A Course on Inductive Game Theory 3: Transpersonal Understanding through Social Roles, and Emergence of Cooperation

by M. Kaneko, 2009 March 24

1

Aim: **Experiential origin/emergence** of **belief/knowledge** of the other's understanding about the game structure.

Key notions:

- 0: distinction between persons and social roles
- 1: role switching
- 2: experiences of both roles
- 3: **transpersonal** understanding - projection of one's experiences to the other.

A memory kit κ_i of person *i* is given as

$$\langle (s_a^o, s_b^o), (D_{ia}, D_{ib}), (h_{ia}, h_{ib}), (\rho_{ia}, \rho_{ib}) \rangle$$
:

- (s_a^o, s_b^o) is the pair of regular actions;
- D_{ir} (r = a, b) is the accumulate d domains of experiences with $(s_a^o, s_b^o) \in D_{ia} \cup D_{ib} \subseteq S_a \times S_b;$
- $h_{ir}: D_{ir} \to R$ is the observed payoff function given as $h_{ir}(s_a, s_b) = h_r(s_a, s_b)$ for all $(s_a, s_b) \in D_{ir}$;
- (ρ_{ia}, ρ_{ib}) is a vector of frequency weights with $\rho_{ia}, \rho_{ib} \ge 0$ and $\rho_{ia} + \rho_{ib} = 1$.

5

An Example		Sb1	Sb2	Sb3		
	Sa1	3,3	10,2	3,1		
	Sa2	2,10	4,4	5,5		
	Sa3	1,3	5,5	4,4		
$D_{1a}^{N} = \{(s_{a1}, s_{b1}), (s_{a2}, s_{b1}), (s_{a3}, s_{b1})\} \text{ and } D_{1b}^{N} = \phi.$ $\rho_{1a} = \rho_{2b} = 1.$ Reciprocal Active Domains: $D_{1a}^{A} = \{(s_{a1}, s_{b1}), (s_{a2}, s_{b1}), (s_{a3}, s_{b1})\} \text{ and } D_{1b}^{A} = \{(s_{a1}, s_{b1}), (s_{a1}, s_{b2}), (s_{a1}, s_{b3})\}.$ $\rho_{a} = \rho_{a} = 1/2.$						
Reciprocal Active - Passive Domains :						
$D_{1a}^{AP} = D_{1b}^{AP} = \{(s_{a1}, s_{b1}), (s_{a2}, s_{b1}), (s_{a3}, s_{b1})\} \cup \{(s_{a1}, s_{b1}), (s_{a1}, s_{b2}), (s_{a1}, s_{b3})\}.$						
$\rho_{1a} = \rho_{2b} = 1/2.$						

Cognitive Postulates

After one play of the game, person *i* receives his short-term memory expressed as

 $\langle r, (s_a, s_b), h_{ir}(s_a, s_b) = h_r(s_a, s_b) \rangle$

- **EP1 (Forgetfulness):** If experiences are not frequent enough, then they would not be transformed into a long-term memory and disappear from a person's mind.
- **EP2(Habituation):** A local (short-term) memory becomes lasting as a long-term memory in the mind of a person by habituation,
- **EP3 (Conscious Memorization Effort):** A person makes a conscious effort to memorize the result of his own trials. These efforts are successful if they occur frequently enough relative to his trials.
- **EP4 (Sensitive with Active relative to Passive):** A person is more (or not less) sensitive to his own active deviation than he is to his passive experiences.

9

 $\begin{aligned} \hline \textbf{Direct and Transpersonal Understandings} \\ \text{Let a memory kit of person } i \text{ be given as} \\ \hline \kappa_i &= \left\langle (s_a^o, s_b^o), (D_{ia}, D_{ib}), (h_{ia}, h_{ib}), (\rho_{ia}, \rho_{ib}) \right\rangle. \end{aligned}$ $\\ \bullet \text{ The direct understanding is given as } g^{ii}(\kappa_i) &= (a, b, S_a^i, S_b^i, h_a^{ii}, h_b^{ii}): \\ \text{ID1}^i : S_r^i &= \{s_r : (s_r; s_{-r}) \in D_{ia} \cup D_{ib} \text{ for some } s_{-r}\} \text{ for } r = a, b; \\ \text{ID2}^{ii} : \text{for } r = a, b, h_r^{ii} \text{ is defined over } S_a^i \times S_b^i \text{ as follows }: \\ h_r^{ii}(s_a, s_b) &= \begin{cases} h_r^{ii}(s_a, s_b) & \text{if } (s_a, s_b) \in D_{ir} \\ \theta_r & \text{otherwise} \end{cases} \end{aligned}$ $\\ \text{The transpersonal understanding is given as } g^{ij}(\kappa_i) = (a, b, S_a^i, S_b^i, h_a^{ij}, h_b^{ij}): \\ \text{ID2}^{ij} : \text{for } r = a, b, h_r^{ij} \text{ is defined over }: S_a^i \times S_b^i \text{ as follows }: \\ h_r^{ij}(s_a, s_b) &= \begin{cases} h_{ir}(s_a, s_b) & \text{if } (s_a, s_b) \in D_{ir} \\ \theta_r & \text{otherwise} \end{cases} \end{aligned}$ $\\ \text{ID2}^{ij} : \text{for } r = a, b, h_r^{ij} \text{ is defined over }: S_a^i \times S_b^i \text{ as follows }: \\ h_r^{ij}(s_a, s_b) &= \begin{cases} h_{ir}(s_a, s_b) & \text{if } (s_a, s_b) \in D_{ir} \\ \theta_r & \text{otherwise} \end{cases} \end{aligned}$

Exercises:

1: Calculate the following domains in the example of page 7:

- a: non-reciprocal domains;
- b: reciprocal active domains;
- c: reciprocal active-passive domains.
- 2: Calculate the *d*-understanding and *tp*-understanding for the above three domains.

