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Abstract

Inductive game theory has been developed to explore the origin/emergence of
beliefs/knowledge of a person from his accumulated experiences of a game situation.
So far, the theory has been restricted to a person’s view of the structure not includ-
ing another person’s thoughts. In this paper, we explore the origin/emergence of
one’s view of the other’s beliefs/knowledge about the game situation. We restrict
our exploration to a 2-role (strategic) game, which has been recurrently played by
two persons with switching the roles of positions (players). By switching roles,
each person accumulates experiences of both roles and these experiences become
the source of a person’s (transpersonal) view about the other person’s view. We
show that as the degree of reciprocity increases, cooperation will emerge.

1. Introduction

We will consider the problem of how a person obtains beliefs/knowledge about other
persons’ thoughts. We look for experiential bases for such beliefs/knowledge. A crucial
distinction is made between persons (actors) and social roles (players), which allows a
person to switch roles from time to time. This enables a person, based on his experiences,
to guess the other person’s thinking, and even to obtain a social perspective, which goes
beyond an individual perspective. Within this framework, we can go further to discuss
the emergence of cooperation.
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In this introduction, we will refer to the standard game theory and relevant liter-
atures so as to better understand our approach. Then we discuss new concepts to be
needed and phenomena to be captured in the scope of our approach.

1.1. General Motivations

It is customary in game theory and economics to assume well-formed beliefs/knowledge
of a game for each player, which is often implicit and sometimes explicit. The present
authors [15], [16] and [17] have developed inductive game theory in order to explore
the basic question of where a personal understanding of a game comes from1. In those
papers, an individual view and its derivation from a player’s experiences are discussed
from various points of view. Nevertheless, they have focussed an individual perspective
of society but did not reach the stage of research on his thoughts about other persons’
thoughts. This paper aims to take one step further to explore the origin and emergence
of a person’s thoughts about other persons’ thoughts.

To take this step, a person needs to think about others’ beliefs/knowledge on the
social structure. We introduce the concept of social roles, and use also the term, person,
to distinguish it from the standard term “player”; the latter is close to our notion of
a social role. A person takes a social role and may switch his role from time to time.
Taking different roles will be a key to understanding others’ perspectives. By project-
ing his experiences of the various roles in his mind, he develops his social perspective
including others’ thoughts. In the following, we confine ourselves to the 2-person case
to focus on the main problems emerging from those new concepts.

When the persons switch social roles reciprocally, a new feature is emerging: Re-
ciprocal relationships provide each person with a rich source for inferring/guessing the
beliefs of the other person. When the persons switch roles enough, each has been in the
same position and has seen the other person in the corresponding position. This level of
reciprocity may give each person “reason to believe” that the other’s view is the same
as his. This idea is reminiscent of a requirement imposed for “common knowledge” in
Lewis [20]. This will be the key for the development of our theory.

Broadly speaking, we may regard our exploration as undertaken along the line of
symbolic interactionism due to Mead [21] (cf., Collins [5], Chap.7). Each isolated ex-
perience is not more than a sequence or a set of symbols. However, by playing roles
reciprocally and interactively, the accumulated set of experiences could constitute some
meaning. This is analogous also to symbolic logic (cf., Mendelson [22] and Kaneko
[13]) in that it starts with primitive symbols without meanings. Formulae consisting of
those symbols and their further combinations may eventually generate some meanings.
An individual perspective is obtained by combining experiences to obtain some mean-
ingful view. A social perspective is obtained by combining experiences of reciprocal

1A seminal form of inductive game theory was given in Kaneko-Matsui [18].
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Figure 1.1: Social Web

interactions into an even greater view. In the sociology literature, these problems were
discussed without giving a mathematical formulation. Our approach is regarded as a
mathematical formulation of symbolic interactionism, and expands its perspective while
enabling us to examine it critically.

An example, due to Mead [21], for the distinction between a person and a social
role consists of the positions of pitcher, catcher, first base, etc..., in a baseball team.
Since we use only a 2-role strategic game for our exploration, it may be better to refer
to a 2-role example of a family affair between a wife and a husband: They may divide
their housekeeping into the breakfast maker and dinner maker. There are numerous
alternative varieties, e.g., raising children versus working at the office, cleaning the house
versus gardening, or allocating finances versus generating finances. In such situations,
role-switching becomes crucial for understanding the other’s perspective.

A target game situation is in a social web like Fig.1.1: Two persons 1 and 2 play
the strategic game Go(1, 2) in the north-west in Fig.1.1, where Go is assumed to be
a standard strategic game with two “players”, which are roles a and b. In Go(1, 2),
persons 1 and 2 take roles a and b, respectively. If they switch roles a and b, the game
situation becomes as Go(2, 1) in the south-east. Although we will focus on a particular
situation such as Go, it is a small part of the entire social web for the persons. Each
person participates in various other social games such as university administration,
a community baseball team, etc. This remark should not be forgotten, and will be
discussed in various places in the paper.

If person 1 has experienced two roles a and b from time to time, person 1 could
guess person 2’s thoughts. This is the source for interpersonal beliefs/knowledge of the
structure of the game. Of course, this requires reciprocity of roles played by those two
persons. We will explore how such reciprocity is needed for person 1 to fully imagine the
other’s thoughts. Another extreme case, which should not be ignored, is one where they
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do not switch roles at all, and as a consequence, person 1 cannot imagine 2’s thoughts.
Our theory presents some capacity to separate these cases and generates different results
based on this separation. One such difference is that cooperation would not be reached
without a sufficient level of reciprocity.

It is a salient point of our approach that thinking about the other’s thoughts in one’s
mind might lead to cooperation. This type of idea was discussed and emphasized by
Mead [21] and his predecessor, Cooley [6] to argue the pervasiveness of cooperation in
human society. This level of optimism was criticized as too naive by later sociologists
(see Collins [5], Chap.7). In our theory, cooperation is one possibility, but not necessarily
guaranteed. We can discuss when cooperation likely happens and when not.

Another comment is that although we discuss social roles, we do not address the
important problem of emergence of “social roles”. Instead, we treat social roles as
exogenously given, and target the emergence of the other’s thoughts and cooperation
based on role-switching2.

