (r1, ..., rn) is called a ratio equilibrium
in the base economy E iff for all i ∈ N,

riC(x
∗) ≤ Ii; (4.2)

(x∗, Ii − riC(x∗)) %i (xi, Ii − riC(xi)) for all xi ≥ 0 with riC(xi) ≤ Ii. (4.3)

That is, with an appropriate choice of a ratio vector for cost-sharing, every player agrees

on the same choice x∗. Kaneko [8] proved the existence of a ratio equilibrium under the

continuity assumptions on the preference relations, -i, i ∈ N, and the above assumption
on the cost function C. Our present question is how the result for the quasi-linear case

is converted to this economy.

Now, for each i ∈ N, we have ui : X = R+ → R with limc→+∞ δi(x, c) = ui(x)

for each x ∈ X. The QL-(public good) economy is given as Eq = (C; {ui}i∈N). In the
QL-economy Eq, a pair (x

∗, r) = (x∗, (r1, ..., rn)) of an x∗ ∈ R+ and an ratio vector
(r1, ..., rn) is called a ratio equilibrium in Eq iff

ui(x
∗)− riC(x∗) ≥ ui(xi)− riC(xi) for all xi ∈ X. (4.4)

Here, no budget constraints are assumed.

A ratio equilibrium (x∗, r) = (x∗, (r1, ..., rn)) in Eq with x∗ > 0 can be regarded as
an approximate ratio equilibrium for large incomes in E. We have the following theorem

under C0-C3, C4NM , C5 over each %i .
8 It holds that ui(x) + c is continuous if and only if ui(x) is continuous, and that it is quasi-concave

if and only if ui(x) is concave (cf., Kaneko [7]).
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Theorem 4.2 (Conversion of a ratio equilibrium from Eq to E). Let (x
∗, r) =

(x∗, (r1, ..., rn)) be a ratio equilibrium in Eq with x
∗ > 0. Then, for any ε > 0, there is

an I∗ such that for any Ii ≥ I∗ and i ∈ N,

Ii ≥ riC(x∗); (4.5)

Ui(x
∗, Ii − riC(x∗)) + ε ≥ Ui(x, Ii − riC(xi)) for all xi ∈ R+ with Ii ≥ riC(xi). (4.6)

Proof. Consider any i ∈ N. We choose I0i so that (4.5) holds for I0i . Consider (4.6).
Let xi ∈ R+ and Ii ≥ I0i with Ii ≥ riC(xi). Then, ui(x∗) − riC(x∗) ≥ ui(xi)− riC(xi)
by (4.4), and ui(xi) ≥ δ(xi, Ii − riC(xi)) by Lemma 4.1. By these, we have

ui(x
∗
i ) + Ii − riC(x∗i ) ≥ ui(xi) + Ii − riC(xi)

≥ δ(xi, Ii − riC(xi)) + Ii − riC(xi).

Now, by Theorem 3.1, we can choose a large I1i ≥ I0i so that if Ii ≥ I1i , we have Ui(x∗i , Ii−
riC(x

∗
i )) + ε > ui(x

∗) + Ii − riC(x∗). Hence, by this (4.4), we have Ui(x∗i , Ii − riC(x∗i ))
+ε > ui(x

∗) + Ii − riC(x∗) > δ(xi, Ii − riC(xi))+ Ii − riC(xi) = Ui(xi, Ii − riC(xi)).
Let I∗ = max{I1i : i ∈ N}. we have (4.5) and (4.6) for any Ii ≥ I∗ and i ∈ N.
We finalize this section with a remark on the existence of a ratio equilibrium. In

addition to the above assumptions, we assume also that each -i is convex. Then, by
Lemma 4.2, ui : R+ −→ R is a concave and monotone function by Lemma 4.2, and

then, ui(x) is continuous over (0,+∞).
The existence of a ratio equilibrium is closely related to the maximization of the

total surplus:

max
x∈X

µP
i∈N

ui(x)− C(x)
¶
. (4.7)

The existence of an inner optimal solution x∗ > 0 is obtained by the continuity of this
objective function over (0,+∞) under the condtion that Σi∈N ui(x) − C(x) > Σi∈N
ui(0) − C(0) for some x > 0 and Σi∈N ui(x

0) − C(x0) < 0 for some x0 > 0. Here, we

assume that (4.7) has an inner optimal solution x∗ > 0.

