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Strong Addition Invariance and
axiomatization of the weighted Shapley value

Koji Yokote∗

Abstract

This paper shows a new axiomatization of the Shapley value by
using two axioms. First axiom is Dummy Player Property and sec-
ond axiom is Strong Addition Invariance. Strong Addition Invariance
states that the payoff vector of a game does not change even if we add
some specific games to the game. By slightly changing the definition
of Strong Addition Invariance, we can also axiomatize the weighted
Shapley value. Moreover, based on the previous axiomatization of the
Shapley value, we axiomatize the family of weighted Shapley values.

JEL classification: C71
Keywords: Cooperative games; Weighted Shapley value; Axiomatiza-
tion

1 Introduction

Axiomatization of the Shapley value has been intensively discussed since
Shapley (1953) first axiomatized the value. Throughout those efforts, it
was shown that the Shapley value satisfies many desirable properties as a
solution function. Moreover the solution concept was extended to games
with coalition structures or NTU games, based on axiomatic approach.

In order to discuss axioms of the Shapley value further, we divide them
into three types. First type of axioms exactly determines the payoff of some
players in a single game. For instance, Null Player Property requires players
who do not make any contribution to obtain 0 in a game. Another example
is Equal Treatment Property, which requires symmetric players to obtain

∗The author thanks Yukihiko Funaki and Yoshio Kamijo for their helpful comments
and cooperation.
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the same payoff in a game. Second type of axioms prescribes the relation-
ship between games where the number of players is different. For instance,
Hart and Mas-Colell (1989) characterized the Shapley value by using Con-
sistency, which prescribes the relationship between a game and its reduced
game. Myerson (1980) proved that the Shapley value is a unique efficient
solution function that satisfies Balanced Contribution Property, which pre-
scribes the relationship between games where a player ‘disappeared’. By
weakening the property, Kamijo and Kongo (2010) introduced Balanced Cy-
cle Contributions Property, which dealt with the disappearance of players
in a cyclic manner. Third type of axioms indicates how a solution function
changes a payoff vector when the worths of a game change. One example of
this type is Strong Monotonicity introduced by Young (1985). The axiom
requires a solution function to increase the payoff of players whose marginal
contribution increased. Another example is Fairness introduced by van den
Brink (2001), under which players who are symmetric in a change are equally
treated.

Regarding the second type of axioms, Kamijo and Kongo (2012) focused
on the disappearance of players such that a solution function prescribes the
same payoff vector to remaining players after the disappearance. In this
paper, on the other hand, we consider the third type of axioms and focus on
the change in the worths of coalitions such that a solution function prescribes
the same payoff vector after the change.

The axioms concerning the invariance of a payoff vector have been pre-
viously investigated by Beal, Remila and Solal (2012). They proved that
the Shpaley value is the unique solution function which satisfies Uniform
Addition Invariance, Uniform Transfer Invariance and Dummy Player Prop-
erty. While their axioms concerning invariance could axiomatize not only the
Shapley value but also the Equal Division or the Equal Surplus Division, our
new axiom can, by slightly changing its definition, axiomatize the weighted
Shapley value as well. Moreover, based on the axiomatization by van den
Brink, Funaki and Ju (2013), we axiomatize the family of weighted Shapley
values. For other approaches of the axiomatization of the family, see Kalai
and Samet (1987), Hart and Mas-Colell (1989) or Chun (1991).

This paper is organized as follows. Section 2 gives notations and defi-
nitions. In Section 3, we give the definition and the interpretation of our
new axiom, Strong Addition Invariance, and axiomatize the Shapley value
and the weighted Shapley value. In Section 4, we axiomatize the family of
weighted Shapley values. Section 5 gives concluding remarks.
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2 Preliminaries

For any set A,B, A ⊂ B means that A is a proper subset of B, and A ⊆ B
means that A ⊂ B or A = B. |A| is the cardinality of the set A. Let N ⊂ N
be a finite set of players, and we define |N | = n. A real-valued function
v : 2N → R is a characteristic function which satisfies v(∅) = 0. A pair
(N, v) is called a TU cooperative game, or simply a game. For notational
convenience, we write v instead of (N, v), if the set of players is clear. We
call S ⊆ N,S ̸= ∅ and v(S) as a coalition, and the worth of a coalition,
respectively. Let ΓN denote the set of all games where the set of players is
N . For any v, w ∈ ΓN , we define the sum of games v + w ∈ ΓN as follows:
(v+w)(S) = v(S)+w(S) for all S ⊆ N,S ̸= ∅. A solution function ψ : ΓN →
Rn prescribes a n-dimensional vector ψ(v) such that

∑
i∈N ψi(v) ≤ v(N) to

each v ∈ ΓN .
If v(S) = 0 for all S ⊆ N , then v ∈ ΓN is called a null game and

denoted as v0. Let eS ∈ ΓN denote the elementary game of some coalition
S ⊆ N,S ̸= ∅.

eS(T ) =

{
1 if T = S,

0 otherwise.

Let uS ∈ ΓN denote the unanimity game of some coalition S ⊆ N,S ̸= ∅.

uS(T ) =

{
1 if S ⊆ T,

0 otherwise.

Let ω ∈ Rn be a positive weight such that ωi > 0 for i = 1, . . . , n. We define
the k-intersection game with positive weight ω of some coalition S ⊆ N,S ̸=
∅, as follows:

χkωS (T ) =

{∑
i∈T∩S ωi if |T ∩ S| = k,

0 otherwise,

where 0 ≤ k ≤ |S|. If we write χkS, it is the k-intersection game with positive

weight ω = (1, . . . , 1). Note that χ
|S|
S = |S|uS.

The Shapley value was first introduced by Shapley (1953).

ϕi(N, v) =
∑

S⊆N :i∈S

(n− |S|)!(|S| − 1)!

n!
(v(S)− v(S\{i})) for all i ∈ N.

