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Abstract

We reformulate expected utility theory, from the viewpoint of bounded rationality, by
introducing probability grids and a cognitive bound; that is, we restrict permissible proba-
bilities only to decimal (binary) fractions of �nite depths up to a given cognitive bound. We
distinguish between measurements of utilities from pure alternatives and their extensions to
lotteries involving more risks. Our theory is constructive, from the viewpoint of the deci-
sion maker, taking the form of mathematical induction with the measurements of utilities as
the induction base and their extensions as the induction step. When a cognitive bound is
small, the preference relation involves many incomparabilities, but, as the cognitive bound
becomes less restrictive, there are less incomparabilities. In the case of no cognitive bound,
our theory is considered classical expected utility theory. The main part of this paper is a
study of incomparabilities involved in the preference relation. We give a complete charac-
terization of incomparabilties, and a representation theorem in terms of a two-dimensional
vector-valued utility function. We exemplify the theory with one experimental result re-
ported by Kahneman-Tversky.

JEL Classi�cation Numbers: C72, C79, C91

Key Words: Expected Utility, Measurement of Utility, Bounded Rationality, Probability
Grids, Cognitive Bound, Incomparabilities

1 Introduction

1.1 Motivations

We reconsider EU theory primarily from the viewpoint of bounded rationality. We restrict
permissible probabilities in EU theory to decimal (`-ary, in general) fractions up to a given
cognitive bound �; if � is a natural number k, the set of permissible probabilities is given as
�� = �k = f 0

10k
; 1
10k
; :::; 10

k

10k
g: This restriction enables our theory to be constructive and allows

us to study preference incomparabilities. When there is no cognitive bound, i.e., � = 1; our
theory, restricted to the set of exactly measured pure alternatives, gives complete preferences

�This is an entirely new version of the working paper, No.E1610, Waseda Institute of Political Economy.
yThe author thanks J. J. Kline, P. Wakker, M. Lewandowski, L. Tang, A. Dominiak, S. Shiba, M. Cohen, and

Y. Rebille for helpful comments on earlier versions of this paper. The author is supported by Grant-in-Aids for
Scienti�c Research No.26245026 and No.17H02258, Ministry of Education, Science and Culture.

zWaseda University, Tokyo, Japan (mkanekoepi@waseda.jp)
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over the set of lotteries, and the theory is still a proper fragment of classical EU theory. We �rst
disentangle the new components of our theory.

Although Simon�s [23] original concept of bounded rationality meant a relaxation of simple
utility maximization, the concept itself can be interpreted in many ways such as bounded logical
inference or bounded perception ability (cf., Rubinstein [19]). In EU theory, two types of
mathematical components are involved; object-components taken by a decision maker and mata-
components used by the outside analyst. The former should be primary targets in EU theory,
and the latter such as highly complex rational as well as irrational probabilities are added for
analytic convenience. This addition leads to Simon�s [24] critique of EU theory as a description
of super rationality.1 For example, probability values of the size t

102
(t = 0; :::; 102) are quite

accurate for ordinary people,2 but classical EU theory starts with a full real number theory and
makes no distinction between components for a decision maker and those for an outside analyst.

The separation of these mathematical components is a problem of degree. To capture this,
we introduce the concepts of probability grids and cognitive bound � to EU theory. For a �nite
� = k, the set of probability grids (permissible probabilities) is given as �k = f 0

10k
; 1
10k
; :::; 10

k

10k
g.

The decision maker thinks about his evaluation of preferences with �k for a small k to a larger
k up to a bound �. When there is no cognitive limitation, i.e., � =1; we de�ne �1 = [1k=0�k:

We describe a process of deriving preferences by the decision maker from shallow to deeper
probability grids up to a cognitive bound. This approach shares motivations for �constructive
decision theory�with Shafer [21], [22] and with Blume et al. [3]. These authors study Savage�s
[20] subjective utility/probability theory so as to introduce certain constructive features for
decision making.3 This paper formulates constructive decision making in an explicit manner
while restricting its focus to EU theory with probability grids.

In a broad sense, our treatment of probabilities falls in the �eld called �imprecise probabili-
ties/similarity�(cf., Augustin et al. [2], Rubinstein [18], Tserenjigmid [25]).4 In our approach,
however, each probability in �k itself is precise, and its discrete presence is not interpreted as
representing �imprecise probabilities�. If the probabilities in �k are not �ne enough for the de-
cision maker to make preference measurements, then he would go to �ner probabilities in �k+1
and may repeat the process up to his cognitive bound. Here, �imprecision�may be involved
and caused in this process with the cognitive bound.

Now, we consider how to describe our constructive EU theory. Constructiveness needs start-
ing preferences; we take a hint from von Neumann-Morgenstern [26]. They divided the moti-
vating argument into the following two statements, although this separation was not re�ected
in their mathematical development:

Step B : measurements of utilities from pure alternatives in terms of probabilities;

Step I : extensions of these measurements to lotteries involving more risks.

We formulate these steps as mathematical induction: Step B is the inductive base measuring
1We take his critique applied broadly to expected utility theory, while it may refer directly to Savage�s [20]

theory.
2Recall that a signi�cance level for statistical hypothesis testing is typically 5% or 1%.
3 In [21], [22], when basic probability/utility schemes are given, they are extended to the expected utility form.

In [3], propositional logic is adopted to describe decision making (with the use of real number probabilities) and
mental states are described in a semantic manner. Either approach takes some constructive aspect, but a decision
making process is not explicitly formulated in a constructive manner.

4 In this literature, imprecision/similarity is given in the mind of a decision maker under the assumption that
imprecision/similarity is de�ned over all real number probabilities.
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Benchmark lotteries

: upper benchmark

: lower benchmark

Figure 1: Measurement by the benchmarke scale

utilities from pure alternatives in terms of upper and lower benchmarks y; y and permissible
probability grids, and Step I is the induction step extending these measurements to lotteries
with more risks.5

In Fig.1, Step B is depicted; x is measured by a rough scale; y needs a more precise scale,
yet both x and y are exactly measured within a given bound �: However, z is not exactly
measured.6 In our approach, these measurements are described in terms of axioms. Then, Step
I is formulated in a constructive manner from shallower to deeper layers of probability grids;
here, it is described in terms of inference rules.

Since preferences are constructed piece by piece, completeness cannot be assumed either
in Step B or Step I. As the probability grids are more precise, more preference comparisons
become possible. Here, we weaken the standard �independence condition,� which acts as a
bridge between layers.

Consider the upper and lower benchmarks y; y; and the third pure alternative y with strict
preferences y � y � y. In Step B, the decision maker looks for a probability � so that y
is indi¤erent to a lottery [y; �; y] = �y � (1 � �)y with probability � for y and 1 � � for y;
this indi¤erence is denoted by y � [y; �; y]: Suppose � = 83

102
2 �2: Consider another lottery

d = 25
102
y � 75

102
y: Step B is not applied to this since d includes the third alternative y: However,

because of the indi¤erence y � [y; 83
102
; y]; we substitute [y; 83

102
; y] for y in d and calculate the

resulting probabilities for the benchmarks y and y :

d = 25
102
y � 75

102
y � 25

102
[y; 83

102
; y] � 75

102
y = 2075

104
y � 7925

104
y: (1)

This is the result of the standard �independence condition�. We observe two points here. One
is a jump from the layer of depth 2 to that of depth 4; and the other is the involvement of quite
precise probabilities. To have a meaningful cognitive limitation, we avoid the jump from depth
2 to 4: We formulate a weaker version of the �independence condition�, avoiding such a jump,
to make a connection between neighboring layers. Also, if 4 is regarded as too deep, we would
take a cognitive bound as � = 2 or 3.

Keeping the above mentioned motivations in mind, we explain the development of our theory

5Our method is applied to the subjective probability theory due to Anscombe-Aumann [1]. See Section 8.
6This method is dual to with the measurement method in terms of certainty equivalent of a lottery (cf.,

Kontek-Lewandowski [14] and its references). In our method, the set of benchmark lotteries up to some cognitive
bound forms a base scale while in the latter, the set of monetary payments is a base scale.
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in Section 1.2.

1.2 Theoretical development

Since Step B may involve probability grids of various depths, the induction base may be scattered
over layers. The preference relation %B;kappears as a part of the induction base at the layer k in
PB in Table 1.1. The main part of induction is a bridge from %k�1 to the next %k; this bridge
is a formulation of �independence condition�: In Table 1.1, each %k is derived from %k�1 and
%B;k : We emphasize that this process is described from the viewpoint of the decision maker.

Table 1.1
PB: base relation %B;0 � %B;1 � ::: � %B;k = %B;�

# # #
PI : constructed relations %0 ! %1 ! ::: ! %k = %�

When the cognitive bound � is a �nite k, the resultant preference relation is given as the last
%� = %k and, when � = 1; the resultant relation is given as %1 = [1t=0 %k : We show that
in either case, %� is a well-de�ned binary relation. In Section 4, we study the relationship of
our theory to classical EU theory restricting the pure alternatives to those exactly measured in
Step B. We show that the resultant relation %1 has an expected utility representation; which
implies that %1 is complete. Our theory is still considered constructive. We provide a further
extension of %1 to make a comparison with the full form of classical EU theory; this extension
involves some unavoidable non-constructive step, which may be interpreted as the criticism of
�super rationality�by Simon [24].

The main part of this paper is a study of incomparabilties involved in %� for a given cognitive
bound � < 1: The �rst step is to partition the set, L�(X); of all lotteries into the set M� of
measurable lotteries and the set of non-measurable lotteries L�(X)�M�. A measurable lottery
f has an indi¤erent benchmark lottery �y � (1 � �)y for some � 2 ��: We can characterize a
condition for a lottery f to belong to M�; in terms of only � and the probabilities involved in
f; which is given as Theorem 5.2. In the above example with y; y; y; When � � 4; the lottery
d = 25

102
y � 75

102
y is indi¤erent to 2075

104
y � 7925

104
y; which implies that d is measurable, but when � = 2

or 3; the second lottery is not permissible; d is non-measurable.

Preference incomparability involves non-measurable lotteries; incomparability occurs only
if at least one lottery is non-measurable. In order to study incomparability, we consider the
concepts of lub and glb (least upper and greatest lower bounds) for each lottery f 2 L�(X); the
lub of f is the least preferred benchmark lottery better than or indi¤erent to f , and the glb is
parallelly de�ned. Theorem 6.1 completely characterizes the incomparability/comparability for
two lotteries in terms of their lub and glb. Theorem 6.2 synthesizes the results of incomparabil-
ity/comparability so that %� is represented by the two-dimensional vector function consisting
of the lub and glb of each lottery f endowed with the interval order due to Fishburn [6]. This
theorem may be interpreted as what von Neumann-Morgenstern [26], p.29 indicated.7

7Dubra, et al. [5] developed a representation theorem in terms of utility comparisons based on all possible
expected utility functions for the relation without completeness. In this literature, incomparabilities are given in
the preference relation. In contrast, in our approach, incomparabilities are changing with a cognitive bound and
disappear when there are no cognitive bounds.
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We apply the results on incomparabilities to the Allais paradox, speci�cally, to an experi-
mental result from Kahneman-Tversky [11]. We show that the paradoxical results remains when
the cognitive bound � � 4. However, when � = 2 or 3; the resultant preference relation %� is
compatible with their experimental result.

This paper is organized as follows: Section 2 explains the concept of probability grids. Section
3 gives base preference relations and formulates the derivation process. Section 4 compares our
theory with classical EU theory. Section 5 discusses the measurable and nonmeasurable lotteries.
Section 6 studies incomparabilties involved in %� for � < 1. In Section 7, we exemplify our
theory with an experimental result in Kahneman-Tversky [11]. Section 8 concludes this paper
with comments on further possible studies.

