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Abstract

This study develops a method of optimal survey
design for the dichotomous choice contingent val-
uation method to estimate differentiable function-
als of a semi-parametric binary response model.
The method uses an iterative procedure to select
the survey design that minimizes semi-parametric
efficiency bounds of the estimation. An efficient
method of implementation is discussed.

1 Introduction

The dichotomous-choice contingent valuation
method (DC-CVM), which is a survey method
using hypothetical discrete response (yes/no)
valuation questions, is one of the most widely
used techniques to measure the welfare value
of non-marketed goods such as environmental
resources. The idea was introduced by Bishop
and Heberlein (1979), who asked the respondent
to accept or reject a suggested cost (bid price)
for a certain given environmental change. In the
method, the researcher chooses m different bid
prices, x1, . . ., xm, and gives them to n1, . . .,
nm individuals within a hypothetical valuation
question. By counting the number of people
accepting the given prices within each subgroup,
the distribution F of willingness to pay (WTP) ω
for the good is estimated. Bishop and Heberlein
(1979) estimate F by logistic regression. Kristrom
(1990) introduces a non-parametric maximum
likelihood method to estimate F directly. Once F
is estimated, its functional values, such as the mean∫
ω dF (ω) or the median F−1(0.5) of the WTP,

are obtained. For more details of the contingent
valuation method (CVM), see e.g., Carson and
Hanemann (2006).

It is noteworthy that the accuracy of the inference
depends not only on the method of estimation, but
also on the bid design. Cooper (1993) proposes a
method to choose the number of bid prices m, the
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locations of bid prices, x1, . . . , xm, and the sizes of
the subgroups, n1, . . ., nm. The design is deter-
mined to minimize the mean squared error (MSE)
of the mean estimation. By thorough numerical ex-
periments, Cooper (1993) shows that the optimal
design significantly reduces the MSE.

Sharp identification of general functional values
of F , however, often requires the bid prices to have
infinite variations. Therefore, the finite support as-
sumption of the prices should be relaxed for more
general applications. The purpose of this study is to
introduce a generalized method to design DC-CVM
surveys, and propose a non-parametric efficient es-
timation under the optimal design.

For this purpose, it is necessary to consider the
smoothness of the target of estimation because, ac-
cording to van der Vaart (1991), a parameter has
regular estimators only if it is expressed as a dif-
ferentiable functional of the underlying statistical
model. In general, the efficiency bound of estima-
tion is defined as the lower bound of asymptotic
variances of regular estimators for the parameter.
Therefore, if the target of estimation is not a dif-
ferentiable functional, the optimal design might be-
come an ill-posed problem, since it does not have
well-defined objectives to be minimized.

The rest of this paper is organized as follows. In
Section 2, a necessary and sufficient condition for
differentiability of functionals of a semi-parametric
binary response model is presented. In Section 3,
an optimal design for differentiable functionals is
proposed. In Section 4, an efficient estimation to
implement the method is given.

2 The Model

This section summarizes the theory of differentiable
functionals. For more details of the theory, see, for
example, van der Vaart (1991), Bickel et al. (1993),
and Severini and Tripathi (2001). For differentiabil-
ity of the binary response model in particular, see
Chapter 10 of Groeneboom and Jongbloed (2014).

In the following, L2(P ) is a space of P -square
integrable functions with inner product ⟨α1, α2⟩P =∫
α1α2 dP and norm ∥α∥P = ⟨α, α⟩1/2P , where P is
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a generic distribution; L0
2(P ) is a subset of L2(P )

such that
∫
αdP = 0 if α ∈ L0

2(P ).
Suppose that ω ∼ F , and x ∼ G, where ω and

x are independent. Here, ω is the variable of main
interest (WTP), and x is a censoring variable (bid
price). Assume also that the only observable vari-
ables are z = (x, y), where y = {ω ≤ x}. Let
dPF,G(z) denote the density of z when (F,G) is
given, that is,

dPF,G(z) = F (x)y(1− F (x))1−ydG(x)dδ(y), (2.1)

where δ is the counting measure on {0, 1}; PF,G

is the probability measure defined by PF,GD =∫
D
dPF,G for every measurable D ⊂ R × {0, 1};