We can generalizes the value by dropping the symmetric property. Given a
positive weight ω ∈ Rn, ωi > 0 for i = 1, . . . , n, we define ϕω(uS), S ⊆ N,S ̸=
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∅ as follows:

ϕωi (uS) =

{
ωi
/∑

j∈S ωj if i ∈ S,

0 if i ∈ N\S.

Since the set of unanimity games is a linear basis of ΓN , we can express any
game v ∈ ΓN uniquely by a linear combination of unanimity games. Suppose
that

v =
∑

S⊆N :S ̸=∅

δSuS,

where (δS)∅≠S⊆N are coefficients in the linear combination.1 Then, we define
the weighted Shapley value with positive weight ω as follows:

ϕω(v) =
∑

S⊆N :S ̸=∅

δSϕ
ω(uS).

A player i is called a null player in v ∈ ΓN if v(S ∪ {i}) = v(S) for all
S ⊆ N\{i}. A player i is called a dummy player in v ∈ ΓN if v(S ∪ {i}) =
v(S) + v({i}) for all S ⊆ N\{i}. For any v ∈ ΓN , S ⊂ N,S ̸= ∅ and any
solution function ψ, we define the reduced game vψS on S by following Hart
and Mas-Colell (1989).

vψS (T ) = v(T ∪ Sc)−
∑
j∈Sc

ψj(T ∪ Sc, v) for all T ⊆ S,

where Sc = N\S and (T ∪ Sc, v) is a restriction of (N, v) on (T ∪ Sc, v).
We list the basic axioms imposed on a solution function ψ.

Efficiency
∑
i∈N

ψi(v) = v(N) for all v ∈ ΓN .

Null Player Property Take any v ∈ ΓN . If i ∈ N is a null player in v,
then ψi(v) = 0.

Dummy Player Property Take any v ∈ ΓN . If i ∈ N is a dummy player
in v, then ψi(v) = v({i}).

Linearity ψ(λv + µw) = λψ(v) + µψ(w) for all v, w ∈ ΓN and λ, µ ∈ R.

Axiomatizations in this paper only focus on the axioms which fix the num-
ber of players in its definition. In the terminology of the division of types in
Section 1, we only use first type of axioms and third type of axioms. How-
ever, we list one axiom of second type which deals with games with different

1The coefficients can be expressed by the dividend, which was introduced by Harsanyi
(1959).
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number of players, since we use the mathematical property of the axiom in
the proof later.

Consistency (Hart and Mas-Colell (1989)) A solution function ψ sat-
isfies Consistency if, for any game v ∈ ΓN with n ≥ 2 and any coalition
S ⊂ N,S ̸= ∅, we have

ψi(S, v
ψ
S ) = ψi(N, v), for all i ∈ S.

Both ϕ and ϕω satisfy all axioms above.

3 Strong Addition Invariance and character-

ization

We first revisit the axioms introduced by Beal, Remila and Solal (2012).

Uniform Addition Invariance For any v ∈ ΓN with n ≥ 2, 1 ≤ k ≤ n−1,
λ ∈ R, we have ψ(v + λχkN) = ψ(v).

This axiom states that if the worths of all coalitions with size k change by
the same amount and the worth of the grand coalition does not change, then
the payoff vector should not change.

Uniform Transfer Invariance For any v ∈ ΓN with n ≥ 3, 2 ≤ k ≤ n−1,
λ ∈ R, and any two distinct coalitions S, S ′ with |S| = |S ′| = k, we
have ψi(v + λeS − λeS′) = ψi(v) for all i ∈ S ∩ S ′.

This axiom states that if the worths of two coalitions with the same size
change by the same amount, but in the opposite direction, then the payoff
of players who belong to both coalitions should not change.

Remark (Theorem 3 of Beal, Remila and Solal (2012)) A solution func-
tion ψ satisfies Uniform Addition Invariance, Uniform Transfer Invariance
and Dummy Player Property if and only if ψ is the Shapley value.

We now introduce a new axiom which is stronger than Uniform Addition
Invariance. Although the definition of Uniform Addition Invariance only
allows the addition of χkN , we allow the addition of χkS for all S ⊆ N, 2 ≤
|S| ≤ n− 1.

Strong Addition Invariance∗ For any v ∈ ΓN with n ≥ 2, S ⊆ N with
|S| ≥ 2, 1 ≤ k ≤ |S| − 1, λ ∈ R, we have ψ(v + λχkS) = ψ(v).

5



This axiom states that if the worths of all coalitions whose intersection with
S is k, 1 ≤ k ≤ |S| − 1, change by the same amount, then the payoff vector
should not change. We can interpret this axiom as follows. First, we can
naturally expect that the payoff of players in S should change equally, since
they are symmetric in the change. Similarly, the payoff of players in N\S
should also change equally. Moreover, since λχ1

S(S ∪ T ) − λχ1
S(T ) = 0 for

all T ⊆ N\S, marginal contribution of coalition S does not change. Then,
it seems reasonable to conclude that the total payoff of players in coalition
S should not change. As a result, under Efficiency, the remaining possibility
is that the payoff of all players does not change.

Now, consider the following axiom which restricts k in the definition of
Strong Addition Invariance∗ to 1.

Strong Addition Invariance For any v ∈ ΓN with n ≥ 2, S ⊆ N with
|S| ≥ 2, λ ∈ R, we have ψ(v + λχ1

S) = ψ(v).

Then, the following proposition holds.

Proposition 1 Strong Addition Invariance∗ and Strong Addition Invariance
are equivalent.

For the proof, see Lemma 7 in Appendix.2 From this lemma, we do not need
to care about which axiom to use.

Example We give an example which illustrates the contents of Strong Ad-
dition Invariance for 3-person game. The axiom states that even if we add
the following games by multiplying a real number, the payoff vector does not
change.

