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Testable implications of the core in market game with transferable utility

Yasushi Agatsuma∗†

Abstract

This paper clarifies testable implications of the core on allocation data in cooperative market games with

transferable utility (TU market games). By employing the revealed preference approach, we provide a finite

system of linear inequalities whose solvability is equivalent to an allocation data set to be consistent with the core

of some TU market game. It turns out that the core rationalizability is equivalent to the Pareto rationalizability,

that is, the core and Pareto optimality are observationally equivalent in TU market games. In addition we

investigate the relationship between the testability of the core and that of the competitive equilibrium.

Keywords: Testable implications; Core rationalization; Pareto rationalization; Market games; Revealed preference

JEL Classification: C71, D51

1 Introduction

This paper clarifies testable implications of the core on allocation data in cooperative market games with transferable

utility (TU market games). Specifically, we answer the following question; when can we justify observed allocations

as a result of players choosing the core allocations in some TU market game?

To this end, we follow the revealed preference approach pioneered by Afriat [1]. According to Afriat [1], the

utility maximizing hypothesis can be tested from given collection of price-consumption observations by checking

the solvability of a particular system of linear inequalities, now known as the Afriat inequalities. We will show

that our testable implications of the core has similar structure; observed allocations can be rationalized as the

core allocations if and only if a particular system of linear inequalities, which is similar to the Afriat inequalities,

has a solution. Moreover, it will be demonstrated that the solvability of the inequality system is also equivalent

to rationalizability by Pareto optimality. Consequently, we will see that the core allocations and Pareto optimal

allocations are indistinguishable from observation, that is, they are observationally equivalent.

∗Graduate School of Economics, Waseda University. e-mail:yasushi.agatsuma@gmail.com
†I am indebted to Koji Shirai for his advices which substantially improve this paper. Yukihiko Funaki, Takashi Oginuma, Ryo Nagata,

Jun Wako, Chih Chang, Yoshio Kamijo and Yuta Inoue also gave helpful comments and suggestions. They all have my gratitude. An

earlier version of this paper was presented at 12th SAET conference and 2012 Japanese Economic Association Autumn Meeting under

the title “The core rationalization of payoff allocations”. I thank to all participants at these conferences. Finally, but not the least, my

thanks go to Nobusumi Sagara who gave me ideas which led the present research. Needless to say all remaining errors are mine.
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By employing the market game model, we can investigate not only the testable implications of the core itself,

but also its relationship between the testable implications of the competitive equilibrium. Since any competitive

equilibrium allocation belongs to the core of a market game, it is natural to expect that the testable implications

of the two concepts are closely related. For the comparison, we take a result given in Brown and Matzkin [3],

which studies the testable implications of the competitive equilibrium in pure exchange economies on the equilibrium

manifold. We will see that relationship between these testable implications reminiscent duality. On the one hand,

our testable implications of the core states that, from allocation observations, we need to find supergradients of

utility functions which meet above mentioned inequality conditions. On the other hand, the testable implications of

the competitive equilibrium states that, from market price observations, we need to find allocations which meet the

same inequality conditions. Moreover, the supergradients and the observed market price play exactly the same role

in the inequality conditions.

1.1 Related literature

The core is one of the most prominent solution concepts in cooperative game theory, and it is also widely accepted

as an important concept in economic analysis. From this perspective, it is natural to be curious about what testable

implications, if any, the core has. Recent studies given by Echenique [7], Echenique et al. [8], and Chambers and

Echenique [4] show the testable implications of the stability on the set of matchings in the two-sided matching model

with/without transfers.1

The transferable utility hypothesis is a popular assumption in both cooperative game theory and economic theory,

although it is considered as a strong assumption. Literature investigating the testable implications of transferable

utility is quite limited. Some examples are; Brown and Calsamiglia [2] and Sákovics [9], investigating the testable

implications of a consumer having quasi-linear utility, which implies transferable utility, Chiappori [6], deriving a

necessary and sufficient condition on the aggregate demand function which is compatible with Pareto optimality

and transferable utility within the group, and Cherchye et al. [5], which provides a revealed preference test on

observational data for household’s consumption behaviour to be consistent with Pareto optimality and transferable

utility.