F = F [0, 1] is a set of distribution functions de-
fined on [0, 1]; and PG = {PF,G : F ∈ F} is the
model set, where G is given and fixed; The goal of
estimation is a value of parameter θ = φ(F ), where
φ : F 7→ R is a known functional of unknown F .
Let F0 ∈ F be the true distribution of ω to be es-

timated; F(F0) is a set of 1-dimensional submodels
t ∈ (0, ϵ) 7→ Ft ∈ F such that∫ (√

dFt −
√
dF0

t
− 1

2
α
√
dF0

)2

→ 0 (2.2)

as t ↓ 0 for elements α ∈ L2(F0); T (F0) is the tan-
gent space of F at F0, which is the set of all α, as
in (2.2). It is known that T (F0) = L0

2(F0). See, for
example, Groeneboom and Wellner (1992) for the
proof.
Let P0 = PF0,G be the true model from which

data z1 = (x1, y1), . . ., zn = (xn, yn) are indepen-
dently sampled; PG(P0) is a set of 1-dimensional
submodels t ∈ (0, ϵ) 7→ Pt = PFt,G ∈ PG induced
by each Ft ∈ F(F0); β ∈ L0

2(P0) such that∫ (√
dPt −

√
dP0

t
− β

2

√
dP0

)2

→ 0 (2.3)

as t ↓ 0 is the score function of Pt; T (P0) is the
tangent space of PG at P0, which is the set of all β,
as in (2.3).
The score operator A maps each α ∈ T (F0) into

corresponding β ∈ T (P0) by

(Aα)(x, y) =
y − F0(x)

F0(x)(1− F0(x))

∫ x

0

αdF0. (2.4)

The tangent space of PG is equivalent to the range
of A: that is, T (P0) = AT (F0) = R(A). Define
G ⊂ F by

G =

{
G ∈ F :

∫
dG

F0(1− F0)
<∞

}
, (2.5)

and assume as follows.

(A1) G ∈ G,

so that A becomes a linear continuous operator be-
cause (∥Aα∥P0/∥α∥F0)

2 ≤
∫

dG
F0(1−F0)

< ∞. Under

(A1), the adjoint operator of A is given by

(A∗β)(ω) =

∫ 1

ω

β(x, 1) dG(x) +

∫ ω

0

β(x, 0) dG(x).

(2.6)
Let θ = φ(F ) ∈ R be a parameter of interest. In

particular, θ0 = φ(F0) is to be estimated. Assume
that φ is smooth in the following sense.

(A2) A gradient φ̃0 ∈ T (F0) exists such that

φ(Ft)− φ(F0)

t
→ ⟨φ̃0, α⟩F0

(t ↓ 0) (2.7)

for every Ft ∈ F(F0).

In addition, it is assumed that the parameter is
identified, as follows.

(A3) A functional κ : PG 7→ R exists such that
κ(PF,G) = φ(F ) for every F ∈ F and G ∈ G.

Assumption (A3) together with (A2) implies
that limt↓0 t

−1(κ(Pt)− κ(P0)) exists for every path
Pt in PG(P0). The functional κ is said to be differ-
entiable at P0 relative to PG(P0) if there is a linear
continuous functional κ′0 : T (P0) 7→ R such that

κ(Pt)− κ(P0)

t
→ κ′0β (t ↓ 0) (2.8)

for every Pt ∈ PG(P0).
If (2.8) holds, the Riesz representation theo-

rem shows the existence of the influence function
κ̃0 ∈ T (P0) such that κ′0β = ⟨κ̃0, β⟩P0

for ev-
ery β ∈ T (P0). Since ⟨κ̃0, β⟩P0

= ⟨κ̃0, Aα⟩P0
=

⟨A∗κ̃0, α⟩F0
= ⟨φ̃0, α⟩F0

, φ̃0 ∈ R(A∗) is neces-
sary for differentiability of κ. The differentiabil-
ity theorem by van der Vaart (1991) proves that
φ̃0 ∈ R(A∗) is sufficient for the differentiability of
κ. Consequently, the following theorem is obtained.