Non - reciprocal Domains with $(s_a^o, s_b^o) = (s_{a1}, s_{b1})$:

$$D_{1a}^{N} = \{(s_{a1}, s_{b1}), (s_{a2}, s_{b1}), (s_{a3}, s_{b1})\}$$
 and $D_{1b}^{N} = \phi$.

Definition 5.1: I.C.Equilibrium						
Let $\Gamma^{i} = \left\langle (s_{a}^{o}, s_{b}^{o}), (S_{a}^{i}, S_{b}^{i}), (\rho_{ia}, \rho_{ib}), (H^{ii}, H^{ij}) \right\rangle$ be the i.d.view.						
We say that (s_a^o, s_b^o) is an i.c.equilibrium iff for all $s_a \in S_a^i$						
$H^{ii}([s_{a}^{o}, s_{b}^{o}]_{a}, [s_{a}^{o}, s_{b}^{o}]_{b}) \ge H^{ii}([s_{a}, s_{b}^{o}]_{a}, [s_{a}, s_{b}^{o}]_{b}) $ (5.1)						
$H^{ij}([s_a^o, s_b^o]_a, [s_a^o, s_b^o]_b) \ge H^{ij}([s_a, s_b^o]_a, [s_a, s_b^o]_b)$						
and for all $s_b \in S_b^i$,						
$H^{ii}([s_a^o, s_b^o]_a, [s_a^o, s_b^o]_b) \ge H^{ii}([s_a^o, s_b]_a, [s_a^o, s_b]_b) $ (5.2)						
$H^{ij}([s_a^o, s_b^o]_a, [s_a^o, s_b^o]_b) \ge H^{ij}([s_a^o, s_b]_a, [s_a^o, s_{bb}^o]_b).$						
We say that (s_a^o, s_b^o) is a mutual i.c.equilibrium						
iff it is an i.c.equilibrium for $i = 1, 2$.						
	16					

<u>Theorem 5.1: (Non - reciprocal Active Domain)</u>: Consider the non - reciprocal active domain (D_{ia}^N, D_{ib}^{iN}) where person *i* takes role *a*. Then the pair (s_a^o, s_b^o) is an i.c. equilibrium if and only if it is a Nash equilibrium in peron *i*'s d - understanding g^{ii} .

<u>Corollary 5.2</u>: Consider the non - reciprocal active domain (D_{ia}^N, D_{ib}^{iN}) for i = 1, 2. Then the pair (s_a^o, s_b^o) of regular actions is a mutual i.c. equilibrium if and only if it is a Nash equilibrium in *G*.

17

Reciprocal Domains

 $\begin{array}{l} \hline \text{Theorem 6.1: (Utilitarian Criterion)}: \text{Let } (s_a^o, s_b^o) \text{ be an i.c. equilibrium} \\ \hline \text{for } \Gamma^i \text{ with } (s_a^o, s_b^o) \in D_{ia} \cap D_{ib}. \text{ Then, it holds that} \\ (1): \text{if } (s_a, s_b^o) \in D_{ia} \cap D_{ib}, \text{ then } h_a(s_a^o, s_b^o) + h_b(s_a^o, s_b^o) \geq h_a(s_a, s_b^o) + h_b(s_a, s_b^o); \\ (2): \text{if } (s_a^o, s_b) \in D_{ia} \cap D_{ib}, \text{ then } h_a(s_a^o, s_b^o) + h_b(s_a^o, s_b^o) \geq h_a(s_a^o, s_b) + h_b(s_a^o, s_b). \end{array}$

We say that (D_{ia}, D_{ib}) is internally reciprocal iff $\operatorname{Proj}(D_{ia}) = \operatorname{Proj}(D_{ib})$, where $\operatorname{Proj}(T) := \{(s_a, s_b) \in T : s_a = s_a^\circ \text{ or } s_b = s_b^\circ\}.$

<u>Theorem 6.2</u>: (Existence): Let $\rho_{ia} = 1/2$. Then there is a pair (s_a^o, s_b^o) such that for any internally reciprocal domains (D_{ia}, D_{ib}) with $(s_a^o, s_b^o) \in D_{ia}$, the pair (s_a^o, s_b^o) is an i.c.equilibrium in Γ^i .

Relationships to other disciplines				
 Experimental/Behavioral Economics 				
 the IGT approach provides a lot of hypothetical propositions to be tested and experimental designs for them. Furthermore, indirect implications and testable propositions: patterned behavior, non-instantaneous maximizations, non-instantaneous logical inferences, etc. Generally, negation of omniscience. Dependence of Individual behavior upon the background social context. 				
 Morality in the form of Utilitarianism again, experiential and emerging from social interactions (anthropological) – different from the rationalistic school of morality (Harsanyi (1953)) Adam Smith's moral sentiments a human born with such morality.²⁴ 				