1.2 The arrangement of this paper

The rest of this paper is arranged as follows. We begin with a brief introduction of the model, market games, in

section 2. Section 3 contains the main result of this paper; we show a necessary and sufficient condition for observed

allocations to be seen as the core allocations. In section 4, we investigate relationship between testable implications

of the core and the competitive equilibrium.

1Since the stable matching of two-sided matching model is the core with admissible coalition size is restricted to two, these studies

can be categorised as investigation of the testable implications of the core.
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2 Market games

Let N = {1, . . . , n} be a finite set of players. A game is a set function v : 2N → R with v(∅) = 0. Each subset A

of N is called a coalition. v(A) represents the worth of the coalition A. A preimputation is U ∈ RN which satisfies∑
i∈N Ui = v(N). The core of a game v, denoted c(v), is defined as

c(v) =

{
U ∈ RN |

∑
i∈A

Ui ≥ v(A) for all A ⊆ N,
∑
i∈N

Ui = v(N)

}
. (2.1)

A market M = (N, RL
+, (ω, ξ), (ui)i∈N ) consists of four elements. Each of the components is interpreted as follows:

• RL
+ is the commodity space,

• (ω, ξ) = (ωi, ξi)i∈N where (ωi, ξi) ∈ RL
+ × R is understood as a pair of the initial endowment of commodities

and numeraire,

• ui : RL
+ → R+ is a continuous, concave, and increasing subutility function for i.

Utility for player i who possesses xi ∈ RL
+ of commodities and yi ∈ R of numeraire is given by Ui(xi, yi) = ui(xi)+yi.

For a coalition A ⊆ N , (x, y) = (xi, yi)i∈A ∈ (RL
+×R)A is a feasible allocation for A if

∑
i∈A(xi, yi) ≤

∑
i∈A(ωi, ξi)

holds. We denote XA as the set of feasible commodity allocations for A.

Definition 2.1. A TU game (N, vM ) is called the market game generated by M = (N, RL
+, (ω, ξ), (ui)i∈N ) if

vM (A) = max
x∈XA

∑
i∈A

ui(xi) +
∑
i∈A

ξi. (2.2)

Definition 2.2. A feasible allocation (xi, yi)i∈N is a core allocation if

(Ui(xi, yi))i∈N ∈ c(vM ). (2.3)

In words, a TU game is the market game if the worth of each coalition is given by the maximal total utility

that the coalition can achieve. We say a feasible allocation (xi, yi)i∈N is a core allocation of the market M if the

preimputation derived from utility values from the allocation is in the core of the market game generated by M .

3 The core rationalization

Suppose that we have observed a finite number of allocations {(xt, yt)}T
t=1, where (xt, yt) = (xt

i, y
t
i)i∈N ∈ (RL

+ ×R)N

for all t. We refer to {(xt, yt)}T
i=1 as finite allocation data.2

2Here we assume that commodity allocations as well as numeraire allocations can be observed. This assumption opposes the most of

the literature investigating testable implications of transferable utility. For example, Cherchye et al. [5] provides both cases when transfers

are observable and are not, noting that the unobservable case is more realistic when it comes to empirical applications. Their argument

seems reasonable since in their setting, a household participates in the market and utility transfers are made among household’s members,

indicating the transfers occur outside the market. On the other hand, in the present setting, market participants are individuals and

utility transfers are also made among these individuals. Therefore we can interpret that utility transfers, which is equivalent to numeraire

transfers in our setting, occur inside the market. However, the observability assumption on numeraire allocation does not alter our result,

which will be seen in Theorem 3.1 and the argument following it.
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Our purpose in this section is to investigate a condition under which given finite allocation data {(xt, yt)}T
i=1,

each of the observed allocations (xt, yt) can be seen as a core allocation of some market. In what follows, we will

provide two tests of hypothesis, one it the core rationalization and the other is the Pareto rationalization. We state

the formal definitions of rationalizablity as follow.