χ1
{1,2} χ1

{1,3} χ1
{2,3} χ1

N

{1} 1 1 0 1

{2} 1 0 1 1

{3} 0 1 1 1

{1, 2} 0 1 1 0

{1, 3} 1 0 1 0

{2, 3} 1 1 0 0

N 0 0 0 0

2Although the statement of Lemma 7 includes positive weight, we can get the result of
this lemma by letting ω = (1, · · · , 1).
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Please note that Strong Addition Invariance states the invariance of pay-
off vector, and not the invariance of payoff of some specific players. Among
the axioms concerning invariance, we call an axiom which prescribes the in-
variance of payoff vector as the axiom of global invariance. On the other
hand, we call an axiom which prescribes the invariance of payoff of some spe-
cific players as the axiom of local invariance. Many previous axiomatizations
of the Shapley value focused on the axiom of local invariance. For instance,
in the axiomatization by Beal, Remila and Solal (2012), Uniform Transfer
Invariance is the axiom of local invariance. In Young’s (1985) axiomatization,
Marginality played a central role, and the axiom dealt with the invariance of
payoff of players whose marginal contribution does not change. Coalitional
Strategic Equivalence by Chun (1989) stated the invariance of payoff of play-
ers in N\S after the addition of λuS for some S ⊂ N,S ̸= ∅ and λ ∈ R.
Looking back the history of axiomatization, the axiom of global invariance
was not used, or used with the axiom of local invariance. This fact illustrates
the interesting characteristic of the following theorem, which axiomatizes the
Shapley value by the axiom of global invariance without using an axiom of
local invariance.

Theorem 1 A solution function ψ satisfies Dummy Player Property and
Strong Addition Invariance if and only if ψ is the Shapley value.

Instead of proving this theorem, we prove Theorem 2, since the result of
Theorem 1 can be obtained by letting ω = (1, · · · , 1).

Another characteristic of this axiomatization is that we can also axioma-
tize the weighted Shapley value by slightly changing the definition of Strong
Addition Invariance. The weighted version is given as follows:

ω-Strong Addition Invariance∗ For any v ∈ ΓN with n ≥ 2, S ⊆ N with
|S| ≥ 2, 1 ≤ k ≤ |S| − 1, λ ∈ R, we have ψ(v + λχkωS ) = ψ(v).

The restriction of k to 1 also works.

ω-Strong Addition Invariance For any v ∈ ΓN with n ≥ 2, S ⊆ N with
|S| ≥ 2, λ ∈ R, we have ψ(v + λχ1ω

S ) = ψ(v).

Proposition 2 ω-Strong Addition Invariance∗ and ω-Strong Addition In-
variance are equivalent.

For the proof, see Lemma 7 in Appendix.
We are ready to prove the main theorem.
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Theorem 2 ψ satisfies Dummy Player Property and ω-Strong Addition In-
variance if and only if ψ is the weighted Shapley value with positive weight
ω.

Proof. If Part: From the assumption, ψ = ϕω. We only need to show that
ϕω satisfies ω-Payoff Invariance. We first prove a lemma.

Lemma 1 If n ≥ 2, then ϕω(N,χ1ω
N ) = 0.

Proof. Let N = {i, j}. Then,

χ1ω
N = ωiu{i} + ωju{j} − (ωi + ωj)uN .

From the definition of ϕω,

ϕω(N,χ1ω
N ) = (ωi, 0) + (0, ωj)− (ωi, ωj) = (0, 0),

and the statement holds. Suppose that the statement holds for all N ′ such
that 2 ≤ |N ′| ≤ m− 1, and we show the result for |N | = m,m ≥ 3.

Let j ∈ N and consider the reduced game (N\{j}, (χ1ω
N )ϕ

ω

N\{j}). Take any

T ⊂ N\{j}, T ̸= ∅ and let us calculate (χ1ω
N )ϕ

ω

N\{j}(T ). First,

χ1ω
N (T ∪ {j}) = 0.

Moreover, from the induction hypothesis,

ϕωj (T ∪ {j}, χ1ω
N ) = 0.3

Then, we have
(χ1ω

N )ϕ
ω

N\{j}(T ) = 0.

And from the definition,

(χ1ω
N )ϕ

ω

N\{j}(N\{j}) = −ϕωj (N,χ1ω
N ).

Namely, the reduced game (N\{j}, (χ1ω
N )ϕ

ω

N\{j}) is the game such that only the

worth of grand coalition is −ϕωj (N,χ1ω
N ) and the worths of all other coalitions

are 0.

3First, note that |T ∪ {j}| ≤ m − 1. Moreover, in the game of the restriction of χ1ω
N

on T ∪ {j}, only the worths of coalitions {l}, l ∈ T ∪ {j} are wl and the worths of other
coalitions are 0. It follows that the game is equal to (T ∪ {j}, χ1ω

T∪{j}), so the induction
hypothesis works.
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Assume that ϕωj (N,χ
1ω
N ) > 0, and we show a contradiction. In this case,

we must have

ϕωi (N,χ
1ω
N ) = ϕωi (N\{j}, (χ1ω

N )ϕ
ω

N\{j})

= ϕωi (N\{j},−ϕωj (N,χ1ω
N )uN\{j}) < 0, for all i ∈ N\{j}, (1)

where the first equality holds from Consistency. Take any k ∈ N\{j} and
consider the reduced game (N\{k}, (χ1ω

N )ϕ
ω

N\{k}). By letting player k play the
role of player j, we have

ϕωi (N,χ
1ω
N ) = ϕωi (N\{k}, (χ1ω

N )ϕ
ω

N\{k})

= ϕωi (N\{k},−ϕωk (N,χ1ω
N )uN\{k}) > 0, for all i ∈ N\{k}. (2)

Then, ϕωi (N,χ
1ω
N ) < 0 from equation (1), and ϕωi (N,χ

1ω
N ) > 0 from equation

(2) for all i ∈ N\{j, k}, which is a contradiction. We can get the same
contradiction when we first assume that ϕωj (N,χ

1ω
N ) < 0. As a result, we must

have ϕωj (N,χ
1ω
N ) = 0. Since j was an arbitrary player, we have ϕωi (N,χ

1ω
N ) = 0

for all i ∈ N , which completes the proof. �
We return to the proof of If Part. Since the case of n = 2 is proved, take
any player set N, n ≥ 3, and fix. Consider the game χ1ω

S , S ⊆ N , |S| ≥ 2. If
S = N , from Lemma 1, ϕωi (N,χ

1ω
N ) = 0 for all i ∈ N .

