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Random reduction consistency of Weber set and the core∗

Yasushi Agatsuma† Yukihiko Funaki‡ Koji Yokote§

Abstract

We provide an axiomatic foundation to Weber set on the set of all TU cooperative games.

It can be shown that consistency conditions on probabilistic assessments of a reduction process,

which we call the random reduction consistency, together with some other known conditions

characterise Weber set. The result is beyond the mere mathematical characterisation on which

any previous study on Weber set focused, and allows us to regard Weber set as a solution

concept. We also provide similar characterisation for the core and compare their differences.

Keywords: Weber set; The core; TU game; Consistency; Characterisation

1 Introduction

Although the core is widely accepted as one of the most prominent solution concepts in coop-

erative game theory, it has a drawback, that is, the core frequently becomes an empty set. On

the other hand, Weber set is always non empty. Moreover, it is a superset of the core. 1 In

this respect, Weber set can be a substitute of the core when it is an empty set.

Curiously, no previous study regards Weber set as a solution concept. Instead, Weber set

is used as a tool to characterise a certain class of games. For example, Shapley [7] and Ichiishi

[3] use Weber set to characterise a class of convex games; a game is convex if and only if

∗Quite preliminary: please do not circulate without permission from the authors
†Graduate School of Economics, Waseda University. email: yasushi.agatsuma@gmail.com
‡Faculty of Political Science and Economics, Waseda University. email: funaki@waseda,jp
§Graduate School of Economics, Waseda University. email: sidehand@toki.waseda.jp
1Monderer, Samet and Shapley [4] shows more strengthening result; Weber set always contains the set of weighted

values, which is a superset of the core.
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its core and Weber set coincides. Another study on Weber set investigates its mathematical

properties; Sagara [6] characterises Weber set in terms of Clarke superdifferentials.

In the present study, we provide an axiomatic characterisation of Weber set. It can be shown

that consistency requirements on probabilistic assessments of a reduction process, which we call

random reduction consistency, together with some other known conditions characterise Weber

set. This result demonstrates that Weber set possesses a certain consistency requirement and

allows us to regard Weber set as a solution concept.

In our characterisation, we avoid the use of non-emptieness property. Instead we require

a solution to be non-empty on certain class of games, which we call zero non-positive games.

In this fashion, like Hwang and Sudhölter [2], we can provide a characterisation of the core

via similar random reduction consistency on entire class of games, not on balanced games.

Consequently, we obtain a characterisation of the core which is comparable to above mentioned

characterisation of Weber set.

The arrangement of this paper is as follows. We start basic definitions and notations in

Section 1. Our main result is given in Section 2, which characterises Weber set. We also show

similar characterisation for the core in Section 3.

2 Preliminary

Let N be a set of players. A finite subset N of N is called a coalition. A coalition function on

N is a set function v : 2N → R with v(∅) = 0. We call a pair (N, v) as a game. In this case,

we call N as the grand coalition. The set of all games is denoted as Γ.

For a given coalition N and T ⊆ N , the unanimity game of T , denoted as (N,uT ) is defined

as

uT (S) =


1 if T ⊆ S

0 otherwise.
(2.1)

If we write ΓN as the all games whose grand coalition is N , it is well known that (uT )T⊆N

forms a base of ΓN .

For x ∈ RN we write x(S) =
∑

i∈S xi for any S ⊆ N . For any game (N, v) ∈ Γ, α > 0, and

β ∈ RN , we define (N,αv + β) ∈ Γ as (αv + β)(S) = αv(S) + β(S) for each S ⊆ N .

A preimputation of a game (N, v) is x ∈ RN which satisfies x(N) = v(N). We denote

the set of all preimputations of a game (N, v) as PI(N, v). A solution is a mapping which
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prescribes a subset of PI(N, v) to each game (N, v).

One of the two solutions of our interest is the core which is defined as follows.