Definition 3.1. An allocation data {(xt, yt)}T
t=1 is core rationalizable if there exist concave, continuous, and in-

creasing subutility functions (ui(·))i∈N , and initial endowments (ωt, ξt) = (ωt
i , ξ

t
i)i∈N ∈ (RL

+ × R)N for each t such

that

•
∑

i∈N (ωt
i , ξ

t
i) =

∑
i∈N (xt

i, y
t
i) for all t = 1, . . . , T

• (U(xt, yt))i∈N ∈ c(vMt) for all t = 1, . . . , T , where M t = (N, RL
+, (ωt, ξt), (ui)i∈N ).

Definition 3.2. An allocation data {(xt, yt)}T
t=1 is Pareto rationalizable if there exist concave, continuous, and

increasing subutility functions (ui(·))i∈N and initial endowments (ωt, ξt) = (ωt
i , ξi)i∈N ∈ (RL

+ × R)N such that

•
∑

i∈N (ωt
i , ξ

t
i) =

∑
i∈N (xt

i, y
t
i) for all t = 1, . . . , T

•
∑

i∈N ui(xt
i) = vMt(N) for all t = 1, . . . , T , where M t = (N, RL

+, (ωt, ξt), (ui)i∈N ).

Note that for Pareto rationalizability, only the observed commodity allocations matter; observing numeraire and

specifying particular initial endowments are in fact redundant. To see this, suppose that {(xt, yt)}T
t=1 is Pareto

rationalizable with initial endowments {(ωt, ξt)}T
t=1. Then for each t,

∑
i∈N Ui(xt

i, y
t
i) = vMt(N) holds, which is

equivalent with (xt, yt) being a solution of

max
∑
i∈N

Ui(xi, yi)

s.t.
∑
i∈N

(xi, yi) =
∑
i∈N

(ωt
i , ξ

t
i). (3.1)

Since
∑

i∈N (ωt
i , ξ

t
i) =

∑
i∈N (xt

i, y
t
i) and Ui(xi, yi) = ui(xi) + yi, the above optimization problem is equivalent with

xt being a solution of

max
∑
i∈N

ui(xi)

s.t.
∑
i∈N

xi =
∑
i∈N

xt
i. (3.2)

It is clear that, when the observed data is core rationalizable, it is also Pareto rationalizable. The following result

states that the converse is also true; the core rationalizability and the Pareto rationalizability are observationally

equivalent. Theorem 3.1 also says that the core rationalizability can be tested via verifying the existence of a solution

for a particular system of linear inequalities. In order to give a formal statement, we need some additional concepts.

For a given commodity allocation data {xt}T
t=1 and a player i ∈ N , let Xi = co{xt

i}T
t=1 be the convex hull of

observed allocations for the player. We say ui(·) is mixture linear on Xi if for any x, x′ ∈ Xi and for all α ∈ [0, 1] it
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holds that ui(αx+(1−α)x′) = αui(x)+ (1−α)ui(x′). It is evident that ui is mixture linear if and only if for any k,

x1, . . . , xk ∈ Xi and α1, . . . , αk ∈ [0, 1] with
∑

j αj = 1, we have ui(
∑

j αjxj) =
∑

j αjui(xj). We say ui is mixture

non-linear on Xi if it is not mixture linear on Xi.

The reason why we impose mixture non-linearity of ui(·) on Xi is to guarantee the testing power of core ra-

tionalizability. In other words, without mixture non-linearity, any allocation data can be rationalized as the core

allocations.3 This is analogous to utility functions are assumed to be locally non-satiated in the literature of revealed

preference test for utility maximization.

Theorem 3.1. The following statements are equivalent.

1. An allocation data {(xt, yt)}T
t=1 is core rationalizable by a set of continuous, concave, increasing, and mixture

non-linear subutility functions {ui(·)}i∈N .

2. An allocation data {(xt, yt)}T
t=1 is Pareto rationalizable by a set of continuous, concave, increasing, and mixture

non-linear subutility functions {ui(·)}i∈N .

3. There exist numbers ut
i ∈ R+, λt ∈ RL

++ (i ∈ N ;t = 1, . . . , T )such that,

us
i − ut

i ≤ 〈λt, xs
i − xt

i〉, ∀i ∈ N, ∀s, t = 1, . . . , T, (3.3)

where for each i and t there exists an index s such that the above inequality is satisfied strictly.