In the game theory literature, cooperative behavior has been extensively discussed,
but no relationships between cooperative behavior and cognitive assumptions are dis-
cussed. Since this will be important to distinguish our new theory from the other extant
theories, we will give brief discussions on the treatments of cooperative behavior in the
game theory literature in Section 1.2.

It is another salient point that the inductive game theory approach, especially the
development in this paper, gives some answers to many of the “Top Ten Research
Questions” given in Camerer [3], e.g., “How do people value the payoffs of others?”, and
“What game do people think they are playing?” We will address these questions in this
paper.

1.2. Brief Discussions on Cooperative Behavior in the Literature

Cooperative behavior or cooperation has been discussed a lot in the literature of game
theory and economics. In contrast to our approach, cooperative behavior there is sim-
ply assumed and/or is shown to be derived through noncooperative game theory. In
all of these theories, it is, implicitly or explicitly, assumed that the players have be-
liefs/knowledge on the game structure; they neither aim to nor are able to discuss the
emergence of basic beliefs/knowledge. Nevertheless, small summaries of these fields
would help the reader to understand what we are going to do and how it relates to the
extant theories. Here, we will look only at cooperative game theory, the Nash program,
and the repeated game approach.

Cooperative game theory was already extensively discussed in von Neumann- Mor-
genstern [26] and a lot of branches have been developed. In them, cooperation itself is
a very basic postulate, and possible outcomes resulting from cooperative behavior are

2This is pointed out by Nathan Berg.
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targets to be studied. This theory is incapable of discussing the origin/emergence of
cooperation.

The Nash program, which was originally suggested by Nash [23], p.295, may ap-
pear to resolve this incapability by reducing cooperation into individual activities for
cooperation: The possibilities for some players to propose to cooperate with some other
players are described as moves in (rules of) an extensive game. In this theory, we may
discuss a process for cooperative behavior, an example of which was given in Nash [24].
The Nash program reduces the postulate of cooperation into the rules of a game, but
this theory is also incapable of addressing the question of emergence of cooperation.

The repeated game approach (cf., Hart [10]) has two similar aspects to our approach
in that both treat recurrent situations and discuss cooperation as a possible outcome.
Nevertheless, the two approaches have a radical difference in their basic cognitive pos-
tulates. The repeated game approach cannot address the question of emergence of be-
liefs/knowledge. Also, in the repeated game approach, a cooperative outcome is based
on threats and the emergence of cooperation/cooperative behavior is not in the scope.
In our theory, cooperation is founded on experiential understanding of the roles and
behaviors in the game.

The repeated game approach formulates the entire situation as a huge one-shot game,
i.e., an infinite extensive game. Then the Nash equilibrium (or its refinement) is adopted
for this entire game. The Nash equilibrium is interpreted as describing ex ante decision
making in the sense that each player makes a decision as well as his prediction about the
others’ decision before the actual play of the repeated game. This requires each player
to be fully cognizant of the entire game structure3. For this reason, the repeated game
approach cannot address the basic cognitive question of where beliefs/knowledge about
the game structure and others’ beliefs comes from for a player. In this respect, the Nash
program is in the same position; the Nash program also requires full cognizance.

Thus, the extant theories do not succeed in addressing the question of emergence
of beliefs/knowledge for players, and furthermore, their postulates are not suitable to
a study of an emergence of cooperation. This should not be taken to mean that coop-
eration does not prevail in society. Contrary to this, it is believed among many social
scientists that cooperation and cooperative behavior are widely observed phenomena
in society. Inductive game theory can discuss both the emergence of beliefs/knowledge
and cooperation.

Fig.1.2 illustrates what we mean by “emergence of cooperation”. We will formulate
the concept of an intrapersonal coordination equilibrium. It is the same as the non-
cooperative Nash equilibrium when the situation is non-reciprocal. When the situation is
more reciprocal, some cooperative outcome is emerging. Hence, the degree of reciprocity

3This is not the intended interpretation of a Nash equilibrium in the repeated game for some authors
(e.g., Axelrod [2]) - - in which case, the cognitive assumption must be different from the full cognizance
but has not been explicated.
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Figure 1.2: Emergence of Cooperation

is a key for the cooperation.
We will connect our cooperation result to some behavioral game theory literature.

Behavioral/experimental game theory has reported many experiments to support the
pervasiveness of cooperative behavior. One observation in the repeated situation of
the prisoner’s dilemma is that cooperative outcomes emerge after some repetition of
the game (cf., Cooper-DeJong-Forsyth-Ross [4]) Another is the experimental study of
the ultimatum game and dictator game, which shows that people do cooperate, even
though the standard game theoretical argument (subgame perfection) does not predict
cooperation at all (cf., Güth-Schmittberger-Schwarze [8], Kahneman-Knetsch-Thaler
[12], and also Camerer [3] for a more recent survey). In Section 7, we will examine
implications of our theory of cooperation to the literature of those behavioral studies,
specifically, looking at the prisoner’s dilemma, ultimatum game and dictator game.

1.3. Basic Postulates for an Understanding of the Other’s Mind

Kaneko-Kline [15], [16] and [17] chose a general environment corresponding to an exten-
sive game and already met a lot of basic problems in the consideration of experiences
and their generations. Also, various basic notions in the extant game theory such as “in-
formation”, “memory”, and moreover, “extensive game” itself needed to be redefined.
In the consideration of induction, they met also partiality, indeterminacy, falsity, etc.
in an inductively derived view on the social structure.

As stated above, we confine ourselves here to a 2-role strategic game to avoid the
difficulties mentioned above. Nevertheless, since we now include the other’s thoughts,
our theory becomes fairly complex, and also, we need various subtle definitions. Thus,
it would be better to mention the basic postulates for one’s thinking about the other’s
and for the emergence of cooperation.

First, we make the basic postulate that a person cannot directly look into the other’s
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mind. Instead, we postulate that person i infers/guesses from his own experiences what
person j may know about the situation. Transpersonal projection of one’s experiences
onto the other is considered based on experiences of different roles. Thus, our theory is
experiential and follows the tradition from Mead [21].