Definition 2.1. The core C(N, v) of a game (N, v) is defined as

C(N, v) = {x ∈ PI(N, v) | x(S) ≥ v(S) for all S ⊆ N} . (2.2)

Let us fix some complete, asymmetric, transitive binary relation ≺ on N . For i, j ∈ N ,

i ≺ j means that i is a predecessor of j. With slight abuse of notation, for a coalition N ,

we also denote the restriction of ≺ on N as ≺. A bijective mapping π : N → N is called a

permutation of N . The set of all permutations of N is denotes as Π(N). For π ∈ Π(N), f(π)

is the first player with respect to π, that is

f(π) = i ⇐⇒ π(i) ≺ π(j) for all j 6= i. (2.3)

For π ∈ Π(N) and i ∈ N , we denote all predecessors of i after the permutation as Sπ
i , that

is

Sπ
i = {j ∈ N | π(j) ≺ π(i)}. (2.4)

Then, the marginal contribution mπ
i (N, v) of a player i is defined as

mπ
i (N, v) = v(Sπ

i ∪ {i}) − v(Sπ
i ). (2.5)

We call mπ(N, v) = (mπ
i (N, v))i∈N as the marginal vector. Another solution of our interest is

Weber set which is defined as follows.

Definition 2.2. Weber set W (N, v) of a game (N, v) is defined as

W (N, v) = co{mπ(N, v) | π ∈ Π(N)} (2.6)

where for a set A, coA stands for convex hull of A.

3 A characterisation of Weber set

Definition 3.1. Let (N, v) ∈ Γ and i ∈ N . The marginal game (N \ {i}, vM ) is defined as 2

vM (T ) =


0 if T = ∅,

v(T ∪ {i}) − v({i}) if T ⊆ N \ {i}, T 6= ∅.
(3.1)

2From a game (N, v) ∈ Γ, we can construct |N | different marginal games. In this respect, we should write vM
N\{i}

to indicate which player is reduced. However we omit this subscript for notational convenience. Instead, we always

write a game as a pair of a coalition and a coalitional function, so any confusion can be avoided.
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In what follows, we will introduce two properties which are key to our characterisation of

Weber set. Note that for any finite set A, we denote ∆(A) = {p ∈ [0, 1]A |
∑

i∈A pi = 1}.

Definition 3.2. A solution σ satisfies the M-Random reduction consistency (M-RRC) if for

any (N, v) ∈ Γ with |N | ≥ 2 and x ∈ σ(N, v), there exists p ∈ ∆(N) and yN\{i} ∈ σ(N\{i}, vM )

for each i ∈ N such that

xi =
∑
j 6=i

pjy
N\{j}
i + piv({i}), for all i ∈ N . (3.2)

The requirements of M-RRC is intended to describe the following situation. Suppose that

a player i ∈ N is decided to be reduced from a game (N, v) with having v({i}) of payoff

for a compensation of such reduction. Then players N \ {i} allocate the remaining payoff

vM (N \ {i}) = v(N) − v({i}) according to σ, so that an allocation yN\{i} ∈ σ(N \ {i}, vM )

is realised. If players do not know who is reduced from the game in advance, but know each

player is possibly reduced with the probability according to p ∈ ∆(N), then the solution for the

original game (N, v) should respect the fact that each player can be reduced. Hence M-RRC

requires each allocation x ∈ σ(N, v) of original game can be written as the expected value of

such random reduction-and-allocation process.

Note that if we restrict p ∈ ∆(N) in the requirement of M-RRC as pi = 1 for some i ∈ N

and pj = 0 for j 6= 0, which corresponds to the situation that player i is reduced for sure, then

M-RRC coincides with the usual reduced game property.

Lemma 3.1. Weber set W satisfies M-RRC.

Proof. Let (N, v) ∈ Γ with |N | ≥ 2 and x ∈ W (N, v). Since x ∈ W (N, v), there exists

t ∈ ∆(Π(N)) such that

x =
∑

π∈Π(N)

tπmπ(N, v). (3.3)

For any i ∈ N , we define pi by

pi =
∑

π∈Π(N):f(π)=i

tπ. (3.4)

Note that
∑n

i=1 pi = 1, that is, p = (pi)i∈N ∈ ∆(N). For any π ∈ Π(N) and i ∈ N , let us

define πi ∈ Π(N \ {i}) as

πi(j) ≺ πi(k) ⇐⇒ π(j) ≺ π(k) for all j, k ∈ N \ {i}. (3.5)
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Notice that πi is well defined and Π(N \ {i}) = {πi | π ∈ Π(N), f(π) = i}. We define yN\{i}

by

yN\{i} =
∑

π∈Π(N):f(π)=i

tπ
pi

mπi(N \ {i}, vM ). (3.6)