2 Lotteries with Probability Grids and Preferences

Let ` be an integer with ` � 2: This ` is the base for describing probability grids; we take ` = 10
in the main examples. The set of probability grids �k is de�ned as

�k = f �`k : � = 0; 1; :::; `
kg for any �nite k � 0: (2)

Here, �1 = f�` : � = 0; :::; `g is the basic set of probability grids, whereas �0 = f0; 1g. Each �k
is a �nite set, and let �1 := [1t=0�t; which is countable. We use the standard arithmetic rules
over �1; sum and multiplication are needed;8 for our analysis, we use these calculation rules
but, for our axiomatic system itself, they are used in a restricted manner, which we mention
in adequate places. We allow reduction by eliminating common factors; for example, 20

102
is the

same as 2
10 : Hence, �k � �k+1 for k = 0; 1; ::: The parameter k is the precision of probabilities

that the decision maker uses. We de�ne the depth of each � 2 �1 by: �(�) = k i¤� 2 �k��k�1:
For example, �( 25

102
) = 2 but �( 20

102
) = �( 210) = 1:

We use the standard equality = and strict inequality > over �k: Then, trichotomy holds:
for any �; �0 2 �k;

either � > �0; � = �0; or � < �0: (3)

This is equivalent to that � is complete and anti-symmetric.

Now, we show that each element in �k is obtained by taking the weighted sums of elements
in �k�1 with the equal weights: This is basic for our induction method.

Lemma 2.1 (Decomposition of probabilities): �k = f
P`
t=1

1
`�t : �1; :::; �` 2 �k�1g for any

k (1 � k <1):
Proof. The right-hand set is included in �k by (2). Consider the converse. Each � 2 �k is
expressed as � = 1 or � =

Pk
t=1

�t
`t where 0 � �t < ` for t = 1; :::; k: In the case of � = 1; let

�1 = ::: = �` = 1 2 �k�1; and � =
P`
t=1

1
`�t: Consider the second case. Let �1 = ::: = ��1 = 1;

��1+1 =
�2
`1
+ :::+ �k

`k�1
, and �t = 0 for t = �1 + 2; :::; `: This de�nition is applied when �1 = 0:

These �1; :::; �` belong to �k�1 and � =
P`
t=1

1
`�t:�

The union �1 = [1k=0�k is a proper subset of the set of all rational numbers. For example,
when ` = 10; �1 has no recurring decimals, which are also rationals: We also note that �1

8�k is a subset of f
Pk2

t=k1
�t � `t : �` < �t < ` for t with k1 � t � k2 and k1; k2 are integers with k1 < 0 < k2g;

which is a ring, i.e., it is closed with respect to the three arithmetic operations +;�; and �: See Mendelson [15],
p.95.
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depends upon the base `; for example, �1 with ` = 3 has 13 ; but �1 with ` = 10 has no element
corresponding to 1

3 : Nevertheless, �1 is dense in [0; 1]; which is crucial in comparing our theory
with classical EU theory in Section 4.2.

Let X be a set of pure alternatives. For any k <1; we de�ne Lk(X) by

Lk(X) = ff : f is a function from X to �k with
P
x2X f(x) = 1g: (4)

Since �k � �k+1; it holds that Lk(X) � Lk+1(X): We denote L1(X) = [1k=0Lk(X): We de�ne
the depth of a lottery f in L1(X) by �(f) = k i¤ f 2 Lk(X) � Lk�1(X): We use the same
symbol � for the depth of a lottery and the depth of a probability. It holds that �(f) = k if and
only if maxx2X �(f(x)) = k: This will be relevant in Section 5.

We denote a cognitive bound by �; which is a natural number or in�nity 1. If � = k < 1;
then L�(X) = Lk(X); and if � = 1; then L�(X) = L1(X) = [1k=0Lk(X): The latter is
interpreted as the case of no cognitive limitation.

Example 2.1. Let X = fy; y; yg and � = 2: Since lottery d = 25
102
y � 75

102
y is in L2(X)�L1(X);

the depth �(d) = 2; but since d0 = 20
102
y � 80

102
y = 2

10y �
8
10y 2 L1(X); its depth is �(d

0) = 1:

Now, we formulate a connection from Lk�1(X) to Lk(X). We say that f = (f1; :::; f`) in
Lk�1(X)

` = Lk�1(X)� � � � � Lk�1(X) is a decomposition of f 2 Lk(X) i¤

f(x) =
P`
t=1

1
` � ft(x) for all x 2 X: (5)

Let e = (1` ; :::;
1
` ); and f is denoted by e � f or

P`
t=1

1
` � ft: In other words, when f = (f1; :::; f`)

is given, f = e � f is a composite lottery and is reduced to a lottery in Lk(X) by (5). In our
axiomatic system, we use reduction of a composite lottery to a lottery only in this form. The
next lemma connects Lk�1(X) to Lk(X); which facilitates our induction method described in
Table 1.1.

Lemma 2.2 (Decomposition of lotteries). Let 1 � k < 1: Then, Lk(X) = fe � f :
f 2Lk�1(X)`g:

The right-hand side of the assertion is the set of composed lotteries from Lk�1(X), and is
a subset of the left-hand side Lk(X). The converse inclusion � is essential and means that
each lottery in Lk(X) is decomposed to a weighted sum of some (f1; :::; f`) in Lk�1(X)` with
the equal weights: A proof is given in the Appendix, which involves precise construction of a
decomposition f = (f1; :::; f`): This lemma is crucial in our theory.

A remark on the treatment of the domain X for Lk(X) will be relevant in this paper. when
we restrict X to a subset X 0; we de�ne Lk(X 0) := ff 2 Lk(X) : f(x) > 0 implies x 2 X 0g:
Hence, Lk(X 0) is directly a subset of Lk(X): Lemma 2.2 hods for these Lk(X 0) and Lk�1(X 0):
Also, we call a subset S of X a support of f 2 Lk(X) i¤ f(x) > 0 implies x 2 S: Let f 2 Lk(X)
and S the support of f with f(x) > 0 for all x 2 S: Applying Lemma 2.2 to f and Lk(S); we
have a decomposition f 2Lk�1(S)`:

The lottery d = [y; 25
102
; y] in Example 2.1 has two types of decompositions:

5
10 � [y;

5
10 ; y] +

5
10 � y and 2

10 � y +
1
10 � [y;

5
10 ; y] +

7
10 � y: (6)

In the �rst, a decomposition f = (f1; :::; f10) is given as f1 = ::: = f5 = [y; 510 ; y] and f6 = ::: =
f10 = y: In the second, f is given as f1 = f2 = y; f3 = [y; 510 ; y] and f4 = ::: = f10 = y: We
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use these short-hand expressions rather than a full speci�cation of f = (f1; :::; f10): The proof of
Lemma 2.2 constructs the second type of a decomposition in a general manner. In Section 3.2,
we show that this multiplicity causes no problem in our inductive method.

We assume that a decomposition of f 2 Lk(X) takes the form of f = (f1; :::; f`) with
f =

P`
t=1

1
` � ft: When ` = 10; binary decompositions are not enough for Lemma 2.2, For

example, consider the lottery f = 3
10y �

3
10y �

4
10y in the above example. This f is not expressed

by a binary combination in L0(X) = X with weights in �1: Without requiring a decomposition
be in the one-level lower layer, this could be possible such as f = 5

10(
6
10y �

4
10y) �

5
10(

2
10y �

8
10y);

but the requirement for decompositions to be in one-layer lower is crucial for the constructive
argument in our theory.

The expression f % g means that f is strictly preferred to g or is indi¤erent to g: We de�ne
the strict (preference) relation �; indi¤erence relation �; and incomparability relation 1 by

f � g () f % g and not g % f ; (7)

f � g () f % g and g % f ;
f 1 g () neither f % g nor g % f:

The incomparability relation 1 is new and is studied in the subsequent sections. Nevertheless,
all the axioms are about the relations %; �; and � : The relation 1 is de�ned as the residual
part of %. Although � and 1 are sometimes regarded as closely related (cf., Shafer [21], p.469),
they are well separated in Theorem 6.2.

3 EU Theory with Probability Grids

Our theory has two parts: base preference relations h%B;ki�k=0 with four axioms, and a derivation
process with three inference rules to derive preference relations h%ki�k=0: The former describes
the benchmark scales and measurements of pure alternatives in terms of benchmark scales.
The latter describes derives preferences over lotteries with more risks. The derivation process
generates a well-de�ned binary relation %� uniquely relative to given base relations h%B;ki�k=0.
When a �nite cognitive bound � is given, the process stops at �; and its resultant relation is
%� : When � =1, the resultant relation is %1 = [1k=0 %k :

3.1 Base preference relations

The set of pure alternatives X contains two distinguished elements y and y; which we call
the upper and lower benchmarks. Let k < 1: We call a lottery f in Lk(X) a benchmark
lottery of depth (at most) k i¤ f(y) = � and f(y) = 1 � � for some � 2 �k; which we denote
by [y; �; y]: The benchmark scale of depth k is the set Bk(y; y) := f[y; �; y] : � 2 �kg: In
particular, B0(y; y) = fy; yg: The dots in Fig.1 express the benchmark lotteries. We de�ne
B1(y; y) = [1k=0Bk(y; y):

Let 0 � k < �+ 1:9 Let %B;k be a subset of

Dk = Bk(y; y)
2 [ f(x; g); (g; x) : x 2 X and g 2 Bk(y; y)g: (8)

9Stipulating1+1 =1; we express the two statements �k � � if � <1�and �k < � if � =1�as �k < �+1�.
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The �rst part is used to describe the preferences over the benchmark scale Bk(y; y):We call this
the scale part, which is uniquely determined by Axiom B1. The second part is to describe the
measurement of each pure alternative x 2 X in terms of the benchmark scale, which we call the
measurement part. For example, if (x; g) 2 %B;k but (g; x) =2 %B;k; we have a strict preference
x �B;k g; and if (x; g) =2 %B;k and (g; x) =2 %B;k; then x and g are incomparable. We allow %B;k
to be very partial.

We require all pure alternatives be between the upper and lower benchmarks y and y:

Axiom B0 (Benchmarks): y �B;0 y and y %B;0 x %B;0 y for all x 2 X:

The next states that Bk(y; y) is used as the base scale for depth k.

Axiom B1 (Benchmark scale): For �; �0 2 �k; � � �0 () [y; �; y] %B;k [y; �0; y]:

It follows from this axiom that for �; �0 2 �k;

� = �0 () [y; �; y] �B;k [y; �0; y]; and � > �0 () [y; �; y] �B;k [y; �0; y]: (9)

Thus, %B;k is a complete relation over Bk(y; y) by (3). This is the scale part of %B;k; and is
precise up to the cognitive bound �:

The measurement part of %B;k is consistent with the scale part in the sense of no reversals
with Axiom B1.

Axiom B2 (Non-reversal): For all x 2 X and �; �0 2 �k; [y; �; y] %B;k x and x %B;k
[y; �0; y] =) � � �0:

If we assume transitivity for %B;k over Dk; B2 could be derived from B1, but we adopt B2
instead of transitivity, since this is more basic.

The last requires the preferences in layer k be preserved in layer k + 1: This is expressed by
the set-theoretical inclusion � in Table 1.1.
Axiom B3 (Preservation): For all f; g 2 Dk; f %B;k g =) f %B;k+1 g:

Axioms B2 and B3 are used only in the proof of Theorem 3.1 in this paper. Since Theorem
3.1 is the foundation of our theory, Axioms B2 and B3 are very basic.

The above axioms still allow great freedom for base preference relations h%B;ki�k=0: To see
this fact, we consider the following examples.

Example 3.1. Let X = fy; y; yg: Consider two examples for h%B;ki�k=0 satisfying Axioms
B0 to B3. For k = 0; the scale part is f(y; y)g and the measurement part may be given as
f(y; y); (y; y)g; meaning y �B;0 y and y �B;0 y: In Fig.2, y and y are located at the points of
probability 1 and 0 at k = 0; and y is between them.