One more postulate we should mention here is on use of the beliefs/knowledge about
the other’s thoughts. With role-switching, a person can begin to think about a change in
his behavior and of how the other thinks of this change. Incorporating his transpersonal
projection of one’s experiences onto the other’s thoughts, we define the equilibrium
concept called an intrapersonal coordination equilibrium. Our analysis of the emergence
of cooperation is based on this concept.

The remainder of the paper is as follows: Section 2 gives the basic definitions of a
2-role game, the domain of experiences, etc. Section 3 defines person’s direct under-
standing of the basic situation and transpersonal understanding of the other’s under-
standing from his experiences, which is an intermediate step to the main definition of
an inductively derived view (i.d.view) given in Section 4. The i.d.view combines those
understandings together with the regular behavior and frequency weights of roles. In
Section 5, the definition of an intrapersonal coordination equilibrium is defined, and is
studied, first, in non-reciprocal cases. In Section 6, we study it in reciprocal cases. The
results obtained Sections 5 and 6 are applied to the ultimatum game and dictator game
in Section 7. In Section 8, we will discuss external and reciprocal relations between the
persons. In Section 9, we will discuss implications of our approach together with the
results obtained in this paper.

2. Two-Person Strategic Game with Social Roles

2.1. 2-Role Strategic Game and Role Assignments

We start with a 2-role (strategic) game G = (a, b, Sa, Sb, ha, hb), where a and b are
(social) roles, Sr = {sr1, ..., sr`r} is a finite set of actions, and hr : Sa × Sb → R is
a payoff function for each role r = a, b. We will refer to this game as the base game.
Each role is taken by person i = 1, 2. We have a role assignment π, which is a one-one
mapping π : {a, b}→ {1, 2}. The expression π(r) = i means that i is the person assigned
to role r.We may also write π = (ia, ib) to mean that persons ia and ib take roles a and
b, respectively.

A 2-person (strategic) game with social roles is given by adding a role assignment
π = (ia, ib) to a 2-role strategic game G:

G(π) = (ia, ib, Sa, Sb, ha, hb). (2.1)

That is, persons ia and ib taking roles a and b play the base game G. We consider the
following example, which will be used later.
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Example 2.1: In the game G(1, 2) of Table 2.1, persons 1 and 2 are assigned to roles a
and b. The game G(2, 1) has the same structure, but the role-assignments are reversed.
The gameG of Table2.1 is symmetric with respect to roles a and b. The gameG0 of Table
2.2 obtained from Table 2.1 by multiplying the payoffs of role b by 2 is a non-symmetric
example. In our theory, this multiplication (more generally, an affine transformation)
of payoffs may matter to behavioral results. In Section 7, it will be discussed using the
prisoner’s dilemma game how transformations of payoffs can matter to behavior.

Table 2.1;G(1, 2) Table 2.2; G0

1\2 sb1 sb2 sb3
sa1 (3, 3) (10, 2) (3, 1)
sa2 (2, 10) (4, 4) (5, 5)
sa3 (1, 3) (5, 5) (4, 4)

a\b sb1 sb2 sb3
sa1 (3, 6) (10, 4) (3, 2)
sa2 (2, 20) (4, 8) (5, 10)
sa3 (1, 6) (5, 10) (4, 8)

A larger recurrent social context exists behind games G(1, 2) or G(2, 1), like Fig.1.1. In
Fig.1.1, G0(1, 2) and G0(2, 1) are two local situations with the same 2-role game G0.We
assume that the persons behave in a regular manner subject to some trial deviations
and that each person accumulates experiences of playing this game with different roles.

Since the situation we consider is recurrent, the information structure of observations
after each play of a game should be specified. We assume that after each play of G(π),
each person with role π(r) = i observes

Ob1: the action pair (sa, sb) played;

Ob2: his own payoff (value) from this pair.

These postulates are asymmetric in that person i can observe both actions taken by him
and the other, but can observe only his own payoff. This asymmetry will be important in
Section 3. With respect to the treatment of payoffs, we should emphasize the distinction
between having a payoff function and knowing it. Here, we assume that each person
recognizes each payoff value hr(sa, sb) only when he experiences it but does not know
the function hr itself. Only after he has accumulated enough memories of experiences,
he may come to know some part of the payoff function.

2.2. Accumulated Memories

Now, we consider person i’s accumulation of experiences up to a particular point of
time. It is summarized as a memory kit κi = h(soa, sob), (Dia,Dib), (hia, hib); (ρia, ρib)i,
which consists of

κ1: the pair (soa, s
o
b) of regular actions ;

κ2: the accumulated domain of experiences Di = (Dia,Dib) consisting of experiences of
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Figure 2.1: Memory Kits

action pairs from taking roles a and b, respectively;

κ3: person i’s observed payoff functions (hia, hib) over Di;

κ4: person i’s vector (ρia, ρib) of frequency weights for roles a and b.

Person i has obtained these components by playing game G with possibly different roles
from time to time. Component κ1 means that the persons play regularly the actions soa
and sob when they are assigned to roles a and b. Component κ2 states that person i has
other experiences in addition to the regular actions. Occasionally, each person i deviates
from sor to some other actions sr, and some (or all) actions experienced are remaining
in his mind, which form the sets Dia and Dib. The third components, (hia, hib), in κ3
are the observed (perceived) payoff functions over (Dia,Dib), which are mathematically
defined presently. The last component (ρia, ρib) in κ4 means that person i evaluates
how frequently he has been assigned to roles a and b. Accurate weights are not really
our intention4, but here we assume that it is a single vector for each i.

In the following, we use the convention that if r = a or r = b, then s(−r) ≡ s−r = sb
or sa, respectively, but (sr; s−r) = (sa, sb) in either case.