Since
∑

π∈Π(N):f(π)=i
tπ
pi

= 1, yN\{i} ∈ W (N \ {i}, vM ). Note that, for i ∈ N and π ∈ Π(N), if

f(π) 6= i, we have mπ
i (N, v) = m

πf(π)

i (N \ {f(π)}, vM ), and if f(π) = i, we have mπ
i (N, v) =

v({i}). Consequently, for each i ∈ N , we have,

xi =
∑

π∈Π(N)

tπmπ
i (N, v) (3.7)

=
∑
j 6=i

∑
π∈Π(N):f(π)=j

tπmπ
i (N, v) +

∑
π∈Π(N):f(π)=i

tπmπ
i (N, v) (3.8)

=
∑
j 6=i

∑
π∈Π(N):f(π)=j

tπm
πj

i (N \ {j}, vM ) +
∑

π∈Π(N):f(π)=i

tπv({i}) (3.9)

=
∑
j 6=i

pj

∑
π∈Π(N):f(π)=j

tπ
pj

m
πj

i (N \ {j}, vM ) + piv({i}) (3.10)

=
∑
j 6=i

pjy
N\{j}
i + piv({i}), (3.11)

so the claim is proven.

The next property is the converse of M-RRC.

Definition 3.3. A solution σ satisfies the M-Converse random reduction consistency (M-

CRRC) if the following property holds; Let (N, v) ∈ Γ with |N | ≥ 2 and x ∈ PI(N, v). If we

can find p ∈ ∆(N) and yN\{i} ∈ σ(N \ {i}, vM ) for each i ∈ N so that xi =
∑

j 6=i piy
N\{j}
i +

piv({i})) for all i ∈ N , then we have x ∈ σ(N, v).

Interpretation of M-CRRC is just the converse of M-RRC. It requires that an preimputation

x ∈ PI(N, v) can be constructed as the expected value of a random reduction-and-allocation

process, then it should be a solution of the original game.

Lemma 3.2. Weber set W satisfies M-CRRC.

Proof. Let (N, v) ∈ Γ with |N | ≥ 2 and x ∈ PI(N, v). Suppose that we have found p ∈ ∆(N)

and yN\{i} ∈ σ(N \{i}, vM ) for each i ∈ N so that xi =
∑

j 6=i piy
N\{j}
i +piv({i}) for all i ∈ N .

Take any player i ∈ N . Since yN\{i} ∈ W (N \ {i}, vM ), there exists ti ∈ ∆(Π(N \ {i})) such

that

yN\{i} =
∑

π∈Π(N\{i})

tiπmπ(N \ {i}, vM ). (3.12)
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We define t̄ ∈ ∆(Π(N)) as follows: for any π ∈ Π(N) with f(π) = i, set

t̄π = pit
i
πi

. (3.13)

Note that ∑
π∈Π(N)

t̄π =
∑
i∈N

∑
π∈Π(N):f(π)=i

pit
i
π =

∑
i∈N

pi = 1. (3.14)

In addition,

∑
π∈Π(N)

t̄πmπ
i (N, v) =

∑
j 6=i

∑
π∈Π(N):f(π)=j

pjt
j
πj

mπ
i (N, v) +

∑
π∈Π(N):f(π)=i

pit
i
πi

mπ
i (N, v) (3.15)

=
∑
j 6=i

pj

∑
π∈Π(N):f(π)=j

tjπj
m

πj

i (N \ {j}, vM ) + pi

∑
π∈Π(N):f(π)=i

tiπi
v({i})

(3.16)

=
∑
j 6=i

pjy
N\{j}
i + piv({i}) (3.17)

= xi, (3.18)

for each i ∈ N . Therefore we have that x ∈ W (N, v).

The following property is a slight modification of zero inessential property (ZIG) introduced

in Hwang and Sudhölter [2]. We say a game (N, v) ∈ Γ is zero non-positive if

• v({i}) = 0 for all i ∈ N ,

• v(S) ≤ 0 for S ( N with |S| ≥ 2, and

• v(N) = 0.

Definition 3.4. A solution σ satisfies Zero non-positive game property (ZNP) if for any zero

non-positive game (N, v) ∈ Γ, we have σ(N, v) 6= ∅.

Since Weber set is always nonempty, it trivially satisfies ZNP.

Note that if we restrict our attention to only two-person zero non-positive games, then ZNP

coincides with ZIG. In Hwang and Sudhölter [2], a characterisation of the core by employing

ZIG is provided. The advantage of characterisation using ZIG is that it allows us to drop

non-emptieness property on the domain of games under the consideration. Consequently,

a characterisation of the core on entire games, not just on the class of balanced games, is

possible. As a result, comparison of the properties of the core and prenucleolus can be made.
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Analogically, by employing ZNP, we can provide characterisation of both the core and Weber

set on entire domain of games, so that comparison of the properties they possess can be

accomplished.