Theorem 2.1 Assume (A1)-(A3). Assume that
G has a density function g = G′. Then, κ is differ-
entiable at P0 relative to PG(P0) if and only if the
gradient φ̃0 has the first derivative φ̃′

0 such that∫
(φ̃′

0)
2 · F0(1− F0)

g
<∞. (2.9)

(Proof) Assume that φ̃0 has the first derivative
φ̃′
0 satisfying (2.9). Define κ̃0 by

κ̃0(x, y) = −φ̃′
0(x) ·

y − F0(x)

g(x)
. (2.10)

Then, (2.9) implies κ̃0 ∈ L0
2(P0) and

(A∗κ̃0)(ω) = −
∫ 1

ω

φ̃′
0(x) ·

1− F0(x)

g(x)
dG(x)

+

∫ ω

0

φ̃′
0(x) ·

F0(x)

g(x)
dG(x) = φ̃0(ω).
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Hence, φ̃0 ∈ R(A∗) is shown.
On the other hand, if φ̃0 ∈ R(A∗) holds, κ̃0 ∈

L0
2(P0) exists such that

φ̃0(ω) = (A∗κ̃0)(ω)

=

∫ 1

ω

κ̃0(x, 1) dG(x) +

∫ ω

0

κ̃0(x, 0) dG(x),

whose first derivative, φ̃′
0(ω) = −[κ̃0(ω, 1) −

κ̃0(ω, 0)] · g(ω), satisfies (2.9), because∫
(φ̃′

0)
2 · F0(1− F0)

g
=

∫
κ̃20 dP0 <∞.

3 Optimal Bid Design for Dif-
ferentiable Functionals

Suppose that G ∈ G is given and fixed. Let {θ̂n}
be a regular estimator for θ0 = κ(P0); L is a tight
Borel law on R such that

√
n(θ̂n − κ(Phn/

√
n))

w⇒Phn/
√

n
L

for every path Pt ∈ PG(P0) and sequence hn →
h ∈ R, where “

w⇒Phn/
√

n
” means weak convergence

under Phn/
√
n. In particular,

√
n(θ̂n − θ0)

w⇒P0 L

as n → ∞ when {θ̂n} is regular, and hence, the

asymptotic variance of {θ̂n} equals

avar{θ̂n} =

∫ (
u−

∫
u dL(u)

)2

dL(u). (3.1)

Let Θ̂ be a set of regular estimators for θ0. Given
G, the efficiency bound v0(G) for estimating θ0 is
defined by

v0(G) = inf avar{θ̂n} subject to {θ̂n} ∈ Θ̂.
(3.2)

The optimal bid distribution G0 minimizes v0(G)
over G. Now, the main result of the study is ready
to be stated.

Theorem 3.1 Assume (A1)-(A3). Assume that
φ̃0 is differentiable and∫

|φ̃′
0|√

F0(1− F0)
<∞. (3.3)

Then, the optimal bid distribution is G0(x) =∫ x

0
g0, where

g0 =
|φ̃′

0|
√
F0(1− F0)∫

|φ̃′
0|
√
F0(1− F0)

. (3.4)

The optimized efficiency bound equals

v0 =

(∫
|φ̃′

0|
√
F0(1− F0)

)2

. (3.5)

(Proof) When κ is differentiable at P0 relative to
PG(P0), the efficiency bound to estimate θ0 = κ(P0)
equals ∥κ̃0∥2P0

(van der Vaart (1991); Bickel et al.
(1993); Severini and Tripathi (2001)). Equation
(2.10) implies

∥κ̃0∥2P0
=

∫
(φ̃′

0)
2 · F0(1− F0)

g
. (3.6)

The Cauchy–Schwartz inequality implies that, for
an arbitrary square integrable function ψ,∫

|φ̃′
0|
√
F0(1− F0) ≤

√∫
(φ̃′

0)
2
F0(1− F0)

ψ2

∫
ψ2

=

√∫
(φ̃′

0)
2
F0(1− F0)

g
,

where g = ψ2/
∫
ψ2 is an arbitrary density. There-

fore, the lower bound for v0(G) is given by v0 =(∫
|φ̃′

0|
√
F0(1− F0)

)2
. The bound is attained if

and only if ψ2 = |φ̃′
0|
√
F0(1− F0), and hence, (3.4)

minimizes v0(G). Note that condition (3.3) implies
that∫

|φ̃′
0|
√
F0(1− F0) ≤

1

4

∫
|φ̃′

0|√
F0(1− F0)

<∞

and that

∫
g0

F0(1− F0)
=

∫
|φ̃′

0|√
F0(1− F0)∫

|φ̃′
0|
√
F0(1− F0)

<∞,

and hence, G0 ∈ G.