Take a coalition S such that 2 ≤ |S| < n. We first determine the payoff
of player j ∈ N\S. For any j ∈ N\S, we have |T ∩ S| = |(T ∪ {j}) ∩ S| for
all T ⊆ N\{j}. It follows that, from the definition of χ1ω

S , player j is a null
player. From Null Player Property, ϕωj (N,χ

1ω
S ) = 0 for all j ∈ N\S.

Next, we determine the payoff of player i ∈ S. Consider the reduced
game (S, (χ1ω

S )ϕ
ω

S ). We first calculate the worth of T ⊆ S, T ̸= ∅.

Case 1 If |T | = 1, let T = {k}, k ∈ S.

(χ1ω
S )ϕ

ω

S ({k}) = χ1ω
S ({k} ∪ Sc)−

∑
j∈Sc

ϕωj ({k} ∪ Sc, χ1ω
S ) = ωk.

Note that j ∈ Sc is a null player in the game ({k} ∪ Sc, χ1ω
S ).

Case 2 If |T | ≥ 2,

(χ1ω
S )ϕ

ω

S (T ) = χ1ω
S (T ∪ Sc)−

∑
j∈Sc

ϕωj (T ∪ Sc, χ1ω
S ) = 0.

Namely, (S, (χ1ω
S )ϕ

ω

S ) = (S, χ1ω
S ). Together with Lemma 1 and Consistency,

we have
ϕωi (N,χ

1ω
S ) = ϕωi (S, χ

1ω
S ) = 0,
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for all i ∈ S. It follows that

ϕω(N,χ1ω
S ) = 0,

for all S ⊆ N, |S| ≥ 2. Linearity completes the proof.
Only If Part: If n = 1, the proof is obvious from Dummy Player Prop-

erty. Suppose n ≥ 2 throughout the remaining part. We define uωS ∈ ΓN for
any S ⊆ N,S ̸= ∅ as follows:

uωS(T ) =

{∑
i∈S ωi if S ⊆ T,

0 otherwise.

It is obvious that the set of games (uωS)∅̸=S⊆N is a linear basis of ΓN .

Lemma 2 For any S ⊆ N,S ̸= ∅, we have

χ1ω
S =

|S|∑
k=1

(−1)k−1
∑

T⊆S:|T |=k

uωT .

Proof. We calculate the worth of R ⊆ N,R ̸= ∅. If r = 0, the worth of R is
0 from the definition.4 So, suppose that 1 ≤ |R ∩ S| ≤ |S|. Let r = |R ∩ S|.

|S|∑
k=1

(−1)k−1
∑

T⊆S:|T |=k

uωT (R) =
r−1∑
k=0

(−1)k
(
r − 1
k

) ∑
i∈R∩S

ωi

=
∑
i∈R∩S

ωi ·
r−1∑
k=0

(r − 1)!

k!(r − k − 1)!
(−1)k

=
∑
i∈R∩S

ωi · (1− 1)r−1

=

{∑
i∈R∩S ωi if r = 1,

0 otherwise,

where the third equality holds from the binomial theorem. The resulting
value is exactly χ1ω

S (R). �
4Look carefully at the right-hand side of the equation in the statement. Then, it will

be clear that R gains a non-zero value only if a game uω
T such that T ⊆ S, T ⊆ R is chosen

in the second summation. In this case, T ⊆ R ∩ S. So, if |R ∩ S| = 0, R necessarily gains
0. This point of view also explains the first equality in the transformation below. For any
player i ∈ R ∩ S, ωi is added when a coalition T ⊆ R ∩ S such that i ∈ T is chosen. Such
a coalition T is determined by choosing k, 0 ≤ k ≤ r − 1, players from (R ∩ S)\{i}.
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Lemma 3 The set of games {u{i} : i ∈ N} ∪ {χ1ω
S : S ⊆ N, |S| ≥ 2} is a

linear basis of ΓN .

Proof. Assume not. Then, there exists (αS)∅≠S⊆N ̸= 0 such that∑
S⊆N :S ̸=∅

αSũ
ω
S = 0, (3)

where ũωS = uS if |S| = 1 and ũωS = χ1ω
S if |S| ≥ 2. Let N(α) denote {S ⊆

N : αS ̸= 0}. If |N(α)| = 1, then equation (3) is an obvious contradiction.
So, suppose that |N(α)| ≥ 2.

Equation (3) can be rewritten as follows.∑
S∈N(α)

αSũ
ω
S = 0, (4)

where we define α∅ = 0. And we also define ũω∅ = u∅ = uω∅ = v0. Take a
coalition R ∈ N(α) such that |R| ≥ |S| for all S ∈ N(α) and solve equation
(4) with respect to ũωR.

ũωR = − 1

αR

∑
S∈N(α)\{R}

αSũ
ω
S

= − 1

αR

{ ∑
{i}∈N(α)\{R}

α{i}u{i} +
∑

S∈N(α)\{R}:|S|≥2

αS

|T |∑
k=1

(−1)k−1
∑

T⊆S:|T |=k

uωT

}
,

where the second equality holds from Lemma 2. Suppose that |R| = 1.
Then, from the definition, ũωR = uR and the right-hand side contains only
unanimity games with singleton coalitions except R. This contradicts the fact
that unanimity games are linearly independent. So, suppose that |R| ≥ 2.
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Again, by applying Lemma 2 to ũωR, we have

|R|∑
k=1

(−1)k−1
∑

T⊆R:|T |=k

uωT

= − 1

αR

{ ∑
{i}∈N(α)\{R}

α{i}u{i} +
∑

S∈N(α)\{R}:|S|≥2

αS

|T |∑
k=1

(−1)k−1
∑

T⊆S:|T |=k

uωT

}
,

(−1)|R|−1uωR

= − 1

αR

{ ∑
{i}∈N(α)\{R}

α{i}u{i} +
∑

S∈N(α)\{R}:|S|≥2

αS

|T |∑
k=1

(−1)k−1
∑

T⊆S:|T |=k

uωT

}

−
|R|−1∑
k=1

(−1)k−1
∑

T⊆R:|T |=k

uωT .