Let k � 1: In Fig.2, the thin solid lines give the upper and lower bounds for y: In both (1 ) and
(2 ), y is strictly between [y; 910 ; y] and [y;

7
10 ; y] at k = 1: The scale part is: for �; �

0 = 0; :::; 10;

[y; �10 ; y] %B;1 [y;
�0

10 ; y] () � � � 0: The measurement part is given as [y; 910 ; y] �B;1 y �B;1
[y; 710 ; y]: The solid lines merge at k = 2 in (1 ), meaning that y becomes indi¤erent to [y;

83
102
; y]:

Axiom B3 implies that [y; 910 ; y] �B;2 y �B;2 [y;
7
10 ; y] remain. The lines do not merge in (2 ) and

y is between [y; 910 ; y] and [y;
8
10 ; y] for k � 2; there are no indi¤erent benchmark lotteries to y

at any k � 0:

The decision maker re�ects upon his mind to look for his preferences %B;k by a thought
experiment with the probability grids �k: From the viewpoint of �bounded rationality�, we are
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（1）
（2）

Figure 2: Base preference relations

inclined to have the view that he may stop his search for base preferences when he is happy
enough for them (even though some reservations remain for him). In (2 ) of Example 3.1, he
stops his search at depth 2:

3.2 Derivation process

Let a cognitive bound � � 1 be given. We consider an extension from the base relations
h%B;ki�k=0 to preferences over Lk(X) for k < �+1: We start with %0; and derive %k from %k�1
and %B;k; provided that %k�1 is already de�ned.

The �rst inference rule is to derive preferences %k from the basic preferences %B;k; which is
the inductive base. In Table 1.1, the vertical arrows indicate to this derivation.

Inference Rule C0: For any f; g 2 Dk; if f %B;k g; then f %k g; including the strict preference
case.

Now, we consider the inductive step. Let 1 � k < �+1: For f = (f1; :::; f`) and g = (g1; :::; g`);
we write f %k g i¤ ft %k gt for all t = 1; :::; `: Recall that f is a decomposition of f 2 Lk(X)
when f 2 Lk�1(X)` and f = e � f : The connection from %k�1 to %k is given as follows:
Inference Rule C1: Let f 2 Lk(X); g 2 Bk(y; y); or f 2 Bk(y; y); g 2 Lk(X): Suppose that
f ; g are decompositions of f; g with f %k�1 g: Then f %k g:
In addition, if ft �k�1 gt for some t = 1; :::; `, then f �k g.

In Table 1.1, the horizontal arrows indicate this derivation. Here, reduction of compound
lotteries is used only for f = e � f and g = e � g. It is a very weak version of the independence
axiom since it connects one layer to the next only. In Section 4, we compare Inference Rule C1
with the independence condition in classical EU theory.

The last inference rule is transitivity: Let 1 � k < �+ 1:

Inference Rule C2 (Transitivity): For any f; g; h 2 Lk(X); if f %k g and g %k h;
then f %k h:

This suggests to take the transitive closure of preferences at layer k: This rule implies strict
preference versions so that if at least one preference in the premise is replaced by a strict
preference, then the conclusion is also strict.
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Now, we have the derivation process for h%ki�k=0:
Derivation process (abbreviated as DP) up to a cognitive bound �:
Step 0: For any f; g 2 L0(X); if f %B;0 g; then f %0 g (including strict preferences10):
Step k (1 � k < �+ 1) :
k0: for any f; g 2 Lk(X); if f %B;k g; then f %k g (including strict preferences):
k1: f %k g is derived by C1 (including strict preferences):
k2: f %k g is derived by C2.

Smallest requirement (SM) for h%ki�k=0: each %k is obtained by a �nite number of applica-
tions of Step 0 to k:

The smallest requirement means that each %k is obtained only by repeating Step 0 - Step
k (k < � + 1) �nitely many times. Although h%B;ki�k=0 is allowed to have some arbitrariness,
h%ki�k=0 is uniquely determined relative to a given h%B;ki

�
k=0:

We have one basic problem to see whether each %k is a binary relation over Lk(X): The
question is whether it is a subset of Lk(X)2; i.e., for any f; g 2 Lk(X); exactly one of (f; g) 2
%k and (f; g) =2 %k holds. In our system, the negation (f; g) =2 %k may be derived as a part of
strict preferences g �k f . Therefore, it su¢ ces to show that for any f; g 2 Lk(X);

f %k g =) not (g �k f): (10)

Once this is proved, %k is a well-de�ned binary relation over Lk(X): A proof is given in the
Appendix. As stated above, we have the uniqueness of a sequence h%ki�k=0 by the Smallest
requirement.

Theorem 3.1 (Well-de�nedness). The DP generates a unique sequence of binary relations
h%ki�k=0; provided that h%B;ki

�
k=0 is given.

We are interested in the resultant preference relation; recall that for � < 1; it is the last
relation %� of h%ki�k=0; and for � =1; %� = [1k=0(%k):

By Theorem 3.1, we have the set-theoretical description of the generated sequence h%ki�k=0 :

%0 = %B;0; and %k = [(%k�1)C1 [ (%B;k)]tr for each k (1 � k < �+ 1); (11)

where (%k�1)C1 is the set of preferences derived from %k�1 by C1: Then we take the transitive
closure of (%k�1)C1 [ (%B;k); we denote, by %tr; the transitive closure of %; de�ned by: f %tr
g () f = h0 % h1 % ::: % hm = g for some h0; :::; hm:

Axioms B2 and B3 for h%B;ki�k=0 are basic for (the proof of) Theorem 3.1, but once h%ki�k=0
is well de�ned, these are inherited by h%ki�k=0 in the following manner. Thus, Axioms B2 and
B3 themselves will not be referred in the following.

Lemma 3.1. Let 1 � k < �+ 1:

(1): For all f 2 Lk(X) and �; �0 2 �k; [y; �; y] %k f and f %k [y; �0; y] =) � � �0:

(2) (Preservation of preferences): For any f; g 2 Lk�1(X); f %k�1 g implies f %k g:
Proof.(1): Let [y; �; y] %k f and f %k [y; �0; y]: By C2 (transitivity), we have [y; �; y] %k
[y; �0; y]: If � < �0; then [y; �0; y] �B;k [y; �; y] by B1; by C0, [y; �0; y] �k [y; �; y]; i.e., not
10That is, if f �B;0 g; then f �0 g:
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[y; �; y] %k [y; �; y]; a contradiction. Hence, � � �0:
(2): Let f 2 Lk�1(X) and g 2 Bk�1(y; y): Suppose f %k�1 g: Then, f; g 2 Lk�1(X) � Lk(X):
Let f1 = ::: = f` = f and g1 = ::: = g` = g: Then, f =

P`
t=1

1
` � ft and f =

P`
t=1

1
` � gt: Hence,

(f1; :::; f`) and (g1; :::; g`) are decompositions of f and g: By C1, we have f %k g: In the case
where g %k�1 f; we prove g %k f similarly.

Now, let f; g 2 Lk�1(X): By (11) for k; there are a �nite sequence of lotteries in h0; h1; :::; hl
in Lk�1(X) such that f = h0 %k�1 h1 %k�1 ::: %k�1 hl = g and each ht %k�1 ht+1 is derived by
C1 and B0 to B3; thus, at least one of ht; ht+1 belongs to Bk�1(y; y): By the conclusion of the
�rst paragraph, it holds that ht %k ht+1 for t = 0; :::; l � 1: By C2, f = h0 %k hl = g:�

The following sets of pure alternatives play an important role in subsequent studies:

Yk = fx 2 X : x �B;k [y; �; y] for some � 2 �kg for k (0 � k < �+ 1): (12)

This is the set of pure alternatives exactly measured by the benchmark scale Bk(y; y), k < �+1:
Since �k�1 � �k; we have, by B0, fy; yg � Y0 � Y1 � :::; but Yk+1 � Yk may be empty. In (1 )
of Example 3.1, Y0 = Y1 = fy; yg and Yk = fy; y; yg for k � 2, and in (2 ) Yk = fy; yg for k � 0.
We let Y� = [�k=0Yk; in particular, when � = 1; we denote Y� simply by Y: In Section 4, we
make comparisons between our theory and classical EU theory, in which the union Y = [1k=0Yk
plays a crucial role.

Lemma 3.2.(1): For each y 2 Yk; a probability �y 2 �k with y �B;k [y; �y; y] is unique. In
particular, �y = 1 and �y = 0:

(2): The transitive closure %trB;k of %B;k is complete over Yk [Bk(y; y):
Proof. (1): Let y �B;k [y; �y; y] �B;k [y; �0y; y]: By (9), �y = �0y: The remaining follows from B0
and (9).

(2): When f; g 2 Bk(y; y); the assertion holds by (9): Consider f = y 2 Yk and g 2 Bk(y; y):
Then, by (12), f = y �B;k h for some h = [y; �; y] 2 Bk(y; y): Then, by (9), h %B;k g or
g %B;k h: Thus, f %trB;k g or g %trB;k f: The case where f; g 2 Yk is similar.�

By Lemma 3.2, we de�ne the utility function uo : Yk ! �k by

uo(y) = �y for all y 2 Yk: (13)

This uo represents the relation %trB;k over Yk; that is, for any x; y 2 Yk; uo(x) � uo(y) () x

%trB;k y: This uo(�) is extended to Yk [Bk(y; y) by uo([y; �; y]) = �; which fully represents %trB;k
over Yk [Bk(y; y). We discuss a further extension to L1(Y ) in Section 4.

Here, we give one remark on base preference relations h%B;ki�k=0; they were given before the
derivation process of preferences h%Bi�k=0: In fact, each %B;k of h%B;ki

�
k=0 can be formulated as

a process along the derivation process, rather than the whole relations are given before the DP.
In the beginning of Step k; in addition to the relation %B;k�1 made in Step k � 1; the decision
maker evaluates relevant pure alternatives x 2 X; and then, he prepares (a relevant part of)
%B;k and goes to the DP. This process can be formulated in various forms; for example, the
decision maker evaluates only the pure alternatives relevant for given lotteries f; g 2 Lk(X):We
will give a brief discussion on relationships on this process to Simon�s [23] satis�cing/aspiration
argument in Section 8.
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4 Relationship to Classical EU Theory

Before our study of the behavior of %� for � < 1; we look at the relationship between our
theory and classical EU theory (cf., Herstein-Milnor [9], Fishburn [7]). Our theory with � =1
allows the expected utility hypothesis over the lotteries in L1(Y ): The main di¤erence is that
in our theory, permissible probabilities are from �1 = [1k=0�k; while all probabilities from [0; 1]
are allowed in classical theory: Our resultant relation %1 = [1k=0 %k is uniquely extended to a
relation in the sense of classical theory, but it involves non-constructive components.

4.1 Expected utility hypothesis in case with no cognitive bounds

Let h%ki1k=0 be the preference relations constructed by the DP from base relations h%B;ki1k=0.
We restrict our attention to the set of pure alternatives Y = [1k=0Yk; where Yk is given in (12):
Consider the following extension of the function uo given by (13) to L1(Y ) and the induced
preference relation %e;

ue(f) =
P
y2Y f(y)uo(y) for any f 2 L1(Y ); (14)

for any f; g 2 L1(Y ); f %e g () ue(f) � ue(g): (15)

The value ue(f) belongs to �1 for each f 2 L1(Y ); since uo is a function from Y to �1:

We have the following equivalence between %1 and %e, which is proved below.
Theorem 4.1 (1): f �1 [y; ue(f); y] for all f 2 L1(Y ):

(2)(Expected utility hypothesis): For any f; g 2 L1(Y ); f %1 g () f %e g:

Thus, the resultant relation %1 is complete over L1(Y ): The equivalence result (2) hods for
%1 and %e : However, the restrictions on Lk(Y ) do not necessarily enjoy this equivalence; for a
given k <1; the relation %e;k := %e \Lk(Y )2 is already complete over Lk(Y ); but the relation
%k may not be complete over Lk(Y ).