The following property is quite common (see, for example, Peleg and Sudhölter [5]).

Definition 3.5. A solution σ satisfies covariance (COV) if for any (N, v) ∈ Γ with σ(N, v) 6= ∅,

α > 0, and β ∈ RN , we have

σ(N,αv + β) = {αx + β | x ∈ σ(N, v)}. (3.19)

Since Weber set is the convex hull of marginal vectors, which are linear, it trivially satisfies

COV.

We are now in position to state our main result.

Theorem 3.1. A solution σ satisfies ZNP, COV, M-RRP and M-CRRP if and only if σ = W .

Proof. We already have shown the if part.

We prove only if part. Let σ be a solution which satisfies all the properties listed in

the statement. Consider the game ({i}, v0) ∈ Γ defined as v0({i}) = 0. By ZNP, we have

σ({i}, v0) 6= ∅. Since a solution prescribes a subset of Pareto optimal allocation, and only

Pareto optimal allocation for ({i}, v0) is 0, we have that σ({i}, v0) = {0}. From COV, for any

1-person game, we have σ({i}, v) = {v({i})} = W (N, v).

Assume that the result holds for (N, v) ∈ Γ with |N | ≤ n (n ≥ 1). We show the result

holds for (N, v) ∈ Γ with |N | = n + 1.

We prove that σ(N, v) ⊆ W (N, v). Let x ∈ σ(N, v). From M-RRC, there exists p ∈ ∆(N)

and yN\{i} ∈ σ(N \ {i}, vM ) for each i ∈ N such that xi =
∑

j 6=i pjy
N\{i} + piv({i}) for all

i ∈ N . From the induction hypothesis, yN\{i} ∈ W (N \ {i}, vM ). From M-CRRC of W , we

have x ∈ W (N, v). The proof of σ(N, v) ⊇ W (N, v) can be obtained in a parallel manner.

4 A characterisation of the core

In this subsection, we provide a characterisation of the core by using the random reduction

consistency. The following two games have been used for characterisations of the core in the

literature (see Funaki and Yamato [1]).
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Definition 4.1. Let (N, v) ∈ Γ be a game, i ∈ N be a player, and x ∈ PI(N, v) be a

preimputation. The complement game (N \ {i}, vC
x ) of v is

vC
x (S) =


v(S ∪ {i}) − xi if S 6= ∅

0 if S = ∅.
(4.1)

We shall omit x and write vC when context makes clear.

Definition 4.2. Let (N, v) ∈ Γ be a game, i ∈ N be a player, and x ∈ PI(N, v) be a

preimputation. The projection game, denoted as (N \ {i}, vP
x ), of v is

vP
x (S) =


v(N) − xi if S = N \ {i}

v(S) if S ( N \ {i}.
(4.2)

We shall omit x and write vP when context makes clear.

We provide a variant of the random reduction consistency, which is analogous to Definition

3.2, by employing the above two reduced games.

Definition 4.3. A solution σ satisfies the CP-Random reduction consistency (CP-RRC) if

for any (N, v) ∈ Γ with n ≥ 3, and x ∈ σ(N, v), there exists p ∈ ∆(N) and yN\{i} ∈

σ(N \ {i}, vC) ∩ σ(N \ {i}, vP ) such that xi =
∑

j 6=i pjy
N\{j}
i + pixi for all i ∈ N .

Interpretation for CP-RRC is similar to those for M-RRC.

The following result is an immediate consequence that the core satisfies two reduced game

properties, one uses the complement game and the other used the projection game (see Funaki

and Yamato [1]).

Lemma 4.1. The Core C satisfies CP-RRC.

We also give the converse of CP-RRC, just analogous to Definition 3.3

Definition 4.4. A solution σ satisfies the CP-Converse random reduction consistency (CP-

CRRC) if the following property holds; Let (N, v) ∈ Γ with |N | ≥ 3 and x ∈ PI(N, v). If

we can find p ∈ ∆(N) and yN\{i} ∈ σ(N \ {i}, vC) ∩ σ(N \ {i}, vP ) for each i ∈ N so that

xi =
∑

j 6=i piy
N\{j}
i + pixi for all i ∈ N , then we have x ∈ σ(N, v).