Proof. It is evident that 1 implies 2. Hence we only need to show that 2 implies 3, and 3 implies 1.

[2 ⇒ 3] Suppose that an allocation data set {(xt, yt)}T
t=1 is Pareto rationalizable. Then there exist concave,

continuous, mixture non-linear and increasing subutility functions ui(·), (i ∈ N) such that each xt is a Pareto

optimal allocation. Then xt = (xt
i)i∈N is a solution of the problem

max
∑
i∈N

ui(xi) (3.4)

s.t.
∑
i∈N

xi ≤
∑
i∈N

xt
i. (3.5)

It can be shown that there exists λt ∈ RL
++ such that λt ∈

∩
i∈N ∂ui(xt

i), where ∂ui(xt
i) is the set of supergradients

of ui at xt
i (see Lemma A.2 in Appendix). Set numbers ut

i = ui(xt
i) (t = 1, . . . , T , i ∈ N). Then it is easy to verify

these numbers satisfy inequalities (3.3).

It remains to show that for each i and t, (3.3) holds strictly for some s. Take i and t arbitrarily. Suppose, on

the contrary, that for any s we have us
i − ut

i = 〈λt, xs
i − xt

i〉. This implies, by the definition of ut
i, that ui(xs

i ) =

3For example, the subutility function

ui(xi) =

8

>

<

>

:

〈1, xi〉 if
P

` xi` ≤
P

` x̄`,

〈θ, xi − x̄〉 + 〈1, x̄〉 otherwise.

for all i, where θ = (θ`)`∈L with θ` ≤ 1 for all `, and 1 = (1, 1, . . . , 1) ∈ RL, rationalizes any allocation data. This indicates that imposing

merely non-linearity is insufficient for core rationalization to possess testing power.
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ui(xt
i) + 〈λt, xs

i − xt
i〉 for any observed allocation xs

i for i. Take αs ∈ [0, 1] for s = 1, . . . , T with
∑

s αs = 1 as

coefficients of the convex combination, and set xα
i =

∑
s αsx

s
i . Since λt ∈ ∂ui(xt

i), we have

ui(xα
i ) − ui(xt

i) ≤ 〈λt, xα
i − xt

i〉 =
∑

s

αs〈λt, xs
i − xt

i〉 =
∑

s

αs(ui(xs
i ) − ui(xt

i)), (3.6)

which implies

ui(xα
i ) −

∑
s

αsui(xs
i ) ≤ 0. (3.7)

By the concavity of ui, we obtain,

ui(xα
i ) =

∑
s

αsui(xs
i ). (3.8)

Now let x, x′ ∈ Xi be arbitrary. Since x and x′ are in the convex hull generated by the observed allocations for i,

we can find αs, α
′
s ∈ [0, 1] for s = 1, . . . , T with

∑
s αs =

∑
s α′

s = 1 such that x =
∑

s αsx
s
i and x′ =

∑
s α′

sx
s
i . Let

β ∈ [0, 1] be arbitrary. Then,

ui(βx + (1 − β)x′) = ui

(
β

∑
s

αsx
s
i + (1 − β)

∑
s

α′
sx

s
i

)
(3.9)

= ui

(∑
s

(αsβ + α′
s(1 − β))xs

i

)
(3.10)

=
∑

s

(αsβ + α′
s(1 − β))ui(xs

i ) (3.11)

= β
∑

s

αsui(xs
i ) + (1 − β)

∑
s

α′
sui(xs

i ) (3.12)

= βui(x) + (1 − β)ui(x′), (3.13)

where the third and the last equality are followed by (3.6). However, this means that ui is mixture linear on Xi,

which contradicts the assumption.

[3 ⇒ 1] Now suppose that we have found a set of numbers satisfying (3.3). For each i, define ui : RL
+ → R as

ui(xi) = min
t

{
ut

i + 〈λt, xi − xt
i〉

}
.