Example 3.1 Suppose that the m-th moment of ω
is a parameter of interest; that is, θ = κ(PF,G) =∫
ωm dF (ω). To observe whether the functional is

differentiable, let dFt = (1 + t · α)dF0 for arbitrary
α ∈ L0

2(F0). Then,

φ(Ft)− φ(F0)

t
=

∫
ωm · α(ω) dF0(ω) = ⟨φ̃0, α⟩F0

,

where φ̃0(ω) = ωm−
∫
ωm dF0(ω). Since the gradi-

ent has the first derivative φ̃′
0(ω) = m · ωm−1, the

functional κ is differentiable if
∫ F0(1−F0)

g <∞.

Assume that
∫
F

−1/2
0 (1 − F0)

−1/2 < ∞. Then,
φ̃0(ω) = ωm −

∫
ωm dF0(ω) satisfies (3.3). The op-

timal bid density is

g0(x) =
xm−1

√
F0(x)(1− F0(x))∫

um−1
√
F0(u)(1− F0(u)) du

with the optimized efficiency bound,

v0 =

(∫
um−1

√
F0(u)(1− F0(u)) du

)2

.
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Figure 3.1 depicts graphs of the optimal bid den-
sities for m = 1, 2, and 5, where F0 = U [0, 1]. Note

that
∫
F

−1/2
0 (1 − F0)

−1/2 < ∞ holds in this case.
The graphs show that the optimal density tends to
skew to the left as m grows.

x

g∗

0 1

(m = 1)

x

g∗

0 1

(m = 2)

x

g∗

0 1

(m = 5)

Figure 3.1: The optimal bid densities to estimate
Eωm for the cases of m = 1, 2, and 5, where F0 =
U [0, 1].

Example 3.2 Suppose that the variance of ω
is a parameter of interest; that is, κ(PF,G) =∫
ω2 dF (ω)−

(∫
ω dF (ω)

)2
. Let dFt = (1+t ·α)dF0

for some α ∈ L0
2(F0). Then, t

−1 ·(φ(Ft)−φ(F0)) →
⟨φ̃0, α⟩F0

as t ↓ 0, where

φ̃0(ω) = ω2 −
∫
ω2 dF0(ω)

−2

(∫
ω dF0(ω)

)(
ω −

∫
ω dF0(ω)

)
.

The gradient has the first derivative φ̃′
0(ω) = 2(ω−∫

ω dF0(ω)), and hence, κ becomes differentiable if∫
ω2 · F0(ω)(1−F0(ω))

g(ω) dω <∞.

Assume that
∫
F

−1/2
0 (1− F0)

−1/2 <∞. Then,∫
|φ̃′

0|√
F0(1− F0)

≤ 4

∫
F

−1/2
0 (1− F0)

−1/2 <∞.

Therefore, the optimal bid density for estimating
Var(ω) is given by

g0(x) =
|x− µ0|

√
F0(x)(1− F0(x))∫

|u− µ0|
√
F0(u)(1− F0(u)) du

,

where µ0 =
∫
ω dF0(ω). The optimized efficiency

bound equals

v0 =

(∫
|u− µ0|

√
F0(u)(1− F0(u)) du

)2

.

Figure 3.2 depicts a graph of the optimal bid density
for estimation of the variance, where F0 = U [0, 1].
The graph shows strong bimodality around the
mean, Eω = 0.5.

x

g∗

0 10.5

Figure 3.2: The optimal bid densities for estimation
of the variance of ω, where F0 = U [0, 1].

Example 3.3 Suppose that the value of F0 at ω0 ∈
(0, 1) is a parameter of interest; that is, κ(PF,G) =
F (ω0). For arbitrary Ft ∈ F(F0),

Ft(ω0)− F0(ω0)

t
=

∫ ω0

−∞
αdF0 = ⟨φ̃0, α⟩F0

,

where φ̃0(ω) = {ω ≤ ω0} − F0(ω0). Since φ̃0 is
discontinuous at ω0, κ(pF,G) = F (ω0) fails to be
differentiable and Theorem 3.1 is not applied to this
case.