Mathematically, the components of a memory kit κi = h(soa, sob), (Dia,Dib), (hia, hib);
(ρia, ρib)i are given and assumed to satisfy the following conditions: for all r = a, b and
sr ∈ Sr:

(soa, s
o
b) ∈ Dia ∪Dib ⊆ Sa × Sb; (2.2)

if (sr; s−r) ∈ Dir, then (sr; so−r) ∈ Dir; (2.3)

hir : Dir → R and hir(sa, sb) = hr(sa, sb) for all (sa, sb) ∈ Dir; (2.4)

ρia + ρib = 1 and ρia, ρib ≥ 0. (2.5)

Condition (2.2) states that the domains of accumulation include the regular actions
(soa, s

o
b). It is the intent that (s

o
a, s

o
b) has been played in G(1, 2) and G(2, 1) as the regular

4See Hu [11] for the concept of frequency and the frequentist interpretation of expected utility theory.
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actions, while person i has made some trial deviations from (soa, s
o
b) and accumulated

his experiences in Dia and Dib. We allow Dia or Dib to be empty, though the union
Dia ∪Dib is nonempty by (2.2). If Dia = ∅, then person i has never experienced role a
at least in his memory.

Condition (2.3) that if ever some pair (sr; s−r) is accumulated in Dir, then the pair
coming from the unilateral trial sr from the regular action sor is also accumulated. It
expresses the idea that the domain of accumulation is generated by unilateral trials from
the regular action. This will be briefly discussed in Section 2.3.

Condition (2.4) states that person i knows a functional relationship between each
pair (sa, sb) ∈ Dir and the payoff value from it when he takes role r. To avoid confusions
with the objective payoff function hr, we define the function hir : Dir → R. Thus,
this is the experienced payoff function of person i when he takes role r. Mathematically,
hir is simply the restriction of hr to Dir. Finally, (2.5) states that (ρia, ρib) is a vector
of frequency weights, and does not exclude the possibility of either ρia or ρib being 0,
which is the non-reciprocal case.

We use the following terms: When (sr; s
o
−r) ∈ Dir, it is called an active experience

(deviation) for person i at role r; and when (sr; s
o
−r) ∈ Di(−r), it is a passive experience

for person i at role −r. That is, if one person makes a deviation, and if it remains in his
domain, it is an active experience, and if it remains in the domain of the other person,
it is a passive experience for that person.

In this paper, reciprocity plays an important role, but we have various notions of and
degree of reciprocities. One important reciprocity is between the domains Dia and Dib
for a fixed person i. We will have a strong form of reciprocity over those domains when
there is a sufficient amount of reciprocity in role-switching. We say that the domains
(Dia,Dib) for person i is strongly internally reciprocal iff

Dia = Dib. (2.6)

It involves a comparison only of person i’s domains Dia and Dib.
In fact, (2.6) is stronger than what we will target in this paper. For the weaker

version, first we define the set Proj(T ) := {(sa, sb) ∈ T : sa = soa or sb = sob}. Then,
(2.6) is weakened to

Proj(Dia) = Proj(Dib), (2.7)

in which case, we say that Dia and Dib are internally reciprocal. This requires the
equivalence of these sets up to only unilateral changes from the regular actions (soa, s

o
b).

We should bear in mind that since the experiences in Dia ∪Dib are generated both
by person i and another person j, some external reciprocal relationships between i and j
are the background for condition (2.7) or (2.6). However, we will focus first on person i’s
internal thoughts such as inferences/guesses from his own experiences, so we postpone
our discussions about the background external relationships until Section 8.
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Let us consider several examples for the domains (D1a,D1b) and (D2a,D2b). In the
following examples, we assume for simplicity that each person makes trials with all
actions at the role he has assigned to.

(1)(Non-reciprocal Domains): In these domains, the persons do not switch the roles
at all. First, we consider the non-reciprocal active domains. Let DN1 = (D

N
1a,D

N
1b) and

DN2 = (D
N
2a,D

N
2b) be given as follows:

DN1a = {(sa, sob) : sa ∈ Sa} and DN1b = ∅ (2.8)

DN2a = ∅ and DN2b = {(soa, sb) : sb ∈ Sb}.

With these domains, neither (2.6) nor (2.7) holds. Each person makes deviations over
all his actions. However, each accumulates only active experiences, which means that he
is either insensitive to (or ignores) the deviations by the other person. In this example,
it would be natural, due to no role-switching, to assume that the frequency weights
given as ρ1a = ρ2b = 1.

We mention that there are other non-reciprocal domains. For example, the non-
reciprocal active-passive domain DNAP1a = DN1a ∪ {(soa, sb) : sb ∈ Sb} and DNAP1b = ∅
describes the non-reciprocal case where person 1 is sensitive to both active and passive
deviations. It is defined similarly for person 2. They are not yet internally reciprocal,
while each person is sensitive to the other’s trials.

We have numerous varieties of reciprocal domains where the roles are switched. We
focus on two reciprocal cases in particular.

(2):(Reciprocal Active Domain): The reciprocal active domain DA1 = (DA1a,D
A
1b)

for person 1 is given as:

DA1a = {(sa, sob) : sa ∈ Sa} and DA1b = {(soa, sb) : sb ∈ Sb}. (2.9)

This means that person 1 makes trials with all actions for each role r = a, b, but he is
insensitive to person 2’s trials. If person 2 behaves in the same manner, then DA2a = D

A
1a

and DA2b = D
A
1b. Although both persons’ domains are the same, the internal reciprocity

condition (2.7) does not hold.
We give one domain that is internally reciprocal.

(3)(Reciprocal Active-Passive Domain): The reciprocal active-passive domain DAP1
= (DAP1a ,D

AP
1b ) is given as:

DAP1a = DAP1b = {(sa, sob) : sa ∈ Sa} ∪ {(soa, sb) : sb ∈ Sb}. (2.10)

Person 1 makes trials with all actions across both roles, and he is sensitive to both
active and passive “unilateral” trials, but not joint-trials.5 If person 2 has the same

5One reason could be that joint trials are too infrequent, and his sensitivity is not strong enough to
recall them.
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personality, then 2 has the same domains: DAP2a = DAP1a and DAP2b = DAP1b . This domain
satisfies (2.7) and even (2.6), and is still smaller than the full reciprocal domain defined
by DFir = Sa × Sb for i = 1, 2, and r = a, b.