Since ui(·) is a minimum of affine functions, it is concave and continuous. By construction, it is clear that ui(·) is

increasing and ui(xt
i) = ut

i. Take (ωt, ξt) ∈ RL
+ × R such that

∑
i(ω

t
i , ξ

t
i) =

∑
i(x

t
i, y

t
i) and 〈λt, ωt

i − xt
i〉 + ξt

i ≤ yt
i for

each i ∈ N and each t (for example, (ωt, ξt) = (xt, yt) meets the requirement). We will show that (xt, yt) is a core

allocation in M t = (N, RL
+, (ωt, ξt), (ui)i∈N ).

Take x = (xi)i∈N arbitrarily which satisfies
∑

i∈N xi ≤
∑

i∈N ωt
i . Then we have∑

i∈N

ui(xi) ≤
∑
i∈N

(ut
i + 〈λt, xi − xt

i〉) (3.14)

≤
∑
i∈N

(ut
i + 〈λt, ωt

i − xt
i〉) =

∑
i∈N

ut
i =

∑
i∈N

ui(xt
i), (3.15)

where the first inequality holds by the construction of ui and the second holds because
∑

i∈N xi ≤
∑

i∈N ωt
i , and the

third equality holds since
∑

i∈N ωt
i =

∑
i∈N xt

i. Therefore, it has shown that xt is a Pareto optimal allocation.
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Let A ( N and take (x, y) = (xi, yi)i∈A arbitrarily which satisfies
∑

i∈A(xi, yi) ≤
∑

i∈A(ωt
i , ξ

t
i). For such A and

(x, y), we have ∑
i∈A

(ui(xi) + yi) ≤
∑
i∈A

(ut
i + 〈λt, xi − xt

i〉 + yi) (3.16)

≤
∑
i∈A

(ut
i + 〈λt, ωt

i − xt
i〉 + ξt

i) ≤
∑
i∈A

(ut
i + yt

i) =
∑
i∈A

Ui(xt
i, y

t
i), (3.17)

where the first inequality holds by the construction of ui, the second holds because
∑

i∈A(xi, yi) ≤
∑

i∈A(ωt
i , ξ

t
i),

and the third follows from 〈λt, ωt
i − xt

i〉 + ξt
i ≤ yt

i for all i. This shows that (xt, yt) is a core allocation.

Now what remains to show is the mixture non-linearity of ui(·) for every i ∈ N . Let αs ∈ (0, 1) for s = 1, . . . , T

such that
∑

s αs = 1. Note that by assumption, there is no index t such that us
i − ut

i = 〈λt, xs
i − xt

i〉 for all s. Define

xα =
∑

s αsx
s
i . Let t ∈ {1, . . . , T} be such that ui(xα) = ut

i + 〈λt, xα − xt
i〉. Then

ui(xα) −

(∑
s

αsui(xs
i )

)
= ut

i +
∑

s

αs〈λt, xs
i − xt

i〉 −
∑

s

αsu
s
i (3.18)

=
∑

s

αs((ut
i − us

i ) + 〈λt, xs
i − xt

i〉) (3.19)

>
∑

s

αs(〈λt, xt
i − xs

i 〉 + 〈λt, xs
i − xt

i〉) = 0, (3.20)

where the inequality holds because us
i − ut

i ≤ 〈λt, xs
i − xt

i〉 for all s, and the strict inequality holds at least for one s.

This shows the mixture non-linearity of ui.

As noted before, for Pareto rationalization, we only need to observe commodity allocations {xt}T
t=1. The equiva-

lence between Pareto rationalization and core rationalization provided in the preceding result indicates that the same

is in fact true for core rationalization. Precisely, it is also true that only observed commodity allocations {xt}T
t=1

matter for core rationalization. This can be seen in the equivalent inequality condition; no condition on {yt}T
t=1 is

involved. Therefore, even if we cannot observe numeraire allocations {yt}T
t=1, testable implications of the core does

not alter, and exactly the same result as Theorem 3.1 holds.4

The following example shows that there exists an allocation data which is not core rationalizable, indicating that

the core rationalizability is testable.