Lemma 4.3. Let x∗ > 0 be a solution for (4.7). Then, there is a ratio vector r =

(r1, ..., rn) such that (r, x
∗) is a ratio equilibrium in the economy Eq.

Proof. Let g(x) = Σi∈N ui(x)− C(x). Then, g is a concave function, we have the left
and right derivatives g0− and g0+ at each x ∈ (0,∞). Then,

g0+(x∗) = Σi∈Nu0+i (x
∗)− C0+(x∗) ≤ 0 ≤ g0−(x∗) = Σi∈Nu0−i (x∗)− C 0−(x∗). (4.8)

Now, for θ ∈ [0, 1], let αi(θ) = θu0+i (x
∗) + (1 − θ)u0−i (x

∗) for all i ∈ N. Since C(x) is
increasing and concave, it holds by (4.8) that αi(θ) ≥ 0 for all i ∈ N and θ ∈ [0, 1].
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Then, since Σi∈N u0+i (x
∗) ≤ C 0+(x∗) ≤ C 0−(x∗) ≤ Σi∈N u0+i (x∗), we find a θ∗ ∈ [0, 1] so

that C 0+(x∗) ≤ Σi∈Nαi(θ∗) ≤ C 0−(x∗). Let ri = αi(θ
∗)/Σj∈Nαj(θ∗) for all i ∈ N. Then,

we have

u0+i (x
∗)− riC 0+(x∗) = u0+i (x

∗)− (θ∗u0+i (x∗) + (1− θ∗)u0−i (x
∗)) ≤ 0

≤ u0−i (x
∗)− (θ∗u0+i (x∗) + (1− θ∗)u0−i (x

∗)) = u0−i (x
∗)− riC 0−(x∗).

Hence, each player i maximize ui(x)− riC(x) at x = x∗.

5. Extension to Expected Utility

Quasi-linear utility functions are also used in the environment with risks, in game theory

and economics. In this case, the characterization of quasi-linearity should be extended

to include expected utility theory, or vice versa. This was discussed in Kaneko-Wooders

[10]. Here, we will discuss the extension of Theorem 3.1 taking expected utility theory

into account. The extension is a concatenation of our theory and expected utility theory.

Let mF (X × R+) := {f : X × R+ → [0, 1] : Σ(x,c)∈T f(x, c) = 1 for some finite

subset T of X × R+}, i.e., the set of all probability distributions with finite supports
over X ×R+. Regarding mF (X ×R+) as a subset of the linear space of all real-valued
functions endowed with the standard sum and scalar (real) multiplication, mF (X×R+)
is a convex set, i.e., if f, g ∈ mF (X ×R+) and λ ∈ [0, 1], then the convex combination
(mixture) λf ∗ (1 − λ)g belongs to mF (X × R+). Let %∗ be a binary relation over
mF (X × R+). We can regard X × R+ as a subset of mF (X × R+) by the identity
mapping.

We assume the following:

Condition E0 (Complete preordering): %∗ is a complete and transitive relation on
mF (X ×R+);
Condition E1 (Substitute): If f Â∗ g Â∗ h, then λf ∗ (1 − λ)h ∼∗ g for some
λ ∈ [0, 1];
Condition E2 (Independence): For any f, g, h ∈ mF (X ×R+) and λ ∈ (0, 1),
(1): f Â∗ g implies λf ∗ (1− λ)h Â∗ λg ∗ (1− λ)h;

(2): f ∼∗ g implies λf ∗ (1− λ)h ∼∗ λg ∗ (1− λ)h.