Theorem 4.1.(2) is the expected utility hypothesis, though Inference Rule C1 is a weak version
of independence with a speci�c form of reduction of compound lotteries, that is, (5). Assume
the full form of reduction: for any f; g 2 L1(Y ) and � 2 �1; we de�ne �f � (1� �)g 2 L1(Y )
by

(�f � (1� �)g)(x) = �f(x) + (1� �)g(x) for all x 2 X: (16)

Then, it follows from Theorem 4.1.(2) that the preference relation %1 satis�es the full indepen-
dence condition: for any f; g 2 L1(Y ) and � 2 �1 (0 < �);

ID11: f �1 g =) �f � (1� �)h �1 �g � (1� �)h;
ID21: f �1 g =) �f � (1� �)h �1 �g � (1� �)h:

Then, preferences are freely carried over from shallow layers to deeper layers. When � < 1,
the reduced compound lottery �f � (1 � �)h may go beyond �. The classical version of these
conditions are discussed in Section 4.2.

Proof of Theorem 4.1: First, we show that (2) is an immediate consequence of (1). Let
f; g 2 L1(Y ): By (1), for some ko; f �k [y; ue(f); y] and g �k [y; ue(g); y] for all k � ko: Since
%1 = [1k=0 %k; we can take a k � ko so that f %1 g () f %k g: By B1, (15), and C2, f %k g
() [y; ue(f); y] %k [y; ue(g); y]() ue(f) � ue(f)() f %e g: In sum, f %1 g () f %e g:

12



Now, let us prove (1). For k <1; let Lk(Yk) = ff 2 Lk(X) : f has a support S in Ykg; and

L�k(Yk) = ff 2 Lk(Yk) : for t = 0; :::; k; f(y) 2 �k�t if y 2 Yt � Yt�1g; (17)

where Y�1 = ;: We have the following two assertions:

for any k � 0; if y 2 Yk � Yk�1 and f 2 L�k(Yk); then f(y) = 0 or 1; (18)

L1(Y ) = [1k=0L�k(Yk): (19)

First, we see (18); let f 2 L�k(Yk): If y 2 Yk � Yk�1; then f(y) 2 �0; i.e., f(y) = 0 or 1: Next,
let us see (19). The inclusion � is essential. Let f 2 L1(Y ): This f has a �nite support S; and
there is a k0 such that for each y 2 S; y 2 Yt � Yt�1 for some t � k0 and also f(y) 2 �k0 : Let
k = 2k0: Then, for any y 2 S; if y 2 Yt � Yt�1; then f(y) 2 �k0 � �k�t: Thus, f 2 L�k(Yk):

Now, we show by induction over k = 0; ::: that

f �k [y; ue(f); y] for all f 2 L�k(Yk): (20)

Once this is proved, we complete the proof of (1); indeed, taking any f 2 L1(Y ); by (19), we
have f 2 L�k(Yk) for some k <1; and thus, f �k [y; ue(f); y] by (20).

Let us prove (20). Let k = 0: For any y 2 L�0(Y0); y �0 y or y �0 y by (12) for k = 0
and DP:(0); i.e., y �0 [y; 1; y] and y �0 [y; 0; y]: Suppose that (20) holds for k: Take any
f 2 L�k+1(Yk+1): If f(y) = 1 for y 2 Yk+1 � Yk; then f = y �k+1 [y; �y; y] by (12), which implies
f = y �k+1 [y; ue(f); y] because �y = ue(y):

Suppose that f(y) = 0 for all y 2 Yk+1�Yk: Then, f has a support in Yk: By Lemma 2.2, f has
a decomposition f = (f1; :::; fl): Hence, if y 2 Yt�Yt�1; then fl(y) = 0 for each l = 1; :::; `; which
means that each fl belongs to L�k(Yk): By the induction hypothesis, there is a g = (g1; :::; g`) such
that f �k g and gt = [y; ue(fl); y] for l = 1; :::; `: Applying C1, we have f = e � f �k+1 e � g, and
this becomes f �k+1

P`
t=1

1
` � gt =

P`
t=1

1
` � [y; ue(ft); y] = [y;

P`
t=1

1
`ue(ft); y] = [y; ue(f); y];

the last equality follows from (15).�

4.2 Extension to classical EU theory

Our theory with � =1 and Y = [1k=0Yk still di¤ers from classical EU theory where all proba-
bilities from [0; 1] are permissible: In fact, our resultant relation %1 can be uniquely extended
to a preference relation in the sense of classical EU theory with the set of pure alternatives Y .
Nevertheless, the extension involves non-constructive components.

We �rst give a summary of classical EU theory. Let L[0;1](Y ) = ff : f : Y ! [0; 1] is a lottery
with a �nite support S � Y g: Here, a lottery f can take any real value in [0; 1] but

P
y2S f(y) = 1

for some �nite subset S of Y: Since �k � [0; 1] for all k < 1; L1(Y ) = [1k=0Lk(Y ) is a subset
of L[0;1](Y ); the lotteries taking values in [0; 1] � �1 are newly included in L[0;1](Y ): The set
L[0;1](Y ) is an uncountable set, but we show that L1(Y ) is dense in L[0;1](Y ): We assume the
reduction of compound lotteries: for any f; g 2 L[0;1](Y ) and � 2 [0; 1]; �f � (1� �)g is de�ned
by (16).

We adopt the following axiomatic system, which is one among various equivalent systems.
Let %E be a binary relation over L[0;1](Y ); and we assume NM0 to NM2 on %E :
Axiom NM0 (Complete preordering): %E is a complete and transitive relation on L[0;1](Y ):
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Axiom NM1 (Intermediate value): For any f; g; h 2 L[0;1](Y ); if f %E g %E h;
then �f � (1� �)h �E g for some � 2 [0; 1]:

Axiom NM2 (Independence): For any f; g; h 2 L[0;1](Y ) and � 2 (0; 1];
ID1: f �E g implies �f � (1� �)h �E �g � (1� �)h;
ID2: f �E g implies �f � (1� �)h �E �g � (1� �)h:

The di¤erence between ID1 - ID2 and ID11 - ID21 is only the domains of lotteries and
permissible probabilities. Under these axioms, there is a utility function UE : L[0;1](Y )! R so
that

for any f; g 2 L[0;1](Y ); f %E g () UE(f) � UE(g); (21)

UE(f) = �y2S f(y)uE(y) for each f 2 L[0;1](Y ); (22)

where S is a �nite support of f and uE is the restriction of UE on Y: The converse holds; if %E
is given by (21) and (22), then, NM0 to NM2 hold for %E :

Now, we connect this theory to our EU theory with probability grids. Let %1 = [1k=0 %k be
the resultant relation generated by DP from base relations h%B;ki1k=0. Then, we have a unique
extension %E of %1 having NM0 to NM2.

Theorem 4.2 (Unique extension). There is a unique binary relation %E over L[0;1](Y ) such
that for any f; g 2 L1(Y ); f %1 g =) f %E g and NM0 to NM2 hold for %E .

This theorem is proved by denseness of L1(Y ) in L[0;1](Y ) and continuity of UE(�) with
respect to point-wise convergence. Denseness is a direct consequence from the denseness of
�1 = [1k=0�k in [0; 1]: Continuity of UE(�) means that for any sequence ff�g in L1(Y ); if
f�(y) ! f(y) for each y 2 Y; then lim�!1 UE(f�) = UE(f): The function UE given by (22) is
continuous.

The proofs of Lemma 4.1 and Theorem 4.2 may appear to be constructive following %1 :
Indeed, as long as f 2 L1(Y ); the involved probabilities in each f are described by a �nite list
of natural numbers. Thus, our theory is constructive up to %1, but the last extension step to
%E to L[0;1](Y ) is non-constructive, since probabilities newly involved in f 2 L[0;1](Y )�L1(Y )
may be given only in a nonconstructive manner.11

Lemma 4.1. L1(Y ) is a dense subset of L[0;1](Y ):

Proof. It su¢ ces to show that L1(Y ) is dense in L[0;1](Y ): Take any f 2 L[0;1](Y ): This f has
a �nite support S = fy0; y1; :::; ymg in Y:We construct a sequence fg�g1�=�o so that g� 2 L1(Y )
for � � �0; and for each y 2 Y; g�(y)! f(y) as � !1:

For any natural number �; let z�;t = minf�t 2 �� : �t � f(yt)g for all t = 0; :::;m: Then, we
de�ne u�;0; :::; u�;m by

u�;t =

�
z�;t if t < m
1�

P
t<m z�;t if t = m:

Then, u�;t 2 �� for all t � m� 1; and 1 � 1�
P
t<m z�;t = u�;m: Since m is �xed, we can take

some �o so that m`� <
`��1
`� for any � � �o: For any � � �o; 1�

P
t<m z�;t � 1� m

`� >
1
`� : Hence,

11We adopt Axiom NM1 avoiding the use of a topology. This does not change the content of classical EU theory
as long as the set of lotteries is given as L[0;1](Y ): However, the above NM1 allows to restrict it to L[0;1]\Q(Y ),
where Q is the set of rationals: In this case, the extension result given in Theorem 4.2 is regarded as approximately
constructive.
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u�;m 2 �� : Also, we have
Pm
t=0 u�;t = 1: Now, we de�ne fg�g1�=�o by

g�(y) =

�
0 if y 2 Y � S
u�;t if y = yt 2 S:

Then, each g� belongs to L�(Y ): When � ! +1; g�(y)! f(y) over Y:�
Proof of Theorem 4.2. The relation %1 is a binary relation over L1(Y ): Recall the ue :
L1(Y ) ! R was given by (14). We extend this to UE : L[0;1](Y ) ! R by (22) with uE = uo
given in (13) and de�ne %E by (21). Then, UE(�) coincides with ue over L1(Y ): Hence, %E is
an extension of %1 : It is easy to see that %E satis�es NM0-NM2.

Finally, we show that the extension %E is unique: Suppose that %0E is an extension of %1 and
satis�es NM0 to NM2. Hence, there is a U 0E : L[0;1](Y )! R satisfying (21) and (22). As stated
above, U 0E is continuous. Since %0E is an extension of %1; it holds that for all f; g 2 L1(Y );

ue(f) %1 ue(g)() U 0E(f) � U 0E(g):

By Lemma 4.1, there are sequences ff�g and fg�g in L1(Y ) such that they converge to f and
g: Then, UE(f) = lim�!1 ue(f�) � lim�!1 ue(g�) = UE(g) () U 0E(f) = lim�!1 U 0E(f

�) �
lim�!1 U 0E(g

�) = U 0E(g): This means that f %E g is determined uniquely by UE(�).�

5 Measurable and Nonmeasurable Lotteries

Our main concern is the behavior of the resultant relation %� for a �nite cognitive bound �: In
particular, we are interested in incomparabilities involved in %�; which we study in Section 6.
Here, we prepare the concepts of measurable and nonmeasurable lotteries. Incomparabilities are
closely related to nonmeasurable lotteries; when f and g are incomparable, at least one of them
is nonmeasurable. In this section, � is allowed to be �nite or in�nite.