Example. Suppose N = {1, 2}, L = {1, 2} and T = 2. Consider the following allocation data:

x1
1 = (1, 2), x2

1 = (4, 6), x1
2 = (9, 5), x2

2 = (6, 1). (3.21)

This data is not core rationalizable. Suppose, on the contrary, that the data is core rationalizable. Then by Theorem

3.1, there exists λt ∈ R2
++ and ut

i ∈ R for t = 1, 2 and i = 1, 2 such that,

u1
i − u2

i < 〈λ2, x2
i − x1

i 〉, and u2
i − u1

i < 〈λ1, x1
i − x2

i 〉 (3.22)

4A similar redundancy result of numeraire observation can be inferred by comparing Brown and Calsamiglia [2] and Sákovics [9].
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for i = 1, 2, which implies

〈λ1, x2
i − x1

i 〉 < 〈λ2, x2
i − x1

i 〉 (3.23)

for i = 1, 2. However, this is impossible since it requires that

3λ1
1 + 4λ1

2 < 3λ2
1 + 4λ2

2, and − 3λ1
1 − 4λ1

2 < −3λ2
1 − 4λ2

2. (3.24)

4 Relationship between testable implications of the core and the com-

petitive equilibrium

In this section, we investigate the relationship between testable implications of the core rationalizability and the

rationalizabitlity of the competitive equilibrium, in the sense of Brown and Matzkin [3]. We will see a kind of dual

relationship between testable implications of the core rationalizability and the rationalizabitlity of the competitive

equilibrium.

Brown and Matzkin [3] clarifies the testable implications of the competitive equilibrium in pure exchange economies

on the equilibrium manifold. In other words, it shows a condition under which observed market prices can be seen

as competitive equilibrium prices. Hence our observations change from allocations to market prices. We first recall

setting given in Brown and Matzkin [3].5

Suppose that we have observed {(pt, ωt, ξt)}T
t=1, where pt ∈ RL

++ is the market price of commodities and (ωt, ξt) =

(ωt
i , ξ

t
i)i∈N with (ωt

i , ξ
t
i) ∈ RL

+ ×R is the initial endowment of commodities and numeraire. We refer {(pt, ωt, ξt)}T
t=1

as a market situation. We say a market situation {(pt, ωt, ξt)}T
t=1 is rationalizable as competitive equilibrium if there

exist allocations (x̄t, ȳt) = (x̄t
i, ȳ

t
i)i∈N for each t such that (pt, 1, x̄t, ȳt) constitutes a competitive equilibrium. The

formal definition is as follows.

Definition 4.1. A market situation {(pt, ωt, ξt)}T
t=1 is rationalizable as competitive equilibrium if there exist concave,

continuous, increasing and mixture non-linear subutility function ui(·) for each i ∈ N and allocation (x̄t, ȳt) =

(x̄t
i, ȳ

t
i)i∈N ∈ (RL

+ × R)N for each t = 1, . . . , T such that the following are satisfied;

• Utility maximization: 〈pt, xi〉 + yi ≤ 〈pt, ωt
i〉 + ξt

i implies Ui(xi, yi) ≤ Ui(x̄t
i, ȳ

t
i),

• Feasibility:
∑

i∈N (x̄t
i, ȳ

t
i) =

∑
i∈N (ωt

i , ξ
t
i).

6

Theorem 4.1 (Brown and Matzkin [3], Brown and Calsamiglia [2]). The following statements are equivalent.

1. A market situation {(pt, ωt, ξt)}T
t=1 is rationalizable as competitive equilibrium of some TU pure exchange

economy.

5A slight modification is made in order to incorporate their argument in our TU setting.
6As before Ui(xi, yi) = ui(xi) + yi.
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2. There exist numbers ut
i ∈ R+ and (x̄t

i, ȳ
t
i) ∈ RL

+ × R (t = 1, . . . , T ; i ∈ N) such that

ut
i − us

i ≤ 〈ps, x̄t
i − x̄s

i 〉 ∀i ∈ N, ∀s, t = 1, . . . , T, (4.1)

〈pt, x̄t〉 + ȳt
i = 〈pt, ωt

i〉 + ξt
i ∀i ∈ N, ∀t = 1, . . . , T, (4.2)∑

i∈N

(x̄t
i, ȳ

t
i) =

∑
i∈N

(ωt
i , ξ

t
i) ∀t = 1, . . . , T, (4.3)

where for each i and t, there exists an index s such that (4.1) holds strictly.