Example 3.4 Let θ = median(F ). Assume that
every F ∈ F has a positive density f = F ′ at θ, so
that φ(F ) = F−1(1/2). For arbitrary Ft ∈ F(F0),

lim
t↓0

φ(Ft)− φ(F0)

t
= −

∫ θ0
−∞ αdF0

f0(θ0)
= ⟨φ̃0, α⟩F0

,
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where φ̃0(ω) = f0(θ0)
−1 · (1/2 − {ω ≤ θ0}). Since

φ̃0 is discontinuous at θ0, κ(pF,G) = F−1(1/2) fails
to be differentiable and Theorem 3.1 is not applied
to the median estimation.

4 Estimation

Since G0 given by (3.4) contains unknown F0, the
optimal bid design is implemented only by an it-
erative procedure. In the first step, a preliminary
survey is undertaken to obtain a prior estimate of
F0. Let F 0 be the first-step estimate, and assume
that

(A4) ∃λ > 0 such that λ < F 0(0) < F 0(1) < 1− λ

and that

(A5) F 0 ◦ (F−1
0 ) : [0, 1] 7→ (λ, 1 − λ) is Lipschitz

continuous.

Assumption (A4) means that, in the preliminary
survey, the range of bid amounts is set large enough
to contain the entire support of the WTP. Assump-
tion (A5) is satisfied if F0 has a positive density on
(0, 1), and if, say, the probit estimation is employed
to approximate F0 in the first step.
In the second step, a main part of the survey

is conducted by using the feasible bid distribution
G0 =

∫
g0, where g0 is the feasible bid density based

on F 0, that is,

g0 =
|φ̃′

0|
√
F 0(1− F 0)∫

|φ̃′
0|
√
F 0(1− F 0)

. (4.1)

Using data z1 = (x1, y1), . . ., zn = (xn, yn) sam-
pled from PF0,G0 , F0 is consistently estimated by
the non-parametric maximum likelihood estimator,
F̂n = ℓn(F ) subject to F ∈ F , where

ℓn(F ) =
n∑

i=1

[yi logF (xi) + (1− yi) log(1− F (xi))] .

The method is introduced by Kristrom (1990)
in the CVM literature. The pool-adjust-violate
(PAV) algorithm is employed to solve the maxi-
mization problem. For details of non-parametric
maximum likelihood estimation, see, for example,
Cosslett (1983), Huang and Wellner (1995), van de
Geer (2000), van der Vaart and Wellner (2007), or
Groeneboom and Jongbloed (2014) among many
others.
The parameter is estimated by θ̂n = φ(F̂n). To

derive asymptotic distribution of
√
n(θ̂n − θ0), the

first-order expansion of φ is assumed as follows:

(A6) φ̃0 ∈ L2(F0) exists such that, for every F ∈
F ,

φ(F ) = φ(F0)+

∫
φ̃0 d(F−F0)+O(h0(F, F0)

2),

where h0(·, ·) is the metric defined by
h0(F, F ′)2 =

∫
(
√
F −

√
F ′)2dG0 for F, F ′ ∈ F .

In the case of estimating the non-centered moment
Eωm, for example, φ(F )−φ(F0) =

∫
ωm d(F −F0),

hence the condition is trivially satisfied.
Assumption (A6) implies (A1) if φ̃0 is bounded

on [0, 1]. To observe this, note that for every Pt =
PFt,G0 , β ∈ T (P0) exists such that

h0(Ft, F0) ≤

√∫
(
√
dPt −

√
dP0)2

≤

√∫ (√
dPt −

√
dP0 − t · β

2

√
dP0

)2

+
t

2

√∫
β2dP0

and therefore, limt↓0
h0(Ft,F0)

t ≤ 1
2∥β∥P0 < ∞.

Hence, for any Ft ∈ F(F0),

lim
t↓0

φ(Ft)− φ(F0)

t
= lim

t↓0

1

t

∫
φ̃0 d(Ft − F0).

Set ξt =
2
t

(√
dFt

dF0
− 1
)
−α, so that

∫
ξ2t dF0 → 0 as

t ↓ 0 and that

1

t

∫
φ̃0 d(Ft − F0) =

⟨
φ̃0, α+ ξt +

t

4
(α+ ξt)

2

⟩
F0

.