2.3. An Informal Theory of Behavior and Accumulation of Memories

Our mathematical theory starts with a memory kit. Behind a memory kit, there is
some underlying process of behavior and accumulation of memories. We now describe
one such underlying process informally. Some parts of the following informal theory are
more precisely discussed for the one-person case in Akiyama-Ishikawa-Kaneko-Kline [1].

(1): Postulates for Behavior and Trials: In the recurrent situation, the role-
switching is given exogenously, and we do not consider endogenous efforts for role-
switching. We state this as a postulate.

Postulate BH0 (Switching the Roles): The role assignment changes from time to
time, which is exogenously given.

The next postulate is the rule-governed behavior of each person in the recurrent
situation ..., Go(1, 2), Go(2, 1), ..., Go(1, 2), ....

Postulate BH1 (Regular actions): Each person typically behaves following the
regular action sor when he is assigned to role r.

It may be the case that the regular actions are person-dependent, but in this paper,
we simply assume that both persons follow the same regular action for each role. Person
i may have adopted the regular actions soa and s

o
b for roles a and b for some time without

thinking, perhaps since he found it worked well in the past or he was taught to follow it.
Without assuming regular actions and/or patterns, a person may not be able to extract
any causality from his experiences. In essence, learning requires some regularity.

To learn some other part than the regular actions, the persons need to make some
trial deviations. We postulate that such deviations take place in the following manner.

Postulate BH2 (Occasional Deviations): Once in a while (infrequently), each per-
son, taking role r, unilaterally and independently makes a trial deviation sr ∈ Sr from
his regular action sor, and then returns to his regular action s

o
r or s

o
−r.

Early on, such deviations may be unconscious and/or not well thought out. Never-
theless, a person might find that a deviation leads to a better outcome, and he may start
making deviations consciously. Once he has become conscious of his behavior-deviation,
he might make more and/or different trials.

Postulate BH2 justifies condition (2.3) since it implies that only one person’s devi-
ation more likely occurs than both persons’.

(2): Cognitive Postulates: Each person may learn something through his regular
actions and deviations. What he learns in an instant is described by his local (short-
term) memory. It takes the form of hr, (sa, sb), hir(sa, sb) = hr(sa, sb)i. Once this triple
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is transformed to a long-term memory, Dir is extended into

Dir ∪ {(sa, sb)},

and “hir(sa, sb) = hr(sa, sb)” is also recorded in the memory kit κi, which is given in
(2.4). For the transition from local memories to long-term memories, there are various
possibilities. Here we list some postulates based on bounded memory abilities.

The first states that if a short-term memory does not occur frequently enough, it
will disappear from the mind of a person. We give this as a postulate for a cognitive
bound on a person.

Postulate EP1 (Forgetfulness): If experiences are not frequent enough, then they
would not be transformed into a long-term memory and disappear from a person’s mind.

This is a rationale for not assuming that a person has a full record of local memories.
If it is not reinforced by other occurrences or the person is very conscious, they may
disappear from his mind.

In the face of such a cognitive bound, only some memories become lasting. The
first type of such memories are the regular ones since they occur quite frequently. The
process of making a memory last by repetition is known as habituation.

Postulate EP2 (Habituation): A local (short-term) memory becomes lasting as
a long-term memory in the mind of a person by habituation, i.e., if he experiences
something frequently enough, it remains in his memory as a long-term memory even
without conscious effort.

By EP2, when the persons follow their regular actions, the local memories given by
them will become long-term memories by habituation.

A pair obtained by only one person’s deviation remains next likely, which supports
(2.3). We postulate that a person may consciously spend some effort to memorize the
outcomes of his own trials.

Postulate EP3 (Conscious Memorization Effort): A person makes a conscious
effort to memorize the result of his own trials. These efforts are successful if they occur
frequently enough relative to his trials.

In this paper, we will sometimes make use of a postulate for a different degree of
sensitivity for active and passive experiences.

Postulate EP4 (Sensitive with Active relative to Passive): A person is more (or
not less) sensitive to his own active deviation than he is to his passive experiences.

We adopt this postulate as a starting point. It may need empirical tests to determine
which forms are more prominent in society. In this paper, however, we will simply take
the relativistic attitude that a person’s domain is not uniquely determined but takes
various possible forms.

We will refer to the above postulates in relevant places in this paper.
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3. Direct and Transpersonal Understandings from Experiences

When a person considers the situation described by the 2-role strategic game G based
on his accumulated experiences, he meets two problems: (1) his own understanding
about G; and (2) his understanding of the other’s thoughts about G. The former is
straightforward in that it simply combines his experiences, while the latter needs some
additional interpersonal thinking. In this section, we describe how a person might
deal with these two problems. We do not yet include the regular actions (soa, s

o
b) and

frequency weights (ρia, ρib), which will be taken into account in the definition of an
inductively derived view to be given in Section 4.

3.1. Transpersonal Postulates for the Other’s Thoughts

First, we state our basic ideas on how a person deals with the above mentioned problems
as postulates. We adopt experientialism for these postulates. The first postulate is about
a person’s direct understanding of a situation, which refers to the problem (1).

Postulate DU1 (Direct Understanding of the Object Situation): A person
combines his accumulated experiences to construct his view on the situation in question.

This will be presently formulated as a direct understanding gii.
Now, consider how a person thinks about the other’s understanding. We adopt two

new postulates for it, which we call transpersonal postulates. A metaphor may help the
reader understand those postulates:

∗1 The agony of a broken heart can only be understood
by a person whose heart was once broken;

∗2 yet, he doubts her agony because he cannot explain her broken heart.

The part ∗1 corresponds to the following postulate:
Postulate TP1 (Projection of Self to the Other): A person projects his own
experienced payoff onto the other person if he believes that the other knows his payoff
at that experience.

By postulate Ob2, he observes only his own payoff. To think about the other’s payoff,
he uses also his own experienced payoff. By postulate TP1, we propose that a person
projects his own experiences onto the other. We could use an alterative postulate, e.g.,
I find by experience that you are different from me; this however, happens rarely. A
person keeps TP1 as his principle until he finds enough counter evidence. We regard
projection of oneself as a very basic postulate.