Proof. It is evident that the feasibility and (4.3) is equivalent. Brown and Calsamiglia [2] shows that (4.1) and (4.2)

are equivalent to the existence of ui(·) which is concave, continuous, and increasing such that (x̄t
i, ȳ

t
i) maximizes

Ui(xi, yi) under the budget constraint 〈pt, xi〉 + yi ≤ 〈pt, ωt
i〉 + ξt

i . We have shown, in Theorem 3.1, that mixture

non-linearity is equivalent to the condition that, for each i and t, there exists an index s such that (4.1) holds

strictly.

When {(pt, ωt, ξt)}T
t=1 is rationalized as competitive equilibrium, we can find (x̄t, ȳt) for each t so that (pt, 1, x̄t, ȳt)

constitutes a competitive equilibrium. Since equilibrium allocations are core allocations, it must be the case that

{(x̄t, ȳt)}T
t=1 is core rationalizable. Our inequality conditions correspond this fact; letting λt = pt for all t in

inequalities (4.1) leads to the inequalities in Theorem 3.1.

Remarkably, we can say the converse in the following sense: When {(xt, yt)}T
t=1 is core rationalizable, we can find

(ωt, ξt) and pt for each t such that {(pt, ωt, ξt)}T
t=1 is rationalized as competitive equilibrium. Moreover, in order

to satisfy the inequality condition in Theorem 4.1, we can take (x̄t, ȳt) to be the same as the originally observed

core allocation, i.e., (x̄t, ȳt) = (xt, yt). It turns out, therefore, that a core rationalizable allocation (xt, yt) can be

rationalized as the competitive equilibrium allocation as well. We formally state this result as follows.

Theorem 4.2. 1. If a market situation {(pt, ωt, ξt)}T
t=1 is rationalized as competitive equilibrium, then we can

find (xt, yt) such that {(xt, yt)}T
t=1 is core rationalizable. In particular, as λt in inequality (3.3), we can take

the observed price, i.e., λt = pt.

2. If a set of allocations {(xt, yt)}T
t=1 is core rationalizable, then we can find a market situation {(pt, ωt, ξt)}T

t=1

which is rationalized as competitive equilibrium. In particular, as (x̄t, ȳt) in inequality (4.1), we can take the

observed allocations, i.e., (x̄t, ȳt) = (xt, yt).

Proof. 1. Follows from the inspection given preceding to the statement of this result.

2. The strategy of this proof is essentially the same as we show [3 ⇒ 1] in Theorem 3.1, but for the sake

of completeness, we repeat it here explicitly. Since {(xt, yt)}T
t=1 is core rationalizable, we can find λt ∈ RL

++,

ut
i ∈ R+ for each t and i, such that inequality (3.3) holds. Let (ωt, ξt) be such that

∑
i(ω

t
i , ξ

t
i) =

∑
i(x

t
i, y

t
i) and

〈λt, ωt
i−xt

i〉+ξt
i = yt

i for each i. By defining pt = λt and (x̄t, ȳt) = (xt, yt), it is easily verified that (pt, ωt, ξt, x̄t, ȳt, ut
i)

meets the inequality conditions (4.1)-(4.3). Therefore by Theorem 4.1, {(pt, ωt)}T
t=1 is rationalized as competitive

equilibrium.

9



Note that, since the Pareto rationalizability and the core rationalizability are equivalent, as we have shown in

Theorem 3.1, the statement remains true even if we replace the term “core rationalizability” with “Pareto rational-

izability” in the statement 2 of Theorem 4.2.

The relationship between rationalizability by the core and the competitive equilibrium reminiscent duality. For

the core rationalization, observations are allocations and we need to find suitable supergradients of utility functions.