From the definition, the right-hand side never contains uωR, which contradicts
the fact that the set of games {u{i} : i ∈ N} ∪ {uωS : S ⊆ N, |S| ≥ 2} is a
linear basis of ΓN . �

We now return to the proof of Only If part. From Lemma 3, for any
v ∈ ΓN , there exists (βS)∅̸=S⊆N such that

v =
∑
i∈N

β{i}u{i} +
∑

S⊆N :|S|≥2

βSχ
1ω
S .

First, from Dummy Player Property,

ψ
(∑

i∈N β{i}u{i}
)
= (β{1}, . . . , β{n}).

From ω-Strong Addition Invariance, adding βSχ
1ω
S , S ⊆ N, |S| ≥ 2 never

changes the payoff vector. Hence,

ψ
(∑

i∈N β{i}u{i} +
∑

S⊆N :|S|≥2 βSχ
1ω
S

)
= (β{1}, . . . , β{n}).

It follows that the payoff vector is uniquely determined. �

We give a conclusion of this section. Since many other solution functions do
not satisfy Strong Addition Invariance, we can explain the difference between
the Shapley value and others from this axiom. The interesting feature of
Strong Addition Invariance is: if the marginal contribution of a coalition
does not change, then the total payoff of players in the coalition does not
change. So, we can conclude that the Shapley value tends to regard the
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change in the marginal contribution of coalitions as an important criterion
to judge the payoff of players. Moreover, this tendency clearly explains the
difference between the Shapley value and other solution functions.

4 Axiomatization of the family of weighted

Shapley values

In this section, we axiomatize the family of weighted Shapley values. Al-
though we do not use the axioms concerning invariance, the proof of main
theorem in this section highly relies on the proof in the previous section; we
properly construct a linear basis, and consider the relationship between the
linear basis and axioms.

Let us introduce an additional notation. For any v ∈ ΓN and S ⊆ N , let
∆iv(S) denote

∆iv(S) =

{
v(S)− v(S\{i}) if i ∈ S,

v(S ∪ {i})− v(S) if i /∈ S.

Let ∆iv denote the vector whose each coordinate is ∆iv(S), S ⊆ N . For any
v, w ∈ ΓN , ∆iv ≥ ∆iw means that ∆iv(S) ≥ ∆iw(S) for all S ⊆ N .

The following axioms are used in the previous literature.

Weak Monotonicity (van den Brink et al. (2013)) Take any v, w ∈
ΓN and i ∈ N such that v(N) ≥ w(N) and ∆iv ≥ ∆iw. Then, we
have ψi(v) ≥ ψi(w).

Covariance ψ(w) = αψ(v) + β for all v ∈ ΓN , α ∈ R and β ∈ Rn, where w
is given by w(S) = αv(S) +

∑
i∈S βi for all S ⊆ N .

Anonymity ϕi(v) = ϕπ({i})(πv) for all v ∈ ΓN and all permutations π on
N , where game πv ∈ ΓN is defined by πv(∪i∈S{π({i})}) = v(S) for all
S ⊆ N,S ̸= ∅.

The above axioms, together with Efficiency, axiomatize the Shapley value.

Remark (Corollary 4.6 of van den Brink et al. (2013)) ψ satisfies Ef-
ficiency, Anonymity, Weak Monotonicity and Covariance if and only if ψ is
the Shapley value.

Based on this axiomatization, we introduce a new axiomatization of the
family of weighted Shapley values. First, we define a variation of Weak
Monotonicity.
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Strict Weak Monotonicity Let v, w ∈ ΓN , i ∈ N . If v(N) = w(N) and
∆iv ≥ ∆iw, then we have ψi(v) ≥ ψi(w), where ψi(v) = ψi(w) if and
only if ∆iv = ∆iw.

The next axiom, Partnership, was used by Kalai and Samet (1987), and
Chun (1991) for the axiomatization of the family of weighted Shapley values.
For any v ∈ ΓN , we call S ⊂ N,S ̸= ∅ as a coalition of partners in v if the
following condition is satisfied.

v(T ∪R) = v(R) for all T ⊂ S and R ⊆ N\S.

Partnership Let v ∈ ΓN . If S ⊂ N,S ̸= ∅ is a coalition of partners in v,
then we have ψi(v) = ψi

(∑
j∈S ϕj(v)uS

)
for all i ∈ S.

The main theorem of this section is given as follows.

Theorem 3 ψ satisfies Efficiency, Partnership, Strict Weak Monotonicity
and Covariance if and only if there exists a positive weight ω such that ψ is
the weighted Shapley value with positive weight ω.

Proof. Since If Part is obvious from previous axiomatizations, we only prove
Only If part. Note first that Covariance implies ψ(v0) = 0; assume, on the
contrary, that ψ(v0) = a ̸= 0. Then, from Covariance, λa = ψ(λv0) =
ψ(v0) = a for any λ ∈ R, which contradicts the definition of a solution
function.

Take any player set N . If n = 1, then the proof is obvious from Efficiency.
Suppose n ≥ 2. For any positive weight ω and S ⊆ N,S ̸= ∅, we define

ûωS =
∑
i∈S

ωiu{i} −
∑
i∈S

ωiuS.

Then, the following lemma holds:

Lemma 4 The set of games {u{i} : i ∈ N} ∪ {ûωS : S ⊆ N, |S| ≥ 2} is a
linear basis of ΓN .

Proof. Assume not. Then, there exists (αT )∅̸=T⊆N ̸= 0 such that∑
T⊆N :T ̸=∅

αT ũ
ω
T = 0,

where ũωT = uT if |T | = 1, ũωT = ûωT if |T | ≥ 2. Let N(α) denote {T ⊆
N : αT ̸= 0, T ̸= ∅}. If |N(α)| = 1, then the equation above is an obvious
contradiction. So, suppose that |N(α)| ≥ 2.
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Take a coalition R ∈ N(α) such that |R| ≥ |S| for all S ∈ N(α), and
solve the equation with respect to ũωR.