Notice that postulate TP1 is a conditional statement. We require some evidence
for a person to believe that the other knows the payoff, which is expressed as the next
postulate. It corresponds to ∗2 of the above metaphor.
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Figure 3.1: Direct and Transpersonal Understandings

Postulate TP2 (Experiential Reason to Believe): A person believes that the other
knows a payoff only when the person has a sufficient experiential reason for the other
to have the payoff.

In the above metaphor, having a broken heart is an experience of losing a love,
and it causes agony. Postulate TP1 requires that the agony caused by losing a love
is understood by projecting one’s past experience, which is ∗1. Then, postulate TP2
requires some experiential evidence (reason) to believe that she has broken heart. This
is expressed as its contrapositive in ∗2: Since he has no experiential reason to believe
her broken heart, he doubts her agony. This “reason to believe” is reminiscent of a
requirement for the concept of “common knowledge” in Lewis [20]. In the next section,
we will give an explicit formulation of the other’s understanding based on postulates
TP1 and TP2.

3.2. Direct and Transpersonal Understandings

Suppose that person i has accumulated his experiences in a memory kit κi = h(soa, sob),
(Dia,Dib), (hia, hib); (ρia, ρib)i. He, now, constructs his direct understanding of the game
situation including own payoff functions for roles a and b, and also infers/guesses his
transpersonal understanding of the other’s understanding.

Person i’s direct understanding is purely based on his experiences. However, for
his transpersonal understanding about j’s understanding, we need a different kind of
treatment reflecting postulates TP1 and TP2. Using those, we look for an experiential
base for the other person’s belief. These ideas are formulated in the following definition.

Definition 3.1 (Direct and Transpersonal Understandings). Let a memory kit
κi = h(soa, sob), (Dia,Dib), (hia, hib); (ρia, ρib)i be given:
(1): The direct understanding (d-understanding) of the situation from κi by person i
is given as gii(κi) = (a, b, S

i
a, S

i
b, h

ii
a , h

ii
b ) :
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ID1i: Sir = {sr : (sr; s−r) ∈ Dia ∪Dib for some s−r} for r = a, b;
ID2ii: for r = a, b, hiir is defined over S

i
a × Sib as follows:

hiir (sa, sb) =

⎧⎨⎩
hir(sa, sb) if (sa, sb) ∈ Dir

θr otherwise,
(3.1)

where θr is an exogenously given payoff value attached to every non-experienced (sa, sb).

(2): The transpersonal understanding (tp-understanding) from κi by person i for person
j is given as gij(κi) = (a, b, S

i
a, S

i
b, h

ij
a , h

ij
b ), where only h

ij
a and h

ij
b are new and given as

follows:

ID2ij : for r = a, b, hijr is defined over Sia × Sib by

hijr (sa, sb) =

⎧⎨⎩
hir(sa, sb) if (sa, sb) ∈ Dir and (sa, sb) ∈ Di(−r)

θr otherwise.
(3.2)

These understandings are deterministic: All the components of gii(κi) and g
ij(κi),

except θr for the unexperienced part of S
i
a×Sib, are determined from the components of

κi. This differs from in Kaneko-Kline [15], [16], and [17]. This determinism comes from
our restriction on the 2-role game with assumptions Ob1 and Ob2.

The definition of gii(κi) is straightforward. He constructs his d-understanding as
a 2-role game, based on his experiences. The symbol θr expresses an unknown (un-
experienced) payoff, which is also assumed to be a real number and uniform over the
experienced part. In ID1i, the experienced actions are only taken into account. In IDii,
he constructs his observed payoff function. An example will be given presently. He
notices more available actions in Sr − Sir, but he has no experiential information about
the resulting outcomes from those actions. We assume that they are ignored in gii and
also in gij .

The definition of gij(κi) is less straightforward by its nature. Person i tries to analyze
the experiences summarized in κi so as to obtain some information about the other’s
payoffs. By TP1, he projects his own experienced payoffs onto the other’s thoughts.
By TP2, however, he should only make this projection if he has reason to believe that
the other has observed his payoff. In the top of (3.2), this projection is done for an
experience (sa, sb) only if he experienced (sa, sb) from both roles.

Let us see (3.2) from the negative point of view: If at least one of (sa, sb) ∈ Dir and
(sa, sb) ∈ Di(−r) does not hold, he cannot put the payoff value hir(sa, sb) as hijr (sa, sb).
Firstly, if i does not have the experience of (sa, sb) at role r , then the payoff information
hir(sa, sb) is not available to i, and a fortiori, he cannot project it onto j. Second, if
(sa, sb) /∈ Di(−r), then person i does not have reason to believe that j ever experienced
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payoff hr(sa, sb), and he does not project his payoff experience, even if he has it, onto
person j. Conversely, if both (sa, sb) ∈ Dir and (sa, sb) ∈ Di(−r) hold, he can project
his experienced payoff onto the other person’s thoughts.

The above requirement of having reason to believe is close to Lewis’s [20] idea of
person i having reason to believe that person j has also reason to believe the same. If
we formulate the above argument as an epistemic logic system (cf., Kaneko [13]), we
would examine this similarity more, which will be discussed in a separate paper. The
argument here is entirely experiential, and in this sense, it is regarded as following the
tradition from Mead [21].

Let us exemplify the above definitions with the examples from Section 2.2 assuming
the regular actions (soa, s

o
b) = (sa1, sb1):

(1)(Nonreciprocal Active Domain): Let (DN1a,D
N
1b) be given as the non-reciprocal

domain of (2.8). In this example, person 1’s d-understanding g11(κ1) is given as: S
1
a =

{sa1, sa2, sa3} and S1b = {sb1} by ID11. Since person 1 has experiences for role a, the
payoffs (h11a (sa, sb), h

11
b (sa, sb)) become those described in Table 3.1. Since person 1 has

no experiences with role b, his understanding of those payoffs h11b (sa, sb) is simply θb.