Hence, 1
t

∫
φ̃0 d(Ft − F0) → ⟨φ̃0, α⟩F0

as t ↓ 0 if φ̃0

is bounded on [0, 1].

It is also assumed that

(A7) φ̃0 : [0, 1] 7→ R is a monotone function.

The assumption is technical and satisfied in the case
of estimation of the non-centered moments Eωm,
but not in the case of the variance estimation.

Theorem 4.1 Assume (A2)-(A7), then
√
n(θ̂n −

θ0)
d→ N(0, v0) as n→ ∞, where

v0 =

(∫
|φ̃′

0|
√
F 0(1− F 0)

)2 ∫
F0(1− F0)

F 0(1− F 0)
dG0.

(Proof) The following proof employs the strat-
egy proposed in Huang and Wellner (1995). By

(A6),
√
n(θ̂n − θ0) =

√
n
∫
φ̃0 d(F̂n − F0) +√

nO(h0(F̂n, F0)
2). Let P̂n = PF̂n,G0 . Then,∫

(

√
dP̂n −

√
dP0)

2 = Op(n
−2/3)

as n → ∞ (van de Geer (1993); Patilea (2001)).

Since h0(F̂n, F0)
2 ≤

∫
(
√
dP̂n −

√
dP0)

2,
√
n(θ̂n − θ0)

= −
√
n

∫
φ̃′
0

√
F 0(1− F 0)

∫
F̂n − F0√
F 0(1− F 0)

dG0

+op(1),
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by (A7).
Set Λ = F 0 ◦ (F−1

0 ). By (A4) and (A5), a con-
stant C exists such that∣∣∣∣∣∣ 1√

Λ(F̂n)(1− Λ(F̂n))
− 1√

Λ(F0)(1− Λ(F0))

∣∣∣∣∣∣
≤ 3

2
· C

(λ(1− λ))3/2
|F̂n − F0|.

Since
∫
|F̂n − F0|2dG0 ≤ 4

∫
(
√
dP̂n −

√
dP0)

2,

√
n

∫
F̂n − F0√
F 0(1− F 0)

dG0

=
√
n

∫
F̂n(x)− y√

Λ(F̂n(x))(1− Λ(F̂n(x)))
dPF0,G0(x, y)

+op(1)

by the law of iterated expectations.
Let Pn be the empirical measure based on obser-

vations z1 = (x1, y1), . . ., zn = (xn, yn). Since∫
F̂n(x)− y√

Λ(F̂n(x))(1− Λ(F̂n(x)))
dPn(x, y) ≡ 0

(Huang and Wellner (1995)), and since ∥Λ(F̂n) −
F 0∥G0 = Op(n

−1/3), it is concluded that

√
n

∫
F̂n − F0√
F 0(1− F 0)

dG0 d→ N(0, σ2)

as n→ ∞, where

σ2 =

∫ (
y − F0(x)√

F 0(x)(1− F 0(x))

)2

dPF0,G0(x, y)

=

∫
F0(1− F0)

F 0(1− F 0)
dG0.

As shown in Theorem 4.1, the efficiency of the
estimation depends on the choice of the first-step
estimate, F 0. The following corollary shows that
the asymptotic variance of θ̂n can reach its lower
bound only in the limit of F 0 → F0.

Corollary 4.2 Assume that φ̃′
0 is bounded on

[0, 1]. Then, v0 → v0 as
∫
|F 0 − F0| → 0.

(Proof) The L1-convergence
∫
|F 0 − F0| → 0 of

the distribution function implies pointwise conver-
gence F 0(x) → F0(x) at almost every x ∈ [0, 1].

Since F0(1−F0)
F 0(1−F 0) ≤

1
4λ(1−λ) <∞, the dominated con-

vergence theorem shows that σ2 → 1 as F 0(x) →

F0(x) almost everywhere. Moreover,∣∣∣∣∫ |φ̃′
0|
√
F 0(1− F 0)−

∫
|φ̃′

0|
√
F0(1− F0)

∣∣∣∣
≤

3 sup0≤x≤1 |φ̃′
0(x)|√

λ(1− λ)

∫
|F 0 − F0|,

and thus, v0 → v0 as
∫
|F 0 − F0| → 0.
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