−ũωR =
1

αR

∑
T∈N(α)\{R}

αT ũ
ω
T .

First, suppose that |R| = 1. Then, from the definition of R, the right-hand
side contains only unanimity games with singleton coalitions except R. This
contradicts the fact that unanimity games are linearly independent. So,
suppose that |R| ≥ 2. Then, by rearranging the equation, we have∑

i∈R

ωiuR =
∑
i∈R

ωiu{i} +
1

αR

∑
T∈N(α)\{R}

αT ũ
ω
T .

From the definition of R and ũωT , the right-hand side never contains uR. This
equation again contradicts the fact that the set of unanimity games is a linear
basis of ΓN . �

Lemma 5 If ψ satisfies Efficiency, Covariance and Strict Weak Monotonic-
ity, then there exist a positive weight ω such that ψ(ûωN) = 0.

Proof. Let A := {a ∈ Rn : ai ≥ 0, i = 1, · · · , n,
∑n

i=1 ai = 1}. We first show
that the function ψ(ûaN) : A → Rn is a continuous function. Consider an
arbitrary sequence {ak}∞k=1 ⊆ A, such that ak → ā as k → ∞. Then,

lim
k→∞

ψ(ûa
k

N ) = lim
k→∞

ψ
(∑
i∈N

aki u{i} −
∑
i∈N

aki uN

)
= lim

k→∞

(
ak −

∑
i∈N

akiψ(uN)
)

= ā−
∑
i∈N

āiψ(uN)

= ψ(ūāN),

where the second equality holds from Covariance. We define a new function
Ψ : A→ A as follows:5

Ψi(a) =
ai +max{0, ai − ψi(û

a
N)}

1 +
∑n

i=1max{0, ai − ψi(ûaN)}
for all i ∈ N.

5In the construction of this function, we follow the way by Jehle and Reny (2011). See
the proof of Theorem 7.2 on page 317.
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Since Ψ is a continuous function and A is non-empty and compact, from
Brouwer’s fixed point theorem, there exists a fixed point, â ∈ A. Let X :=∑n

i=1max{0, âi − ψi(û
â
N)} ≥ 0. Then, we have

âiX = max{0, âi − ψi(û
â
N)}. (5)

Case 1: If X = 0, then âi − ψi(û
â
N) ≤ 0 for all i ∈ N . By summing up,

together with Efficiency, we have∑
i∈N

âi ≤
∑
i∈N

ψi(û
â
N),

1 ≤ 0,

which is a contradiction.
Case 2: If âi = 0 for some i, then 0 ≤ ψi(û

â
N). Consider the marginal

contribution of player i.

ûâN(S)− ûâN(S\{i}) = 0 for all S such that i ∈ S, S ̸= N.

ûâN(N)− ûâN(N\{i}) = 0−
∑

j∈N\{i}

âj = −1.

Namely, ∆iû
â
N ≤ ∆iv0 and ∆iû

â
N(S) ̸= ∆iv0. Since ûâN(N) = v0(N) = 0,

Strict Weak Monotonicity implies that ψi(û
â
N) < ψi(v0) = 0, which is a

contradiction.
Case 3: The remaining possibility is that X > 0 and âi > 0 for all i ∈ N .

It follows that âi − ψi(û
â
N) > 0 for all i ∈ N . Efficiency implies

X =
∑
i∈N

max{0, âi − ψi(û
â
N)} =

∑
i∈N

(
âi − ψi(û

â
N)

)
= 1.

Then, equation (5) reduces to

âi = âi − ψi(û
â
N),

ψi(û
â
N) = 0,

for all i ∈ N . By letting ω = â, the proof is completed. �

Lemma 6 If ψ satisfies the four axioms, then there exists a positive weight
ω such that ψ(uS) = ϕω(uS) for all S ⊆ N,S ̸= ∅.

Proof. From Lemma 5, there exist a positive weight ω such that
∑n

i=1 ωi = 1
and ψ(ûωN) = 0. From Covariance,

0 = ψi(û
ω
N) = ψi

(∑
k∈N

ωku{k} −
∑
k∈N

ωkuN

)
= ωi − ψi(uN),

ψi(uN) = ωi for all i ∈ N.
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Take any S ⊂ N,S ̸= ∅ and consider the game ûωS. First, we determine
ψj(uS), j ∈ N\S. Consider the marginal contribution of j to coalition T ⊆
N .

Case 1 If |T ∩ S| = 0, ûωS(T ∪ {j})− ûωS(T ) = 0− 0 = 0.

Case 2 If 1 ≤ |T ∩ S| < |S|,

ûωS(T ∪ {j})− ûωS(T ) =
∑
k∈T∩S

ωk −
∑
k∈T∩S

ωk = 0.

Case 3 If |T ∩ S| = |S|, ûωS(T ∪ {j})− ûωS(T ) = 0− 0 = 0.

Namely, ∆jû
ω
S = ∆jv0 and ûωS(N) = v0(N) = 0. Strict Weak Monotonicity

implies ψj(û
ω
S) = 0 for all j ∈ N\S. Moreover, from Covariance,

0 = ψj(û
ω
S) = ψj

(∑
k∈S

ωku{k} −
∑
k∈S

ωkuS

)
= 0−

∑
k∈S

ωkψj(uS) for all j ∈ N\S.

From
∑

k∈S ωk > 0, we have ψj(uS) = 0 for all j ∈ N\S.
Next, we determine ψi(uS), i ∈ S. Since S is a coalition of partners in

uN , Partnership implies

ψi(uN) = ψi

(∑
k∈S

ψk(uN)uS

)
.

Covariance implies

ωi = ψi(uN) =
∑
k∈S

ωkψi(uS),

ψi(uS) = ωi

/∑
k∈S

ωk for all i ∈ S.