Table 3.1 Table 3.2
sb1

sa1 (3, θb)
sa2 (2, θb)
sa3 (1, θb)

sb1
sa1 (θa, θb)
sa2 (θa, θb)
sa3 (θa, θb)

Now, consider g12(κ1). Person 1 has experienced the three pairs in D
N
1a, and from

each pair, he guesses/infers that person 2 observes also these three pairs. Hence, person
1 can assume the same S1a and S

1
b for person 2, which corresponds to ID1

1. But, now,
person 1 has a real difficulty in guessing/inferring what person 2 could receive as payoffs
from roles a and b. The easier part is h12b (sa, sb) = θb for role b since person 1 has no
experiences with role b. The other equation h12a (sa, sb) = θa comes from (sa, sb) /∈ DN1b :
He infers from (sa, sb) /∈ DN1b that person 2 always plays role b and has no experiences
with role a. Thus, person 1 should not project his experienced payoff onto 2’s. In sum,
g12(κ1) is given as Table 3.2: Person 1 has no idea about person 2’s understanding of
payoffs.

(2)(Reciprocal Active Domain): Let (DA1a,D
A
1b) be given by the active domain of

(2.9). By ID11, we have S1a = {sa1, sa2, sa3} and S1b = {sb1, sb2, sb3}. Then, it follows
from ID211 that (h11a , h

11
b ) is given as Table 3.3. When person 1 is at b, he cannot

guess/infer his own payoffs from trials of person 2 at a. Thus, he puts θb to the payoffs
from trials in the first column of Table 3.3. For the same reason, he puts θa in Table 3.3
along the top column. The remaining four strategy combinations (sa, sb) belong neither
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DA1a nor D
A
1b, so he puts (θa, θb) in each case.

Table 3.3; g11 Table 3.4; g12

a\b sb1 sb2 sb3
sa1 (3, 3) (θa, 2) (θa, 1)
sa2 (2, θb) (θa, θb) (θa, θb)
sa3 (1, θb) (θa, θb) (θa, θb)

a\b sb1 sb2 sb3
sa1 (3, 3) (θa, θb) (θa, θb)
sa2 (θa, θb) (θa, θb) (θa, θb)
sa3 (θa, θb) (θa, θb) (θa, θb)

Person 1’s tp-understanding g12 is even more restrictive as shown in Table 3.4. Let
us see only how it comes that “h12a (sa2, sb1) = θa”. According to (D

A
1a,D

A
1b), person 1

has experienced the payoff ha(sa2, sb1) = 2 and thus at least it would be possible for
him to project this payoff onto person 2’s. But since (sa2, sb1) /∈ DA1b, he infers/guesses
that 2 does not experience (sa2, sb1) at role a. So he puts h

12
a (sa2, sb1) = θa.

The above example may appear strange, which is due to the assumption that
(DA1a,D

A
1b) is an active domain. When person 1 is equally sensitive to the experiences

caused by person 2, he has the active-passive domain.

(3):(Reciprocal Active-Passive Domain): Let DAP1 = (DAP1a ,D
AP
1b ) be the domains

describe by (2.10). By ID1, we have S1a = {sa1, sa2, sa3} and S1b = {sb1, sb2, sb3}. But the
payoff functions (h11a , h

11
b ) are different from those in Table 3.3:

Table 3.5; g11 and g12

a\b sb1 sb2 sb3
sa1 (3, 3) (10, 2) (3, 1)
sa2 (2, 10) (θa, θb) (θa, θb)
sa3 (1, 3) (θa, θb) (θa, θb)

Indeed, h11b (sa2, sb1) = 10 by ID211, since (sa2, sb1) ∈ DAP1b . Person 1 is also sensitive
with passive experiences from person 2’s active deviations. This means that D1a = D1b.
In this example, the payoff functions (h12a , h

12
b ) are the same as Table 3.5. Person 1 has

had each experience along the top row and down the first column from the perspective
of each role. Thus, he can and does project his experiences onto the other person. Only
the joint trials are excluded as they are outside his domains of accumulation.

This internal reciprocity and coincidence will be important in our later analysis. We
will give one theorem on this, which states that internal reciprocity (2.7) is necessary
and sufficient for coincidence of a person’s direct and transpersonal understandings up
to the active and passive experiences.

Theorem 3.1 (Internal Coincidence). Tp-understanding gij(κi) coincides with d-
understanding gii(κi) up to the active/passive experiences, i.e., h

ij
r (sa, sb) = h

ii
r (sa, sb)

for all (sa, sb) ∈ Proj(Sia×Sib) and all θa, θb if and only if (Dia,Dib) is internally reciprocal
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Figure 4.1: The I.D.View

in the sense of (2.7).

Proof. (If): Suppose Proj(Dia) = Proj(Dib). Hence, by (3.1) and (3.2), we have
hijr (sa, sb) = h

ii
r (sa, sb) for all (sa, sb) ∈ Proj(Sia × Sib).

(Only-If): It suffices to show that (sa, sb) ∈ Proj(Dir) implies (sa, sb) ∈ Di(−r). Let
(sa, sb) ∈ Proj(Dir). Then, (sa, sb) ∈ Proj(Sia×Sib), which means h

ij
r (sa, sb) = h

ii
r (sa, sb).

Then, since (sa, sb) ∈ Proj(Dir), we have hiir (sa, sb) = hr(sa, sb) by (3.1). If (sa, sb) /∈
Di(−r), then h

ij
r (sa, sb) = θr by (3.2), and for some choice of θr, we have h

ii
r (sa, sb) 6=

hijr (sa, sb), a contradiction. Thus, (sa, sb) ∈ Di(−r).

4. Inductively Derived Views and their Use for Behavioral Revision

4.1. Inductively Derived View

The understandings gii(κi) and g
ij(κi) do not take the regular actions (s

o
a, s

o
b) and the

frequency weights (ρia, ρib) into account. The inductively derived view is defined by
adding these two components.

Since each person acts roles a or b at different times and with different frequencies,
we need weighted payoff functions. Since the weighted payoff functions in person i’s
mind depend on the actions by each person at each role, we introduce the expression
[sa, sb]r to mean that person i takes role r in playing (sa, sb). The importance of this
new expression will become clear when we consider deviations in Sections 4.2 and 5.