Let h%ki�k=0 be the preference relations derived by DP from given base relations h%B;ki�k=0:
We de�ne the domain Mk for k < �+ 1 by

Mk = ff 2 Lk(X) : f �k g for some g = [y; �; y] 2 Bk(y; y)g: (23)

That is, f 2 Mk is exactly measured by the benchmark scale Bk(y; y): This is a direct gener-
alization of (11), which divides the set of pure alternatives X into the set of measurable pure
alternatives Yk and its complement X � Yk: It holds that Yk � Mk: When k = 0; we have
M0 = Y0 since B0(y; y) = fy; yg:

We call f 2Mk measurable; and f 2 Lk(X)�Mk nonmeasurable: By B1 and C2,

for each f 2Mk; the probability weight � with f �k [y; �; y] is unique; (24)

which we denote by �f : It holds by Lemma 3.1.(2) thatMk �Mk+1 for all k < �+1: For � =1;
let M1 = [1k=0Mk:

The following lemma is about a structure of Mk: For this lemma, it is used that Y0 =M0:

Lemma 5.1.(1): Let k < �+1: If f 2Mk; then f(y) = 0 or 1 for all y 2 Yk�Yk�1 and f(y) = 0
for all y 2 X � Yk; where Y�1 = ;:
(2): Mk � Lk(Yk) for all k < �+ 1:
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Proof. We show (1) and (2) by induction on k � 0: Let k = 0: Since Y0 = M0; we have
f 2 M0 = Y0 = L0(Y0); which implies (1) and (2): Suppose the induction hypothesis that (1)
and (2) hold for k: Now, we take any f 2Mk+1:

Suppose, on the contrary, that 0 < f(y) < 1 for some y 2 Yk+1 � Yk or 0 < f(y) � 1 for
some y 2 X � Yk+1: We denote this y by yo: If f(yo) = 1 and yo 2 X � Yk+1; by (12), there
is no g 2 Bk+1(y; y) such that f �k+1 g, a contradiction to f 2 Mk+1: Hence, we can assume
0 < f(yo) < 1: Since yo 2 Yk+1 � Yk or yo 2 X � Yk+1; yo di¤ers from y and y: Hence, f =2
Bk+1(y; y):

By f 2Mk+1; we have a g 2 Bk+1(y; y) with f �k+1 g: By (11), there are h0 = f; h1; :::; hm =
g such that (ht�1; tt) 2 (%k)C1 [ (%B;k+1) for t = 1; :::;m: This implies that h0 = f; h1; :::; hm =
g are all indi¤erent with respect to %k+1 : Since 0 < f(yo) < 1 and f =2 Bk+1(y; y); we
have (f; h1) =2 (%B;k+1) by (8), which implies (f; h1) 2 (%k)C1: Since h1 �k+1 g and h1; g 2
Bk+1(y; y); h1 and g are identical by (9). Hence, (f; g) 2 (%k)C1: This implies that f and g
have decompositions f = (f1; :::; f`) and g = (g1; :::; g`) such that ft 2 Lk(Yk+1); gt 2 Bk(y; y)
for all t = 1; :::; `; and f �k g: Since 0 < f(yo) < 1, there is some ft among f1; :::; f` such that
ft(yo) > 0: Since yo 2 Yk+1�Yk or yo 2 X�Yk+1; it holds that ft =2 Lk(Yk): On the other hand,
since gt 2 Bk(y; y); we have ft 2 Mk; by the induction hypothesis, we have ft 2 Mk � Lk(Yk);
a contradiction. Hence, we have the assertion (1) for k + 1. This implies (2) for k + 1:�

It holds by Lemma 5.1.(2) and Theorem 4.1 that M1 = L1(Y ): Conversely, we can restrict
the statements of Theorem 4.1 to Mk: That is, the expected utility hypothesis holds for the
measurable domain Mk: Recall that �f ; ue(f); and %e are de�ned, respectively, in (24), (14),
and (15): An implication is that no incomparabilities are observed in Mk.

Theorem 5.1 (Case C: expected utility over Mk). For each k < �+ 1;

(1): �f = ue(f) for any f 2Mk;

(2): for any f; g 2Mk; f %k g () f %e g:
Proof. (1): By Theorem 4.1, f �k0 [y; ue(f); y] for some k0: By Lemma 3.1, we can assume k0 �
k: Using Lemma 3.1 again, we have [y; �f ; y] �k0 f �k0 [y; ue(f); y]: Then, we have �f = ue(f)
by (9).

(2): Let f %k g: By (1) of this theorem, [y; ue(f); y] �k f %k g �k [y; ue(g); y]: This is equivalent
to ue(f) � ue(g); which is further equivalent to f %e g: The converse is obtained by tracing
back this argument.�

Thus, �f is the same as the expected utility value ue(f), and %k coincides with the expected
utility preferences %e over the measurable domain Mk: Theorem 5.2 gives a condition for a
lottery f 2 Lk(Yk) to be in Mk; using only the depth data included in f ; for each y 2 Yk; f has
two types of depths, i.e., the measurement depth �(�y) of y and the depth �(f(y)) of the value
f(y); and their sum should be smaller than or equal to k for f 2Mk: Theorem 5.1 implies that
as long as f; g 2 Lk(Yk) satisfy this condition, f and g are comparable by the expected utility
preferences %e.
Theorem 5.2 (Measurability criterion): Let k < �+ 1 and f 2 Lk(Yk): Then,

f 2Mk () maxf�(�y) + �(f(y)) : f(y) > 0g � k: (25)

Proof. We prove (25) by induction on k � 0: Let k = 0: Since Y0 = L0(Y0) =M0, it holds that
�(�f ) = �(f(y)) = 0 for all f 2 L0(Y0) = M0: Thus, (25) holds for k = 0: Now, suppose the
induction hypothesis that (25) holds for k: We prove (25) for k + 1:
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Consider f 2 Lk+1(Yk+1): Let y 2 Yk+1 � Yk with f(y) > 0: By Lemma 5.1.(1), f(y) = 1;
i.e., f = y and �(f(y)) = 0: Since y 2 Yk+1 � Yk; we have �(�y) = k + 1: Hence, y 2Mk+1 ()
�(�y) = k + 1:

Now, let f(y) = 0 for any y 2 Yk+1 � Yk: Suppose f 2 Mk+1: If f 2 Mk; we have the
right-hand side of (25) by the induction hypothesis. Hence, we can suppose f 2 Mk+1 �Mk:
Since f 2 Lk+1(Yk+1) and f(y) = 0 for any y 2 Yk+1�Yk; we have 0 < f(y) � 1 for some y 2 Yk:
If f(y) = 1 and y 2 Yk; then f 2 Mk; a contradiction to f 2 Mk+1 �Mk: Hence, 0 < f(y) < 1
for some y 2 Yk; thus, f =2 Bk+1(y; y):

Then, since f 2 Mk+1 �Mk; we have f �k+1 g for some g 2 Bk+1(y; y): By (11), there
are h0 = f; h1; :::; hm = g such that ht �k+1 ht+1 and (ht; hk+1) 2 (%k)C1 [ (%B;k+1) for all
t = 0; :::;m � 1: Since 0 < f(y) < 1 for some y 2 Yk and f =2 Bk+1(y; y); we have (f; h1) =
(h0; h1) =2 %B;k+1; thus, (f; h1) 2 (%k)C1 and h1 2 Bk+1(y; y): By the indi¤erence of �k+1; we
have h1 �k+1 g; in fact, they are identical by B1. In sum, (f; g) 2 (%k)C1:

It follows from (f; g) 2 (%k)C1 that there are decompositions f = (f1; :::; f`) and g =
(g1; :::; g`) of f and g so that f �k g: For t = 1; :::; `; since gt 2 Bk(y; y); we have ft 2 Mk:
By the induction hypothesis, we have �(�y) + �(ft(y)) � k for all y 2 Yk and t = 1; :::; `: Since
f = e � f ; it holds that �(f(y)) � maxt �(ft(y)) + 1 for all y 2 Yk: Since �(f(y)) = 0 for all
y 2 Yk+1 � Yk, we have �(�y) + �(f(y)) � k + 1 for all y 2 Yk+1 with f(y) > 0:

Conversely, let �(�y)+�(f(y)) � k+1 for all y 2 Yk+1 with f(y) > 0: Let k� = maxf�(f(y)) :
y 2 Yk+1g: Then, k� � k + 1: Let k� = 0: Then, f = y for some y 2 Yk+1; hence, f = y
2 Yk+1 � Mk+1: Suppose 0 < k� � k + 1: Then, f 2 Lk�(Yk+1): By Lemma 2.2, we have a
decomposition f of f: Then, ft 2 Lk��1(Yk+1) for t = 1; :::; `: Then, �(ft(y)) � k� � 1 for all
y 2 Yk+1: Since �(�y) + �(f(y)) � k + 1 for all y 2 Yk+1 with f(y) > 0; it holds for t = 1; :::; `
that �(�y) + �(ft(y)) � k� � 1 � k for all y 2 Yk+1 with ft(y) > 0: By the inductive hypothesis
for k; we have ft 2Mk for t = 1; :::; `: Thus, we have gt 2 Bk(y; y) with ft �k gt for t = 1; :::;m:
By C1, we have f = e � f � e � g 2 Bk+1(y; y). This means f 2Mk+1:�

The assertion (25) is read in two ways. One is to �x a lottery f 2 Lk(Yk) but to change k:
Let kf = maxf�(�y) + �(f(y)) : f(y) > 0g: Then, (25) is written as

f 2Mk () kf � k: (26)

For example, when f = 25
102
y � 75

102
y and y �2 [y; 83102 ; y]; we have kf = �( 83

102
) + �( 25

102
) = 4:

Hence, (26) implies that f 2Mk () k � 4: This means that any lottery f in L1(Y1) becomes
measurable when k is large enough: The other reading of (25) is to �x a k and to change f .
There is an f 2 Lk(Yk) such that �(f(y)) = k: As long as �(�y) > 0 for some y 2 Yk; there is an
f 2 Lk(Yk) such that �(�y) + �(f(y)) > k; i.e., f =2 Mk: Thus, nonmeasurable lotteries exist as
long as fy; yg ( Yk:When Yk becomes constant after some k; the set of nonmeasurable lotteries
Lk(Yk)�Mk does not grow after k:

We mention the following theorem for the indi¤erences �k over Lk(X); the indi¤erence
relation �k occurs only in Mk and, in particular, re�exivity holds only in Mk: This is needed
for Theorem 6.2.

Theorem 5.3. Let k < �+ 1 � 1 and f; g 2 Lk(X):

(1) (No indi¤erences outside Mk): If f =2Mk; then f �k g:

(2) (Re�exivity): f �k f if and only if f 2Mk:
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Proof (1): Suppose that f =2 Mk and g 2 Mk: Then, g �k [y; �g; y]: If f �k g; then f 2 Mk

by C2; a contradiction. Hence, f �k g: Now, let f; g =2Mk: Suppose f �k g: By (11), there are
f = h0; h1; :::; hm = g 2 Lk(X) such that hl �k hl+1 and at least one of hl and hl+1 belongs to
Bk(y; y) for l = 1; :::;m � 1: Since h0 = f =2 M� and h1 2 Bk(y; y) � M�; we have, by the �rst
case, h0 �k h1; a contradiction. Hence, f �k g:
(2): The if part is by the de�nition of Mk; B1, and C2. The only-if part (contrapositive)
follows from (1) of this theorem.�

6 Incomparabilities and their Characterization

Now, we study how the resultant preference relation %� involves incomparabilities for � <
1: We will give a comment on the case � = 1 in the end of this section: We characterize
incomparabilities by the concepts lub and glb of f 2 L�(X): Unifying this characterization with
the comparability result (Theorem 5.1), we obtain the representation of %� over L�(X) in terms
of the interval order introduced by Fishburn [6]: Throughout this section, we assume � <1:

First, we show the following lemma.

Lemma 6.1. For each k � 0; y %k f %k y for any f 2 Lk(X):
Proof. We show the assertion by induction over k � 0: Let f 2 L0(X) = X: By B0 and
%0 = %B;0, we have the assertion for k = 0. Suppose the induction hypothesis that y %k
f %k y for any f 2 Lk(X): Consider f 2 Lk+1(X): Then, by Lemma 2.2, there is a vector
f = (f1; :::; f`) 2 Lk(X)` such that f = e � f : By the induction hypothesis, y %k ft %k y for any
t = 1; :::; `: By Rule C1, we have y = e � y %k+1 f = e � f %k+1 e � y = y:�

Lemma 6.1 guarantees that every f 2 L�(X) has upper and lower bounds in B�(y; y): We
can de�ne the lub �f and glb �f of each f 2 L�(X) by

�f = minf� : [y; �; y] 2 B�(y; y) with [y; �; y] %� fg; (27)

�f = maxf� : [y; �; y] 2 B�(y; y) with f %� [y; �; y]g:

In general, it holds that �f � �f : If �f and �f coincide, then f belongs to M� and is exactly
measured; and if they di¤er, then f belongs to L�(X) �M�. These observations are described
as follows: for any f 2 L�(X);

�f = �f = �f () f 2M�; and �f > �f () f 2 L�(X)�M�: (28)

We remark that the lub and glb are de�ned in terms of the weak relation %� in (27), but when
f 2 L�(X) � M�; these are strict relation �� by Theorem 5.3.(1): Here, we show only the
direction (= of the second of (28). Let f 2 L�(X)�M�: Then, [y; �f ; y] �� f �� [y; �f ; y]: By
C2, we have [y; �f ; y] �� [y; �f ; y]; so �f > �f by (9):

Consider the following mutually exclusive and exhaustive cases:

C: f; g 2M�; and

IC: f 2 L�(X)�M� or g 2 L�(X)�M�:

In case C; comparability is shown in Theorem 5.1. Consider case IC: Let f; g 2 L�(X) �
M�: Then, we have the gaps, �f > �f and �g > �g: When these gaps are separated, e.g.,
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Figure 3: Incomparabilities

�f > �f � �g > �g; it holds that f �� g; indeed, f; g 2 L�(X) � M� and �f � �g imply
f �� [y; �f ; y] %� [y; �g; y] �� g by Theorem 5.3.(1). In this case, f and g are comparable.
Incomparability occurs in the other case where the gaps intersect, i.e., �f > �g > �f > �g:
These comparisons become degenerate when f 2 L�(X)�M� and g 2M�: In Fig.3, the second
and fourth (�rst and fourth) lines show the separable cases, where comparability holds, and the
second and third (�rst and second) lines show nonseparable cases, where incomparability holds.