It is known (cf., Herstein-Milnor [4], Fishburn [3], Kaneko-Wooders [10]) that these three

conditions are enough to derive a utility function U∗ : mF (X ×R+)→ R representing

%∗ and satisfying U∗(λf ∗(1−λ)g) = λU∗(f)+(1−λ)U∗(g) for all f, g, h ∈ mF (X×R+)
and λ ∈ [0, 1].

Restricting the preference relation %∗ to X × R+, we have the preference relation
over % on X × R+, which satisfies Condition C0. Conditions E1-E2 require nothing
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about % over the base set X ×R+.We can assume C1-C4 on % .We denote the restric-
tion of U∗ to the base set X ×R+ by U.
Theorem 5.1 (Expected utility theory version). Suppose that a preference rela-

tion %∗ over mF (X×R+) satisfies E0-E2, and that the derived preference % on X×R+
satisfies C1-C4.

(1): There is a utility function U∗ : mF (X ×R+)→ R such that

U∗(f) = Σ(x,c)∈Tf f(x, c)U(x, c) for each f ∈ mF (X ×R+), (5.1)

where Tf is a finite support of f ∈ mF (X ×R+).
(2): There is a (strictly) monotone f : R→ R such that

U(x, c) = f(δ(x, c) + c) for all (x, c) ∈ X ×R+. (5.2)

(3): There is a function u : X → R such that (3.5) holds for each x ∈ X.
Proof. (1) is known from expected utility theory.

(2): It is shown in Lemma 3.1 that over the domainX×R+, the relation % is represented
by the function δ(x, c)+ c. This implies that if δ(x, c)+ c = δ(x0, c0)+ c0, then U(x, c) =
U(x0, c0). Hence, we can define a function f : {δ(x, c) + c : (x, c) ∈ X × R+} → R by

f(δ(x, c)+c) = U(x, c) for all (x, c) ∈ X×R+. This f is monotone, and can be extended
to R.

(3): This is simply Theorem 3.1.

We have still the difference that Theorem 5.1.(3) is stated in terms of δ(x, c) + c

rather than U. Expected utility theory is cardinal, while the theory in Section 3 is

ordinal. Hence, it may be informative to connect (3) with (2) directly. This connection

is made to assume the risk neutrality:

E3: (Risk Neutrality): 1
2
(x, c) ∗ 1

2
(x, c0) ∼∗ (x, 1

2
c+ 1

2
c0).

This is a condition on interactions between our theory and expected utility theory.

Then, the function f can be linear, in particular, we can assume

U∗(x, c) = δ(x, c) + c for all (x, c) ∈ X ×R+. (5.3)

In sum, we obtain the approximately quasi-linear function by adding E3 in the extended

theory. Of course, if we assume risk aversion (lover), we have f to be a concave (convex)

function.

6. Conclusions

We gave characterizations of a preference relation - to be approximately represented

by a quasi-linear utility function for large incomes. The main condition is C4, which
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is a weakening of the no-income effect condition C4NI . It guarantees the limit function

u(x) = limc→+∞ δ(x, c), which is a representation of opportunity monetary equivalence

from the origin xo to alternative x. Mathematically speaking, C4 excludes a lot of

candidates. In the end of Section 3.1, we have argued that the existence of the limit

function u(x) is justified in the case where the composite commodity behind c is rich

enough or the alternatives in X are rich enough. This interpretation may be formulated

in a general manner, and we evaluate our argument rigorously. These remain open.

We gave two applications of our result to the theories of TU-cooperative games and

of Lindahl-ratio equilibrium for a public goods economy. We discussed the conversions

of results in the theories of TU cooperative games into the base economy for large

incomes, and the conversion of Lindahl-ratio equilibrium in a public goods economy

also into the base economy. These are taken in the direction from the limit cases to the

base economies, and we did not analyze the other direction from the base economies to

the limit. More general studies of those conversions in both directions remain to be an

open problem.
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