�

We return to the proof of the theorem. In the remaining part, we follow the
proof by Young (1985) and Chun (1991). Take a positive weight ω which
satisfies the statement of Lemma 6. For any v ∈ ΓN , from Lemma 4, there
exists (γS)∅≠S⊆N such that

v =
∑

S⊆N :S ̸=∅

γSũ
ω
S,
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where ũωS = uS if |S| = 1 and ũωS = ûωS if |S| ≥ 2. Let N(γ) denote {T ⊆ N :
T ̸= ∅, γT ̸= 0}. If |N(γ)| = 0, v = v0. From Covariance, we have

ψ(v) = ϕω(v) = 0.

If |N(γ) = 1|, we can write v = γSũ
ω
S for some S ⊆ N,S ̸= ∅. Since we

already showed that ψ = ϕω in unanimity games, together with Covariance,
we have

ψ(v) = ψ(γSũ
ω
S) = γSψ(ũ

ω
S) = γSϕ

ω(ũωS) = ϕω(v).

We explain why the third equality holds. First, if |S| = 1, then ũωS is a
unanimity game, and the equality holds. Next, if |S| ≥ 2, then ũωS = ûωS =∑

i∈S ωiu{i} −
∑

i∈S ωiuS. So, Covariance implies the equality.
Take any t ≥ 2. Suppose that ψ(v) = ϕω(v) for 0 ≤ |N(γ)| ≤ t − 1. We

show that ψ(v) = ϕω(v) for |N(γ)| = t. We first rewrite the game as follows:

v =
t∑

k=1

γRk
ũωRk

,

where Rk ∈ N(γ) for k = 1, 2, . . . , t. Let R̄ := ∩tk=1Rk and suppose that j /∈
R̄. Then, there exists at least one coalition Rk such that j /∈ Rk. Without loss
of generality, assume that Rk, k = 1, . . . , s contain j, and Rl, l = s+ 1, . . . , t
do not. We can express v as follows.

v =
s∑

k=1

γRk
ũωRk

+
t∑

l=s+1

γRl
ũωRl

.

From the induction hypothesis, ψ(
∑s

k=1 γRk
ũωRk

) is uniquely determined.
Moreover, consider the case of adding γRl

ũωRl
, l = s+1, . . . , t. If |Rl| = 1, then

from Covariance, j’s payoff does not change. If |Rl| ≥ 2, then j′s marginal
contribution and the worth of the grand coalition do not change. Strict Weak
Monotonicity implies that j’s payoff again does not change. Namely, in both
cases, we have

ψj(v) = ϕωj (v) for all j /∈ R̄.

Consider a player i ∈ R̄. If |R̄| = 1, Efficiency completes the proof. Suppose
that |R̄| ≥ 2. Then, v can be expressed by not using u{i}, i = 1, . . . , n. We
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can rewrite v as follows.

v =
t∑

k=1

γRk
ûωRk

=
t∑

k=1

γRk

( ∑
m∈Rk

ωmu{m} −
∑
m∈Rk

ωmuRk

)
=

t∑
k=1

∑
m∈Rk

γRk
ωmu{m} −

t∑
k=1

∑
m∈Rk

γRk
ωmuRk

.

We define

v′ = −
t∑

k=1

∑
m∈Rk

γRk
ωmuRk

.

Since both ψ and ϕω satisfy Covariance, the proof will be completed if we
show that ψ(v′) = ϕω(v′). In the remaining part of the proof, we follow the
proof by Chun (1991). For any C ⊂ R̄ and S ⊆ N\R̄, we have

v′(C ∪ S) = v′(S) = 0,

since a coalition gets a nonzero worth in v′ only if the coalition includes R̄.
Namely, R̄ is a coalition of partners in v′. By Partnership and Covariance,
we have

ψi(v
′) = ψi

(∑
m∈R̄

ψm(v
′)uR̄

)
=

∑
m∈R̄

ψm(v
′)ψi(uR̄) for all i ∈ R̄.

Since ϕω also satisfies Partnership and Covariance, we have

ϕωi (v
′) =

∑
m∈R̄

ϕωm(v
′)ϕωi (uR̄) for all i ∈ R̄.

From Efficiency of both solution functions and the fact that ψj(v
′) = ϕωj (v

′)
for all j ∈ N\R̄, we have

∑
m∈R̄ ϕ

ω
m(v

′) =
∑

m∈R̄ ψm(v
′). As we saw, both

solution functions coincide in unanimity games, which completes the proof.
�

5 Concluding remarks

We point out the remarkable property of our new linear basis. When we
express a game by a linear combination of the linear basis in Lemma 3, the
coefficient of u{i} is exactly the weighted Shapley value of player i, as we saw
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in the proof of Theorem 1. Together with Lemma 4, we give a theorem which
summarizes the discussion above.

Theorem 4 Let ω be any positive weight. Then, the set of games {u{i} : i ∈
N} ∪ {χ1ω

S : |S| ≥ 2} is a linear basis of ΓN , where n ≥ 2. Moreover, when
we express a game by a linear combination of the linear basis, the coefficient
of u{i} is equal to the weighted Shapley value with positive weight ω of i ∈ N .

In Yokote, Funaki and Kamijo (2013a), we investigate the linear basis in the
case of ω = (1, · · · , 1) and discuss the null space and the inverse problem
of the Shapley value. In Yokote, Funaki and Kamijo (2013b), we apply this
linear basis to the analyze of the relationship between the Shapley value and
other solution concepts.

Appendix

We prove Proposition 1 and 2. The equivalence will be proved from the
following lemma.

Lemma 7 If ψ satisfies ω-Strong Addition Invariance, ψ also satisfies the
following property: For any v ∈ ΓN with n ≥ 2, S ⊆ N with |S| ≥ 2,
1 ≤ k ≤ |S| − 1, λ ∈ R, we have

ψ(v) = ψ(v + λχkωS ).

Proof. Suppose that n = 2. Then the statement holds from ω-Strong Addi-
tion Invariance.