Note that, in Definition 4.3 and Definition 4.4, we only require the property holds for games

with |N | ≥ 3. This is because in the case of |N | = 2, the definition requires x1 = y2
1, which

deviates from the original intension of random reduction consistency.
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Lemma 4.2. The core C satisfies CP-CRRC.

Proof. Let (N, v) ∈ Γ with |N | ≥ 3 and x ∈ PI(N, v). Suppose that we have found p ∈ ∆(N)

and yN\{i} ∈ C(N \ {i}, vC)∩C(N \ {i}, vP ) for each i ∈ N so that xi =
∑

j 6=i piy
N\{j}
i + pixi

for all i ∈ N . Our objective is to show x ∈ C(N, v).

First, for a singleton coalition S, say S = {i}, we have

xi =
∑
j 6=i

pj

1 − pi
y

N\{j}
i (4.3)

≥
∑
j 6=i

pj

1 − pi
vP ({i}) (4.4)

=
∑
j 6=i

pj

1 − pi
v({i}) = v({i}), (4.5)

where the first equality holds by our assumption, the inequality holds because yN\{j} ∈ C(N \

{j}, vP ). On the other hand, for a coalition of size |S| = |N | − 1, say S = N \ {i}, then we

have

xi =
∑
j 6=i

pj

1 − pi
y

N\{j}
i (4.6)

≤
∑
j 6=i

pj

1 − pi

(
vC(N \ {j}) − vC(N \ {i, j})

)
(4.7)

=
∑
j 6=i

pj

1 − pi
(v(N) − xj − v(N \ {i}) + xj) (4.8)

= v(N) − v(N \ {i}), (4.9)

where the inequality holds because yN\{j} ∈ C(N \ {j}, vC). 3 Since x ∈ PI(N, v) we have

v(N) = x(N), which, together with the above inspection, implies v(N \ {i}) ≤ x(N \ {j}).

3Indeed, we have

y
N\{j}
i = yN\{j}(N \ {j}) − yN\{j}(N \ {i, j}) ≤ vC

N\{j}(N \ {j}) − vC
N\{j}(N \ {i, j}),

for each i.
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Finally, for S ⊆ N with 2 ≤ |S| ≤ |N | − 2, we have

v(S) − x(S) = v(S) −
∑
i∈S

∑
j 6=i

pjy
N\{j}
i + pixi

 (4.10)

= v(S) −
∑
i∈S

 ∑
j∈S\{i}

pjy
N\{j}
i +

∑
j∈N\S

pjy
N\{j}
i + pixi

 (4.11)

= v(S) −
∑
j∈S

pj

 ∑
i∈S\{j}

y
N\{j}
i + xj

 −
∑

j∈N\S

pj

∑
i∈S

y
N\{j}
i (4.12)

≤ v(S) −
∑
j∈S

pj

(
vC(N \ {j}) + xj

)
−

∑
j∈N\S

pjv
P (S) (4.13)

= v(S) −
∑
j∈S

pjv(S) −
∑

j∈N\S

pjv(S) = 0, (4.14)

where the inequality holds because yN\{j} ∈ C(N \ {j}, vC) ∩ C(N \ {j}, vP ) for each j ∈ N .

Consequently, we conclude that x ∈ C(N, v).

The following property is standard.

Definition 4.5. A solution σ satisfies the Individual rationality (IR) if for any (N, v) ∈ Γ and

x ∈ σ(N, v), we have xi ≥ v({i}).

Lemma 4.3. If a solution σ satisfies ZNP and IR, then σ(N, v) = {0} for any zero non-

positive game (N, v).

Proof. σ(N, v) 6= ∅ for any zero non-positive game by ZNP. If x ∈ σ(N, v), then by IR x ≥ 0.

Since σ(N, v) ⊆ PI(N, v), x(N) = 0. Therefore x = 0.

The following result, which is analogous to Theorem 3.1, shows that there are two major

differences between properties that the core possesses and those that Weber set possesses. One

is reduced game employed for RRC and CRRC. The other is the presence of IR.

Theorem 4.1. A solution σ satisfies ZNP, IR, COV, CP-RRC, and CP-CRRC if and only if

σ = C.