On the other hand, for the rationalization by competitive equilibrium, observations are market prices and we need to

find suitable allocations. These two rationalizations are connected by the inequality condition (3.3) (or equivalently

(4.1)); the supergradients and the observed market price play exactly the same role in the inequality conditions.

A Appendix

Let f : Rn → R be a real-valued function. The set

∂f(x) = {λ ∈ Rn | f(y) ≤ f(x) + 〈λ, y − x〉 ∀y ∈ Rn} (A.1)

is called the superdifferential of f at x. An element λ ∈ ∂f(x) is called a supergradient of f at x. If f is concave,

then ∂f(x) is non-empty (see Schirotzek [10]).

For x, ξ ∈ Rn, we call

f ′(x; ξ) = lim
θ↓0

f(x + θξ) − f(x)
θ

(A.2)

as the directional Gâteau derivative of f at x in the direction ξ. If f is convex, f ′(x; ξ) always exists and

∂f(x) = {λ ∈ Rn | 〈λ, ξ〉 ≥ f ′(x; ξ) ∀ξ ∈ Rn} (A.3)

holds (see Shirotzek [10]).

Lemma A.1. Let f : (RL
+)N → R be defined as f(x) =

∑
i∈N ui(xi) for x = (xi)i∈N . Then we have,

∂f(x) = ×i∈N∂ui(xi). (A.4)

Proof. Let λ ∈ ×i∈N∂ui(xi), or in other words, λ = (λi)i∈N , λi ∈ ∂ui(xi) for all i ∈ N . We have u(yi) ≤

ui(xi) + 〈λi, yi − xi〉 for all yi ∈ RL for all i. Sum both sides of the inequality over i ∈ N , we obtain

f(y) =
∑
i∈N

ui(yi) ≤
∑
i∈N

ui(xi) +
∑
i∈N

〈λi, yi − xi〉 (A.5)

= f(x) + 〈λ, y − x〉, (A.6)

for all y = (yi)i∈N . Therefore λ ∈ ∂f(x).

Let λ = (λi)i∈N ∈ ∂f(x). Take i ∈ N and ξi ∈ RL arbitrarily. Let ζ = (ζj)j∈N ∈ (RL)N be ζj = 0 for j 6= i and

ζi = ξi. Then we have

f ′(x; ζ) = lim
θ↓0

1
θ
(f(x + θζ) − f(x)) (A.7)

= lim
θ↓0

1
θ
(ui(xi + θξi) − ui(xi)) (A.8)

= u′
i(xi; ξi) ≤ 〈λ, ζ〉 = 〈λ, ξi〉 (A.9)
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where the inequality holds because λ ∈ ∂f(x). Since xi and i was arbitrary, we have λi ∈ ∂ui(xi) for all i ∈ N .

Lemma A.2. If x∗ = (x∗
i )i∈N is a solution of the following problem:

max
∑
i∈N

ui(xi)

s.t.
∑
i∈N

xi ≤
∑
i∈N

ωt
i , (P)

then there exists λ ∈ RL
++ such that λ ∈

∩
i∈N ∂ui(x∗

i ).

Proof. Let f(x) =
∑

i∈N ui(xi) for x = (xi)i∈N . For l ∈ L, define al ∈ (RL)N by al,i = χ{l} ∈ RL where χ{l}(k) = 1

if k = l and χ{l}(k) = 0 if k 6= l. Define also βl =
∑

i∈N ωi,l for each l ∈ L. Let Cl = {x ∈ (RL)N | gl ≥ 0} where

gl(x) = βl − 〈al, x〉, and C =
∩

l∈L Cl. Then maximization problem (P) is equivalently written as

max f(x)

s.t.x ∈ C. (P’)

Then, by the Kuhn-Tucker theorem, x∗ = (x∗
i )i∈N is a solution of (P’) if and only if there exists b ∈ ∂f(x∗) and

λ = (λl)l∈L ∈ RL
++ such that

b =
∑
l∈L

λlal. (A.10)

By definition of al, we have b = (λ, . . . , λ). Now by Lemma A.1, b ∈ ×i∈N∂ui(x∗
i ). Therefore we have λ ∈∩

i∈N ui(x∗
i ).
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