Suppose that n ≥ 3. If |S| = 2, the statement holds from ω-Strong
Addition Invariance. Assume that the statement holds for |S| = s − 1, and
we prove that it also holds for |S| = s, s ≥ 3. From ω-Strong Addition
Invariance, if k = 1, the equation holds. Assume that the statement holds
for k = k′ − 1, and we prove that it also holds for k = k′, 2 ≤ k′ ≤ s − 1.
From the induction hypothesis, the proof will be completed if we prove that
the following equality holds.

λχk
′ω
S =

λ

k′ − 1

(∑
i∈S χ

(k′−1)ω
S\{i} − (s− k′ + 1)χ

(k′−1)ω
S

)
.

Take any coalition T ⊆ N, T ̸= ∅ and let us calculate the worth of T of both
sides.
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Case1 0 ≤ |T ∩ S| ≤ k′ − 2.

It is obvious that χk
′ω
S (T ) = χ

(k′−1)ω
S (T ) = 0. Consider the game

χ
(k′−1)ω
S\{i} , and i ∈ S.

If i ∈ T , |(S\{i}) ∩ T | ≤ k′ − 3,

If i /∈ T , |(S\{i}) ∩ T | ≤ k′ − 2.

It follows that χ
(k′−1)ω
S\{i} (T ) = 0 for all i ∈ S.

Case 2 k′ + 1 ≤ |T ∩ S| ≤ s.

It is obvious that χk
′ω
S (T ) = w

(k′−1)ω
S (T ) = 0. Consider the game

χ
(k′−1)ω
S\{i} , and i ∈ S.

If i ∈ T , |(S\{i}) ∩ T | ≥ k′,

If i /∈ T , |(S\{i}) ∩ T | ≥ k′ + 1.

It follows that χ
(k′−1)ω
S\{i} (T ) = 0 for all i ∈ S.

Case 3 |T ∩ S| = k′ − 1.

Take any i ∈ S. It is obvious that χk
′ω
S (T ) = 0.

If i ∈ T , |(S\{i}) ∩ T | = k′ − 2,

If i /∈ T , |(S\{i}) ∩ T | = k′ − 1.

Namely,
∑

i∈S χ
(k′−1)ω
S\{i} (T ) =

(
s − (k′ − 1)

)∑
j∈T∩S ωj. Together with

−(s−k′+1)χ
(k′−1)ω
S (T ) = −(s−k′+1)

∑
j∈T∩S ωj, the right-hand side

is equal to 0, which is equal to the left-hand side.

Case 4 |T ∩ S| = k′.

It is obvious that χ
(k′−1)ω
S (T ) = 0. Take any i ∈ S.

If i ∈ T , |(S\{i}) ∩ T | = k′ − 1,

If i /∈ T , |(S\{i}) ∩ T | = k′.

Namely,
∑

i∈S χ
(k′−1)ω
S\{i} (T ) = (k′ − 1)

∑
j∈T∩S ωj.

6 By multiplying λ
k′−1

,

the right-hand side is equal to λ
∑

j∈T∩S ωj, which is equal to the left-
hand side.

�
6We explain why this equation holds. Take any j ∈ T ∩ S and fix. In the summation

of the left-hand side, if k ∈ (T ∩ S)\{j} is chosen, then wj is added. Namely, each wj is
added by |T ∩ S| − 1 = k′ − 1 times.

21



References

[1] Beal, S., E. Remila and P. Solal (2012) “Axioms of invariance for TU-
games,” Working Paper.

[2] Chun, Y. (1989): “A new axiomatization of the Shapley value,” Games
and Economic Behavior, 1, 119-130.

[3] Chun, Y. (1991): “On the symmetric and weighted Shapley values,” In-
ternational Journal of Game Theory, 20, 183-190.

[4] Harsanyi, J.C. (1959): “A bargaining model for cooperative n-person
games,” In: Tucker AW, Luce RD (ed) Contributions to the theory of
games IV. Princeton UP, Princeton, pp 325-355.

[5] Hart, S., and A. Mas-Colell (1989): “Potential, value and consistency,”
Econometrica, 57, 589-614.

[6] Jehle, G. A., and P. J. Reny (2011): Advanced microeconomic theory,
3rd ed. Prentice Hall.

[7] Kamijo, Y., and T. Kongo (2010): “Axiomatization of the Shapley value
using the balanced cycle contributions property,” International Journal
of Game Theory, 39, 563-571.

[8] Kamijo, Y., and T. Kongo (2012): “Whose deletion does not affect your
payoff? The difference between the Shapley value, the egalitarian value,
the solidarity value and the Banzhaf value,” European Journal of Oper-
ations Research,” 216, 638-646.

[9] Kalai, E., and D. Samet (1987): “On weighted Shapley values,” Interna-
tional Journal of Game Theory, 16, 205-222.

[10] Myerson R.B. (1980): “Conference structures and fair allocation rules,”
International Journal of Game Theory, 9, 169-182.

[11] Peleg, B., and P. Sudhölter (2007): Introduction to the theory of coop-
erative games, 2nd ed. Springer-Verlag.

[12] Schmeidler, D. (1969): “The nucleolus of a characteristic function
game,” SIAM Journal of Applied Mathematics, 17, 1163-1170.

[13] Shapley, L.S. (1953): “A value for n-person games,” In: Roth AE (ed)
The Shapley value. Cambridge University Press, Cambridge, pp 41-48.

22



[14] van den Brink, R. (2001): “An axiomatization of the Shapley value using
a fairness property,” International Journal of Game Theory, 30, 309-319.

[15] van den Brink, R., Y. Funaki and Y. Ju (2013): “Reconciling marginal-
ism with egalitarianism: consistency, monotonicity, and implementation
of egalitarian Shapley values,” Social Choice and Welfare, 40, 693-714.

[16] Yokote, K., Y. Funaki and Y. Kamijo (2013a): “Linear basis approach
to the Shapley value,” Working Paper.

[17] Yokote, K., Y. Funaki and Y. Kamijo (2013b): “Relationship between
the Shapley value and other solution concepts,” Working Paper.

[18] Young, H.P. (1985): “Monotonic solutions of cooperative games,” Inter-
national Journal of Game Theory, 14, 65-72.

23