The above observations hold in a general manner, which are stated in Theorem 6.1, where
f 1� g is de�ned in (7), meaning that f and g are incomparable with respect to %� :
Theorem 6.1 (Case IC). Suppose that at least one of f; g is in L�(X)�M�: Then,

f �� g () �f � �g; (29)

f 1� g () �f > �g and �g > �f : (30)

Proof. First, suppose that f =2 M� and g 2 M�: Then, f �� g by Theorem 5.3.(1). Consider
the equivalence of (29). If f �� g; then f �� g �� [y; �g; y], which implies �f � �g by (27) and
B1. Conversely, if �f � �g; then f �� [y; �f ; y] %� [y; �g; y] �� g by (27) and B1, which implies
f �� g by C2: The equivalence of (30) is similar. We can prove similarly these assertions in the
case f 2M� and g =2M�:

Now, suppose that f; g =2 L�(X)�M�: Since f �� g by Theorem 5.3.(1), we have f 1� g ()
neither f �� g nor g �� f: Hence, (30) follows from (29). Now, we prove (29); speci�cally,

(i): f �� g () f �� h �� g for some h 2 B�(y; y);
(ii): f �� h �� g for some h 2 B�(y; y)() �f � �g:

These imply (29). Let us see (ii). Suppose that f �� h �� g for some h 2 B�(y; y): Since �f
is the lub of f , by (27), �f � �h: Similarly, �h � �g: Thus, �f � �g: Conversely, let �f � �g:

Then, by (27), f �� [y; �f ; y] %� [y; �g; y] �� g: Hence, we can adopt [y; �f ; y] for h:

Consider (i): The direction (= is obtained by C2. Now, suppose f �� g: By (11), there is a
�nite sequence of distinct g0; :::; gm such that f = gm %� ::: %� g0 = g and at least one of each
adjacent pair gl; gl+1 belongs to B�(y; y) for each l = 0; :::;m� 1: Hence, g1 belongs to B�(y; y);
since f = gm and g0 = g are in L�(Y ) �M�: Since f %� g1 %� g and g1 2 B�(y; y); we have
f �� g1 �� g by Theorem 5.3.(1).�

Theorem 6.1 provides a complete characterization of incomparabilities involved in the relation
%�. In order to synthesize this result and Theorem 5.1 for the measurable domain M�, we
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consider the vector-valued function �(f) = (�f ; �f ) for any f 2 L�(X) with the binary relation
� over �� ��� given by

(�1; �2) � (�1; �2)() �2 � �1: (31)

This relation is Fishburn�s [6] interval order. Using the function �(�) and �; we synthesize the
results for cases C and IC.

Theorem 6.2 (Representation). For any f; g 2 L�(X); f %� g () �(f) � �(g):
Proof. Consider case C : f; g 2M�: Since �(f) = (�f ; �f ) and �(g) = (�g; �g); the right-hand
side of (31) is �f � �g: Thus, the assertion follows from Theorem 5.1. Consider case IC that
at least one of f; g belongs to L�(X) �M�: Theorem 6.1 states that f �� g () �f � �g and
g �� f () �g � �f : Since f �� g by Theorem 5.3.(1), we have the assertion of the theorem.�

The relation � is transitive, and also anti-symmetric, i.e., (�1; �2) � (�1; �2) and (�1; �2) �
(�1; �2) =) (�1; �2) = (�1; �2) (and �1 = �2): It is re�exive only for (�1; �2) with �1 = �2: Thus,
� is weaker than a partial ordering. The relation %� is transitive but is neither anti-symmetric
nor re�exive.

Incomparability 1� and indi¤erence �� may appear similar: indeed, Shafer [21], p.469,
discussed whether 1� and �� could be de�ned together and pointed out a di¢ culty from the
constructive point of view. Theorem 6.2 gives a clear distinction between �� and 1�; by Rule
C2, �� is transitive, but 1� not. In Fig.3, g 1� f and f 1� f 0 but f 0 �� g:

There are two sources for incomparabilities; X � Y = X � [1k=0Yk and a �nite �: Lemma
5.1.(2) implies that when f(x) > 0 for some x 2 X � Y; this f does not belong to Mk for any
k < 1: On the other hand, even when the support of f is included in Y; f does not belong to
Mk for k < kf ; where kf is given in (25). Thus, f; g 2 L1(Y ) are possibly incomparable with
respect to %� () � < maxfkf ; kgg:

Theorem 6.2 corresponds to von Neumann-Morgenstern�s [26], p.29, indication of a possibility
of a representation of a preference relation involving incomparabilities in terms of a many-
dimensional vector-valued function. Our result shows a speci�c form of their indication. If
there are multiple pairs of di¤erent benchmarks, our representation theorem may be stated by
a higher-dimensional vector-valued function; this will be brie�y discussed in Section 8.

Dubra et al. [5] obtained the representation result in the form that an incomplete preference
relation is represented by a class of expected utility functions. Here, available probabilities are
given as arbitrary real numbers in the interval [0; 1] and incompleteness is allowed. Perhaps,
this literature is closely related to our consideration of classical EU theory in Section 4.2. When
we restrict our attention to the set of pure alternatives to Y = [1k=0Yk;, we have a complete
preference relation, but when we consider the entire set X; the derived preference relation and
its extension to L[0;1](X) could be incomplete. Then, it is an open problem whether Theorem
6.2 can be extended or we need a representation theorem in the form of [5]. Nevertheless, some
non-constructive elements are involved here, as pointed out in Section 4.2, and the restriction
� <1 is natural from the viewpoint of our motivation of bounded rationality.

For further developments of our theory including practical applications, it is crucial to study
properties of the lub �f and glb �g of f 2M� and/or a general method of calculating them. This
exceeds the scope of the present paper; we point out that Theorem 5.2 will be crucial for this
development. Here, we consider how to calculate the lub �d and glb �d of lottery d =

25
100y �

75
100y

in Example 3.1 and an additional case. These calculation results will be used in Section 7.

Example 6.1 (Example 3.1 continued). Recall X = fy; y; yg; and d = 25
100y �

75
100y: Here, we

20



consider two cases

(A) : [y; 910 ;y] �B;1 y �B;1 [y;
7
10 ;y] and y �B;2 [y;

77
102
;y]; (32)

(B) : [y; 910 ; y] �B;1 y �B;1 [y;
7
10 ; y] and y �B;2 [y;

83
102
;y]

Case (B) is (1 ) of Fig.3.1, and (A) is additional. These are the cases of risk-averse and risk-lover.
Since d 2 L2(X)� L1(X); we assume � � 2: The lub and glb of d are given in Table 6.1:

Table 6.1: the lub and glb of d

(A) (B)

� = 2 �d = 25=10
2 & �d = 0 the same

� = 3 �d = 225=10
3 & �d= 175=10

3 the same

� � 4 �d = �d = 1925=10
4 �d = �d = 2075=10

4

These results will be calculated in the Appendix. The cases (A) and (B) di¤er only for � � 4:
By (28), d = 25

100y �
75
100y is measurable if and only if � � 4: To calculate the lub �d and glb �d

of d; we need to substitute upper and lower bounds given in (32) for y in d = 25
100y �

75
100y: Since

the depth �(d) is already 2; this substitution with the indi¤erence in the latter in (32) requires
� � 4: Indeed, when � � 4; the di¤erence between y �B;2 [y; 77102 ;y] in (A) and y �B;2 [y;

83
102
;y]

in (B) leads to the di¤erence in Table 6.1. When � = 2 or 3; only the same preferences in (32)
can be used for the calculations of �d and �d; so, the results given in Table 6.1 are the same.

Consider comparability/incomparability between d and c := [y; 210 ; y]. When � � 4; d is
directly comparable with c = [y; 210 ; y] by Theorem 5.1, i.e., c �� d in (A) and d �� c in (B).
When � = 2 or 3; there are gaps between �d and �d: Since c is in these gaps; by Theorem 6.1, d
and c are incomparable:

7 An Application to a Kahneman-Tversky Example

We apply our theory to an experimental result reported in Kahneman-Tversky [11]. The exper-
imental instance is formulated as Example 6.1, and the relevant lotteries are c = [y; 210 ; y] and
d = 25

100y �
75
100y; the lub and glb of d are given in Table 6.1. It is the key how the observed be-

haviors in the experiment are connected to the incomparabilities predicted in our theory. First,
we look at the Kahneman-Tversky example, and then we make a certain postulate to interpret
the choice behaviors of subjects who are predicted to show incomparabilties.

In the Kahneman-Tversky example, 95 subjects were asked to choose one from lotteries a
and b; and one from c and d: In the �rst problem, 20% chose a; and 80% chose b: In the second,
65% chose c; and the remaining chose d:

a = [4000; 80
102
; 0]; (20%); vs. b = 3000 with probability 1; (80%)

c = [4000; 20
102
; 0]; (65%); vs. d = [3000; 25

102
; 0]; (35%):

The case of modal choices; denoted by b ^ c; contradicts classical EU theory. Indeed, these
choices are expressed in terms of expected utilities as:

0:80u(4000) + 0:20u(0) < u(3000) (33)

0:20u(4000) + 0:80u(0) > 0:25u(3000) + 0:75u(0):
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Normalizing u(�) with u(0) = 0; and multiplying 4 to the second inequality, we have the opposite
inequality of the �rst, a contradiction. The other case contradicting classical EU theory is a^d:
EU theory itself predicts the outcomes a ^ c and b ^ d; depending upon the value u(3000): This
is a variant of many experiments reported.12

In [11], no more information is mentioned other than the percentages mentioned above.
Consider three possible distributions of the answers in terms of percentages over the four cases,
described in Table 7.1: the �rst, second, or third entry in each cell is the percentage derived by
assuming 65%; 52%; or 45% for b^ c: The �rst 65% is the maximum percentage for b^ c; which
implies 0% for a^ c; and these determine the 20% for a^d and 15% for b^d: The second entries
are based on the assumption that the choices of b and c are stochastically independent, for
example, 52 = (0:80� 0:65)� 100 for b^ c. In the third entries, 45% is the minimum possibility
for b ^ c: We interpret this table as meaning that each cell was observed at a signi�cant level.