Proof. We have shown that the core C satisfies CP-RRC and CP-CRRC. The core satisfies IR

by its definition. It is well known that the core satisfies COV (see Peleg and Sudhölter [5]). It

is evident that 0 ∈ C(N, v) for any zero non-positive game (N, v), so the core satisfies ZNP.
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Next we show only if part of the theorem. Suppose that a solution σ satisfies all properties

stated in the theorem. Notice that for a one-person game (N, v), σ(N, v) = C(N, v) can be

shown by mimicking corresponding part of the proof of Theorem 3.1. Therefore our task is to

demonstrate σ(N, v) = C(N, v) holds for more than two-person games.

We fist show σ(N, v) ⊆ C(N, v) for all (N, v) ∈ Γ. σ(N, v) ⊆ C(N, v) for two-person games

by IR. 4 Assume that the result holds for (N, v), |N | ≤ n with n ≥ 2, and we prove the result

when |N | = n + 1.

Take x ∈ σ(N, v). From CP-RRC, there exists p ∈ ∆(N) and yN\{i} ∈ σ(N \ {i}, vC) ∩

σ(N \ {i}, vP ) for each i ∈ N such that xi =
∑

j 6=i pjy
N\{i} + pixi for all i ∈ N .

By the induction hypothesis, σ(N \ {i}, vC) ⊆ C(N \ {i}, vC) and σ(N \ {i}, vP ) ⊆ C(N \

{i}, vP ) for each i, we have yN\{i} ∈ C(N \ {i}, vC) ∩ C(N \ {i}, vP ) for each i ∈ N . Since

x ∈ PI(N, v), we can apply CP-CRRC of the Core, so we have x ∈ C(N, v).

Next we show C(N, v) ⊆ σ(N, v) for all (N, v) ∈ Γ. Take an arbitrary two-person game

(N, v). Let us write N = {i, j}. Since unanimity games (uT )T⊆N form a base of ΓN , there

exists α, β1, β2 ∈ R such that v = αuN + β1u{i} + β2u{j}. If we set β = (β1, β2), it is evident

that v = αuN + β. By COV, we have

C(N, v) = C(N,αuN ) + β. (4.15)

Since σ also satisfies COV, C(N, v) ⊆ σ(N, v) if and only if C(N,αuN ) ⊆ σ(N.αuN ). There-

fore, for our purpose, it is sufficient to show that C(N,αuN ) ⊆ σ(N,αuN ) for α ∈ R.

If α < 0, C(N,αuN ) becomes an empty set, so the result holds trivially. When α = 0,

(N,αuN ) becomes a zero non-positive game, so C(N,αuN ) = {0} = σ(N,αuN ) by Lemma

4.3.

Assume that α > 0. Take x ∈ C(N,αuN ). Note that x ≥ 0. Let (N, v0) be a game such

that N = {i, j}, v0(S) = 0 for all S ⊆ N . Again, by Lemma 4.3, we have σ(N, v0) = {0}. It

follows that

σ(N,x1u{1} + x2u{2}) = σ(N, v0) + (x1, x2) = {(x1, x2)} (4.16)

from COV.

4Note that σ(N, v) ⊆ PI(N, v).
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Let M = N ∪ {k}. Define a game (M,w) by

w(S) =


0 if |S| = 1 or 3

−x(S ∩ N) if |S| = 2.
(4.17)

Since (M,w) is a zero non-positive game, we have σ(M,w) = {0} by Lemma 4.3. Define

w̄ : 2M → R as w̄ = w + (xi, xj , 0). Then by COV, we have σ(M, w̄) = {(xi, xj , 0)}. By CP-

RRC, there exists p ∈ ∆(M) and y ∈ σ(N, w̄P )∩σ(N, w̄C), y′ ∈ σ(M\{j}, w̄P )∩σ(M\{j}, w̄C),

y′′ ∈ σ(M \ {i}, w̄P ) ∩ σ(M \ {i}, w̄C) such that

xi = pixi + pjy
′
i + pkyi, (4.18)

xj = piy
′′
j + pjxj + pkyj , (4.19)

0 = piy
′′
k + pjy

′
k. (4.20)

Note that (N, w̄P ) = (N,xiu{i} + xju{j}). By (4.16), σ(N, w̄P ) = {(xi, xj)}. Therefore

y = (xi, xy). It follows that (x1, x2) = y ∈ σ(N, w̄C) = σ(N,αuN ).

For games with |N | ≥ 3, the assertion can be shown similar way as we have done to show

σ(N, v) ⊆ C(N, v) with |N | ≥ 3.
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