Table 7.1
c : 65% d : 35%

a : 20% a ^ c : EU: 0 ==13==20 a ^ d : paradox: 20==7== 0
b : 80% b ^ c : paradox: 65==52==45 b ^ d : EU: 15==28==35

Let y = 4000; y = 0; y = b = 3000; and � � 2. Consider the two cases (A) and (B) given in
(32): In comparisons between lotteries a and b; the theory predicts, independent of �; the choice
a (or b) in case (A) (or (B)): Since (A) (or (B)) is the case of risk-lover (or risk-averse), the
choice a from a; b is expected to be less frequent than b:

Comparisons between lotteries c and d depend upon �: In case � � 4; it follows from Table
6.1 that in (A); c = [y; 210 ; y] �4 [y;

1925
104
; y] �4 [y; 25102 ; y] = d; so c is chosen, and in (B);

d = [y; 2510 ; y] �4 [y;
2075
104
; y] �4 [y; 20102 ; y] = c; so d is chosen. In sum, in case � � 4; the theory

predicts only the diagonal cells a^ c and b^d would happen depending upon cases (A) and (B);
which are the same as the predictions of classical EU theory. Thus, if all subjects have their
cognitive bounds � � 4, the theory is inconsistent with the experimental result.

Consider case � = 3: Table 6.1 states �d = 225
103

> �c =
2
10 > �d =

175
103

in either case (A)
or (B); thus, by Theorem 6.1, c and d are incomparable for a subject. When � = 2; Table 6.1
states �d = 25

102
> �c =

2
10 > �d = 0 in either (A) or (B) and c and d are also incomparable.

Here, notice that �d = 25
102

is much closer to �c = 2
10 than �d = 0:

Here, we �nd a con�ict in the sense that every subject chose one lottery in each choice
problem in the experiment while our theory states that c and d are incomparable under some
parameter values. The issue is how a subject behaves for the choice problem when the lotteries
are incomparable for him. In such a situation, a person would typically be forced (e.g., following
social customs) to make a choice.13 Here, we assume that even when the lotteries are incom-
parable to a subject, he is forced to make a decision in some arbitrary manner: we specify the

12This type of an anomaly is called the �common ratio e¤ect�and has been extensively studied both theoretically
and experimentally; typically, the independence axiom is weakened while keeping the probability space as a
continuum (cf., Prelec [17] and its references).
13 It could be di¢ cult for people to show incapability to answer a question if it appears linguistically and

logically.clear-cut. The present author knows only one person consciously to refuse to answer such a question.
Davis-Maschler [4], Sec.6, it is reported that when a number of game theorists/economists were asked about
their predictions about choices in a speci�c example in a cooperative game theory, only Martin Shubik refused
to answer a questionnaire. It was his reason that the speci�cation in terms of cooperative game is not enough to
have a precise prediction for the question.
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following postulate for his behavior:

Postulate BH: each subject makes a random choice between c and d following
the probabilities proportional to the distances from �c to �d and from �c to �d:

Table 7.2 summarizes the above calculated results based on BH. In the case � = 3, BH im-
plies that the probabilities for the choices c and d are equal in either case (A) or (B), i.e.,
2
10 �

175
103

: 225
103
� 2

10 = 1 : 1: In the case � = 2; the ratio for the choices c and d becomes 20 : 5:

Table 7.2
(A) (B)

� = 2 c : d = 20 : 5 the same as in (A)
� = 3 c & d are equally possible the same as in (A)

� � 4 �d = �d = 1925=10
4: c is chosen �d = �d = 2075=10

4: d is chosen

To see the relationship between Table 7.1 and Table 7.2, we specify the distribution between
(A) and (B); and that for �: We consider the distributions: rA : rB = 2 : 8 and r2 : r3 : r4+ =
5 : 4 : 1; where r4+ is the ratio of subjects with � � 4: The �rst ratio is based on the idea that
more people are risk-averse, and the second that more people are bounded rational. Then, the
expected percentage of a ^ c is calculated as 100� 2

10�(
5
10�

20
25+

4
10�

1
2 +

1
10) = 14%: Calculating

the corresponding percentages in the other cases, we obtain Table 7.3:

Table 7.3 Table 7.4
c : 62% d : 38%

a : 20% a ^ c : 14 a ^ d : 6
b : 80% b ^ c : 48 b ^ d : 32

c : 56% d : 44%

a : 20% a ^ c : 14:4 a ^ d : 5:6
b : 80% b ^ c : 41:6 b ^ d : 38:4

The ratio 20 : 80 for a vs. b is taken from Table 7.2 and is assumed; so it is the same in Table
7.3: The ratio 62 : 38 for c vs. d in Table 7.3 slightly di¤ers from 65 : 35 in Table 7.2. This is
resulted from our theory and the speci�cation r2 : r3 : r4+ = 5 : 4 : 1 together with the other
parameter values. Incidentally, if we specify r2 : r3 : r4+ = 4 : 4 : 2; i.e., more people are less
boundedly rational, we have Table 7.4.

The results in Table 7.3 look close to the reported percentages in Table 7.2. Perhaps, we
should admit that this is based upon our speci�cations of parameter values as well as Postu-
late BH. To make stronger assertions, we need to think about more cases of parameter values
and di¤erent forms of BH. This study may lead to observations on new aspects on bounded
rationality.

8 Concluding Remarks

We have developed EU utility theory with probability grids and incomparabilities. The permis-
sible probabilities are restricted to the form of `-ary fractions up to a given cognitive bound �.
The theory is constructive in that it starts with given base preference relations h%B;ki�k=0 and
proceeds with the derivation process (DP) from one layer to the next. When there is no cogni-
tive bound; our theory gives a complete preference relation over L1(Y ); and it is a fragment of
classical EU theory. However, our main concern was the bounded case � <1:

When � < 1, the resultant preference relation %� over L�(X) is not complete as long as
X contains a pure alternative y strictly between the benchmarks y and y: We divided L�(X)
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into the set M� of measurable lotteries and its complement L�(X) �M�; the resultant %� is
complete over M�; while it involves incomparabilities in L�(X) �M�. In Section 6, we gave a
complete characterization of incomparabilities and also the representation theorem on %� over
L�(X) in terms of the two-dimensional vector-valued function, utilizing Fishburn�s [6] interval
order. This is interpreted as corresponding to the indication of von Neumann-Morgenstern [26],
p.29. In Section 7, we applied the incomparability results to the Allais paradox, speci�cally, to
an experimental instance given in Kahneman-Tversky [11]. We showed that the prediction of
our theory is compatible with their experimental result; incomparabilties involved for � = 2 and
� = 3 are crucial in interpreting their result.

The main part of our theory is about deductive reasoning for decision making, which is
bounded with probability grids and a cognitive bound. The derivation of preferences h%ki�k=0
is formulated as a mathematical induction from base preferences h%B;ki�k=0: The source for
h%B;ki�k=0 is based on his inner psychological factors and his past experiences. This part is
related to inductive game theory (cf., Kaneko-Matsui [12]). Our approach has some parallelism
to the constructive approach, due to Kline et.al [13], to an inductive derivation, which includes
some deductive part.14

Here, we give a few comments on further developments of our theory.

(1) Simon�s [23] satis�cing/aspiration: As remarked in the end of Section 3.2, h%B;ki�k=0
can be formulated as a process along the DP. This process can be viewed from Simon�s satis�c-
ing/aspiration. In Step k, the decision maker evaluates a given pure alternative y; which is not
yet exactly measured before Step k: Suppose that [y; �y; y] �B;k�1 y �B;k�1 [y; �y; y]; where �y
and �y are the best evaluations of y at Step k � 1: Now, he evaluates each � 2 �k ��k�1 with
�y > � > �y; by considering the propositions:

�[y; �; y] %B;k y� and/or �y %B;k [y; �; y]�. (34)

If he thinks that both hold, then his evaluation of y is determined to be �; but if this is not
the case (there are several subcases to be considered but we ignore the details here), he may
improve �y and �y; and goes to Step k + 1 with the improved �y and �y:

Simon�s satis�cing/aspiration suggests that even if the decision maker does not �nd an exact
� for y at Step k; he may take some � to be the exact value of y because he gets tired and gives
up more thinking. This argument is intimately related to our cognitive bound �; but there are
still two possible interpretations. In the �rst interpretation, for each y 2 X; there is a k such
that the decision maker takes � as good enough for his exact evaluation. Allowing k to depend
upon y; the set Y = [1k=0Yk coincides with the set of all pure alternatives X: When � < 1; it
may be the case that Y = [�k=0Y� coincides with X: In the second interpretation, on the other
hand, when he stops at Step k; he may keep di¤erent upper �y and lower �y: These two cases
are di¤erent, and we need to study backgrounds and implications for them carefully.

(2): Subjective probability: The above argument is almost directly applied to Anscombe-
Aumann�s [1] theory of subjective probability and subjective utility. An event E such as tomor-
row�s weather is evaluated asking an essentially the same question as (34), i.e., �[y; �; y] %B;k
14Broadly speaking, our theory is related to the case-based decision theory by Gilboa-Schmeidler [8], and the

frequentist interpretation of probability (cf., Hu [10]). The former may be regarded as evaluations of probabilities
for causality (course-e¤ect) from experiences, and the latter concerns about the probability concept itself as
frequencies of events. The former is more closely related to inductive game theory, and the latter suggests a
possible interpretation of probability, particularly, probability grids in our theory. The concept of probability
grids can help us avoid too much freedom of possible probabilities.
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[y;E; y]�and/or �[y;E; y] %B;k [y; �; y]�, where [y;E; y] means that if it is �ne tomorrow, the
decision maker would get y and y otherwise; comparing [y;E; y] with the benchmark lottery
[y; �; y]; he evaluate the event E: Thus, we could have an extension of our theory including the
subjective probability theory. It would be more di¢ cult to have an extension corresponding to
Savage [20], since all probabilities are derived in his theory.

(3): Calculations of the lub�s and glb�s of lotteries f 2 L�(X) : The lub �f and glb �f
of each lottery f play a crucial role for the characterization of incomparabilities. Calculations
for �f and �f for f 2 Lk(X) are not straightforward, since minimization and maximization are
involved in their de�nitions; Example 5.1 is about a very simple lottery but still needs compli-
cated calculations. We need a general theory of the properties and calculations of the lub and
glb of lotteries. For this, the condition (25) in Theorem 5.2 dividing between the measurable
and nonmeasurable lotteries will be crucial.

(4): Extensions of choices of benchmarks: In the present paper, the benchmarks y and y
are given. The choice of the lower y could be natural, for example, the status quo. The choice of
y may be more temporary in nature. In general, benchmarks y and y are not really �xed; there
are di¤erent benchmarks than the given ones. We consider two possible extensions of choices of
the benchmarks.

One possibility is a vertical extension: we take another pair of benchmarks y and y such

as y %B;0 y �B;0 y %B;0 y: The new set of pure alternatives is given as X(y; y): The relation
between the original system and the new system is not simple. In the case of measurement
of temperatures, the grids for the Celsius system do not exactly correspond to those in the
Fahrenheit system as long as the permissible grids are di¤erent. We may need multiple bases `
for probability grids, and may have multiple preference systems even for similar target problems.

Another possibility is a horizontal extension: For example, y is the present status quo for a
student facing a choice problem between the alternative y of going to work for a large company
and the alternative y of going to graduate school. He may not be able to make a comparison
between y and y; while he can make a comparison between detailed choices after the choice
of y or y: This involves incomparabilities di¤erent from those considered in this paper. These
possible extensions are open problems of importance.

(5): Extensions of the probability grids ��: The above extensions may require more subtle
treatments of probability grids. This is also related to the other problems such as Nash�s [16]
bargaining theory to be considered from the viewpoint of bounded rationality. A possibility is to
extend �� to [``=2�`, that is, probability grids having the denominators ` � ` are permissible.
Then, the Celsius and Fahrenheit systems of measuring temperatures are converted each other.
A question is how large ` is required for such classes of problems.

Over all, thinking about these questions make good progress on our expected utility theory
with probability grids and incomparabilties. Many more problems are waiting for our further
studies.

Appendix

Proof of Lemma 2.2. Let k � 1: The essential part of Lemma 22 is the direction that if
f 2 Lk(X); then f = e � f for some f 2 Lk�1(X)`: If �(f) � k � 1; then it su¢ ces to take
f = (f; :::; f) 2 Lk�1(X)

` and f = e � f : Now, we assume �(f) = k: By �(f) = k � 1; for
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each x 2 X; f(x) is expressed as
Pk
m=1

vm(x)
`m ; where 0 � vm(x) < ` for all m � k: Since the

construction of f takes various steps, we start with its sketch.

We �partition� the total sum
P
x2X f(x) =

P
x2X

Pk
m=1

vm(x)
`m =

Pk
m=1

P
x2X

vm(x)
`m = 1

into ` portions so that each has the sum 1
` : However, this may not be directly possible; for

example, if ` = 10; v1(x) = 2; and v1(x0) = 8; then the sum v1(x)
`1

+ v1(x0)
`1

= 2
10 +

8
10 is

not partitioned into 10 portions with 1
` =

1
10 : To avoid this di¢ culty, we again �partition�

2
10 +

8
10 into the sum of ten 1�s with weight 1

10 : In general, for each m = 1; :::; k; we representP
x2X

vm(x)
`m = 1

`m
P
x2X vm(x) by a set natural numbers Dm having the cardinality

P
x2X vm(x)

with weight 1
`m for each element in Dm: We take another partition fI1; :::; I`g of D1 [ ::: [Dk

once more so that the sum of weights over It is 1
` for t = 1; :::; `: Based on this partition; we

de�ne a decomposition f of f:

Formally, let �0 = 0 and �m =
Pm
t=1

P
x2X vt(x) for m = 1; :::; k: Then, let I = f1; :::; �kg;

and Dm = f�m�1 + 1; :::; �mg for m = 1; :::; k: We de�ne w(i) = 1
`m for each i 2 Dm: Then,P

i2Dm
w(i) =

P
x2X

vm(x)
`m for each m = 1; :::; k; (35)

This implies
Pk
m=1

P
i2Dm w(i) =

Pk
m=1

P
x2X

vm(x)
`m =

P
x2X f(x) = 1: Since each i 2 Dm is

regarded as coming from one term vm(x) in
P
x2X vm(x); we can de�ne '(i) = x: Then, it holds

that for each m = 1; :::; k;

vm(x) = jfi 2 Dm : '(i) = xgj for each x 2 X: (36)

Note that vm(x) = 0 for any x 2 X with '(i) 6= x for any i 2 Dm: The function ' is used in the
�nal stage of de�ning a decomposition f = (f1; :::; f`) of f:

Now, we show that there is a partition fI1; :::; I`g of I = f1; :::; �kg = D1[ :::[Dm such thatP
i2It w(i) =

1
` for t = 1; :::; `: For this, we de�ne the function W over I by: W (j) =

P
i�j w(i)

for any j 2 I; that is, it is the sum of w(i)�s over the initial segment of I up to j: Then,
W (�k) =

Pk
m=1

P
i2Dm w(i) = 1: We have the following �continuity�: for any j 2 I and

t = 1; :::; `;
t�1
` < W (j) < t

` =)W (j + 1) � t
` : (37)

Indeed, let t�1` < W (j) < t
` with j 2 Dm: Then, m � 2: Then W (j) is expressed as s

`m for some
positive integer s < `m: Then, W (j + 1) =W (j) + 1

`m
0 for some m0 � m: Thus, W (j + 1) � t

` .

If W (1) = w(1) = 1
` ; then, let I1 = f1g: Suppose W (1) = w(1) < 1

` : Then, since W (j)
is increasing with W (�k) = 1 > 1

` ; we �nd a �1 > 1 by (37) so that W (�1) = 1
` : Thus,P

i2I1 w(i) =
1
` : Similarly, we can construct I2; :::; I` so that for t = 2; :::; `; It = f�t�1; :::; �tg

and P
i2It w(i) =

1
` : (38)

Now, we de�ne functions f1; :::; f` by: for t = 1; :::; `,

ft(x) =
kP

m=1

jfi 2 It \Dm : '(i) = xgj
`m�1

for each x 2 X: (39)

We show that these form a decomposition of f:

Let us see hat ft 2 Lk�1(X): If jfi 2 It \D1 : '(i) = xgj = 1; then, by (38), It consists of a
unique element i with w(i) = 1

` : In this case, ft(x) = 1; hence ft 2 L0(X) � Lk�1(X): Consider
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the other case where jfi 2 It \D1 : '(i) = xgj = 0: The summation in (39) has at most length
k � 1 and is expressed as

ft(x) =
k�1P
m=1

jfi 2 It \Dm+1 : '(i) = xgj
`m

for each x 2 X:

Since jfi 2 It \Dm+1 : '(i) = xgj � jfi 2 Dm+1 : '(i) = xgj = vm+1(x) < ` for all m � k � 1
by (36), the sum is expressed as the form of a number in �k�1: Hence, ft(x) 2 �k�1:

Now, we have, by (38),

P
x2X

ft(x) =
P
x2X

kP
m=1

jfi 2 It \Dm : '(i) = xgj
`m�1

=
kP

m=1

jIt \Dmj
`m�1

=
kP

m=1

P
i2It\Dm

1

`m�1
= `

kP
m=1

P
i2It\Dm

1

`m
= `�

P
i2It

w(i) = 1:

Thus, ft 2 Lk�1(X) for all t = 1; :::; `: Finally, for each x 2 X;
P`
t=1

1
` � ft(x) is calculated as

P̀
t=1

kP
m=1

jfi 2 It \Dm : '(i) = xgj
`m

=
kP

m=1

P̀
t=1

jfi 2 It \Dm : '(i) = xgj
`m

=
kP

m=1

vm(x)

`m
= f(x):

�

Proof of Theorem 3.1. First, we sketch the proof. Let h%ki�k=0 be the resultant relations
from the DP; provided that h%B;ki�k=0 is given. To prove that the well-de�nedness of each %k
in Lk(X); we consider a stronger relation %V;k but show that this %V;k is a binary relation and
for any f; g 2 Lk(X); and f %k g implies f %V;k g: Hence, %k is also a binary relation and is
well-de�ned. For this, we can assume � = 1: Indeed, when � < 1; we extend h%B;ki�k=0 to
h%B;ki1k=0 by assuming that %B;t= %B;� for all t � �:

Let h%B;ki1k=0 satisfying Axioms B0 to B3 be given. We de�ne V : X ! R by: for any
x 2 X;

V (x) = inff� 2 �1 : [y; �; y] %B;k x for some k <1g: (40)

Because of Axiom B0, this is well-de�ned. Also, V (y) = 1 and V (y) = 0 by Axiom B1. We
show that for any x 2 X and � 2 �1;

[y; �; y] %B;1 x =) � � V (x); and x %B;1 [y; �; y] =) V (x) � �: (41)

Recall %B;1 = [1k=0 %B;k : Let � 2 �k and [y; �; y] %B;k x for some k: By (40), � � V (x): Next,
let x %B;k [y; �; y] for some k: By (40), there is a sequence f��g in �1 with [y; �� ; y] %B;1 x for
all � � 0 and �� ! V (x) as � ! 1: Now, [y; �� ; y] %B;1 x implies [y; �� ; y] %B;k0 x for some
k0: Taking k00 � maxfk; k0g; we have [y; �� ; y] %B;k00 x and x %B;k00 [y; �; y] by B3. Thus, �� � �
by Axiom B2. Since this holds for all � � 0; we have V (x) � �:

We de�ne the eu-function Ve and the eu-preference relation %V over L1(X) by

Ve(f) =
P
x2X f(x)V (x) for any f 2 L1(X); (42)

for any f; g 2 L1(X); f %V g () Ve(f) � Ve(g): (43)
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Since each f has a �nite support, the sum in (42) is well-de�ned. Thus, %V is a complete and
transitive binary relation over L1(X): Since V (y) = 1 and V (y) = 0; we have Ve([y; �; y]) = �:
Thus, it follows from (41) and (43) that

[y; �; y] %B;1 x =) [y; �; y] %V x; and x %B;1 [y; �; y] =) x %V [y; �; y]: (44)

The key step is that for any k (0 � k <1) and any f; g 2 Lk(X);

f %k g =) f %V g; and f �k g =) f �V g: (45)

Using this, we prove that f %k g and not (f %k g) do not happen simultaneously. Suppose, on
the contrary, that f %k g and not (f %k g) happen. The latter, not (f %k g); happens as a part
of g �k f: However, by (45), we have f %V g and g �V f; which is impossible because %V is a
binary relation by (43). Hence, either f %k g or not (f %k g): This implies that %k is a binary
relation over Lk(X):

To show (45), �rst, we note the following:

Ve(e � f) =
X̀
t=1

1
`Ve(ft) for any f 2 Lk(X)

` and k � 0: (46)

This follows from (42) that Ve(e � f) =
P
x2X(e � f)(x)V (x) =

P
x2X

P`
t=1

1
`ft(x)V (x) =P`

t=1
1
`

P
x2X ft(x)V (x) =

P`
t=1

1
`Ve(ft): Here, interchangeability of

P
x2X and

P`
t=1 follows

from the fact that f1; :::; f` have �nite supports.

The last step is to show (45) along the inductive construction of %k; k = 0; ::: For k = 0; it
follows from Axiom B0 and (44) that y %V x %V y for any x 2 X:

Now, consider k0: Then, f %k g is f %B;k g: By (44), we have f %V g:

Consider k1 : f %k g is derived by Axiom C1 with the decompositions f = (f1; :::; f`) of f
and g = (g1; :::; g`) of g with f %k�1 g: Here, the induction hypothesis is that (45) holds for
%k�1 and �k�1 : Hence, f %k�1 g implies ft %V gt for t = 1; :::; `: By (46), Ve(f) = Ve(e � f) �
Ve(e � g) = Ve(g); i.e., f %V g: The case of f �k g is similar.

Consider k2 : (11) states that this step is to extend the preferences obtained from k0 and k1
by transitivity. We can prove (45) by induction along this extension. Let f %k h and h %k g:
We assume that (45) holds for these. By (45), we have f %V h and h %V g: By transitivity of
%V ; we have f %V g:�

Calculations of the glb and lub in Table 6.1: Here, we calculate the results in Table 6.1
for Case (B) : y �B [y; 83102 ; y]:
Case � = 2 : C1 is not applied to substituting [y; 83

102
; y] for y in d = 25

100y �
75
100y; but may be

possible if we sacri�ce accuracy; that is, we substitute y and y for y in d; and can obtain the
following

25
100y �

75
100y �2 d �2 y: (47)

Thus, the lub and glb of d are given as �d = 25
102

and �d = 0: We verify only �d = 25
102
: �rst,

5
10y �

5
10y �1

5
10y �

5
10y holds by C1 since y �0 y and y �0 y by B1 and Step 0 of the DP. Hence

25
100y �

75
100y =

5
10(

5
10y �

5
10y) �

5
10y �2

5
10(

5
10y �

5
10y) �

5
10y =

25
100y �

75
100y: This is the best upper

bound B2(y; y): It is assumed by Example 3.1.(1) that [y; 910 ; y] �1 y: But � = 2 prevents an
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application of Rule C1 from improving the evaluation in (47).

Case � = 3 : Consider the second line in Table 6.1, i.e., �d = 225
103

and �d =
175
103
: Here, we

verify only �d =
175
103
: First, y �1 [y; 710 ; y] by Example 3.1.(1). Then, by C1, [y; 510 ; y] =

5
10y �

5
10y �2

5
10 [y;

7
10 ; y] �

5
10y = [y;

35
102
; y]: Again, by C1, d = 25

102
y � 7

102
y = 5

10 [y;
5
10 ; y] �

5
10y �3

5
10 [y;

35
102
; y] � 5

10y = [y;
175
103
; y]: Hence, d �3 [y; 175103 ; y]: By watching this derivation carefully, we

see that this is the best lower bound of d in B3(y; y): Thus, �d =
175
103
:

Case � � 4 :We have no constraint on substitution of [y; 83
102
; y] for y; we have the third line in in

Table 6.1, i.e., �d = �d =
2075
104
:We verify this following our derivation process; since 5

10y�
5
10y �3

425
103
y � 57510 y by C1 and y �B;2 [y;

83
102
; y]; we have d = 5

10(
5
10y �

5
10y) �

5
10y �4

2075
104
y � 782510 y:�
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