Definition 4.1. The inductively derived view (i.d.view) from the memory kit κi =
h(soa, sob), (Dia,Dib), (hia, hib); (ρia, ρib)i is given as Γi = h(soa, sob), (Sia, Sib), (ρia, ρib),Hii,Hiji,
where the additional Hii and Hij are the weighted payoff functions given as follows: for
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all ([sa, sb], [ta, tb]) ∈ (Sia × Sib)2,

Hii([sa, sb]a, [ta, tb]b) = ρiah
ii
a (sa, sb) + ρibh

ii
b (ta, tb); (4.1)

Hij([sa, sb]a, [ta, tb]b) = ρiah
ij
b (sa, sb) + ρibh

ij
a (ta, tb). (4.2)

The payoff functions Hii and Hij are considered for persons i and j in the mind of
person i. The payoffs are taken as weighted averages of the payoffs of gii and gij with
the frequency weights (ρia, ρib). We should notice a break in symmetry in (4.1) and
(4.2): In (4.2), when person i plays role a, person j plays role b; hence, the first term of
the right-hand side of (4.2) means that person i takes role a with frequency ρia, which
implies that person j takes role b with the same frequency. The second term has the
parallel meaning.

The sums with frequency weights are based on the frequentist interpretation of
expected utility theory, which is close to the original interpretation by von Neumann-
Morgenstern [26]. See Hu [11] for a more direct approach to expected utility theory
from the frequentist perspective.

The definition of the i.d.view Γi has various differences from those given in Kaneko-
Kline [15], [16] and [17]. One apparent difference is that the definition is given to
a strategic game but not an extensive game (or an information protocol). This also
makes the view here deterministic as gii(κi) and g

ij(κi). But it is the most important
point to include the weighted payoffs coming from role-switching.

4.2. Partial vs. Full Use of the I.D.View

Now, consider how person i uses the i.d.view Γi = h(soa, sob), (Sia, Sib), (ρia, ρib),Hii,Hiji.
It includes the tp-understanding of the other person’s payoffs in addition to his own
d-understanding. When i uses Γi for his decision making, he would face the problem of
whether or not he should use the tp-understanding. We have the following two cases:

C0(Partial Use): Person i uses only the payoff function Hii, assuming that the other
person j plays the regular action soa or s

o
b in accordance with his assigned role.

C1(Full Use): Person i uses not only the payoff function Hii but also Hij to in order
predict how person j will act (or react).

In case C0, person i can maximize his weighted payoff Hii by choosing his action
from the assigned role in one play of the game. Since he uses only Hii, he needs
some assumption about the other person’s action or reaction to his change. A simple
assumption written in C0 is that the other person sticks to the regular action. In this
case, person i may choose a maximum point against the regular action soa or s

o
b . If

both persons behave in this manner, or if the present regular actions are free from such
behavior revisions, then the regular action pair (soa, s

o
b) must be a Nash equilibrium in

his understanding gii.
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To see this, we consider only some reciprocal case with ρia, ρib > 0. Suppose that
(soa, s

o
b) is the regular behavior, and that person i considers a deviation at role a, say

[sa, s
o
b ]a. This is beneficial for him only if the weighted payoff

Hii([sa, s
o
b]a, [s

o
a, s

o
b]b) = ρiah

ii
a (sa, s

o
b) + ρibh

ii
b (s

o
a, s

o
b) > ρiah

ii
a (s

o
a, s

o
b) + ρibh

ii
b (s

o
a, s

o
b).

This holds if and only if hiia (sa, s
o
b) > h

ii
a (s

o
a, s

o
b). The same argument holds for role b.

Hence, (soa, s
o
b) is seen the be stable against such unilateral deviations if and only if it is

a Nash equilibrium in person i’s d-understanding. Since θr might appear in person i’s
d-understanding, a Nash equilibrium in gii may not be a Nash equilibrium in the base
game G. The case C0 was discussed, without weighted payoff functions, in the context
of an extensive game in Kaneko-Kline [15].

In the remainder of this paper, we study case C1. For this case, person i evaluates
his action in terms of Hii, and predicts what person j would do, by his Hij . Suppose
that

Hii([soa, s
o
b ]a, [s

o
a, s

o
b ]b) < H

ii([sa, s
o
b ]a, [sa, s

o
b ]b). (4.3)

This means that i would get a higher weighted payoff by deviating from soa to sa and
assuming that person j also deviates from soa to sa. This assumption part is expressed
by [sa, s

o
b]b meaning that person j taking role a chooses action sa also. The apparent

question is whether person i can make this assumption that person j will choose action
sa also.

The answer is as follows: Suppose the parallel inequality:

Hij([soa, s
o
b ]a, [s

o
a, s

o
b ]b) < H

ij([sa, s
o
b]a, [sa, s

o
b]b). (4.4)

If this holds, person i thinks that person j thinks in the same manner as (4.3) and
shares in the benefit from this deviation. Person i now can believe that the deviation sa
from the regular action soa gives a higher payoff for both persons, and thus that person
j thinks in the same manner.

In (4.3) and (4.4), we considered only a unilateral derivation sa from s
o
a, and we can

also consider another parallel unilateral derivation sb from sob . Mathematically, we may
consider even a joint deviation (sa, sb) from (soa, s

o
b) satisfying (4.3) and (4.4). However,

this requires some direct coordination or communication between the persons. In our
context, we have a lot of possible ways of coordination or communication. It would be
better to separate studies of these possibilities from the present research, which should
be discussed in a separate paper.

Let us return to the unilateral deviation in (4.3) and (4.4). This deviation needs
only one person to deviate first. That is, the deviation process can be expressed as

→
µ
1

soa

2

sob

¶
→
µ
1

sa

2

sob

¶
→
µ
2

sa

1

sob

¶
→
µ
2

sa

1

sob

¶
→

Fig.4.2
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That is, suppose (soa, s
o
b) is the current regular pair. Next, suppose that 1 deviates from

soa to a mutually beneficial sa, which is the second left state in Fig.4.2. Then person
2 will observe this deviation, and when 2 is assigned role a, he follows 1’s mutually
beneficial deviation to sa, which is describe as the third state in Fig.4.2.

5. Intrapersonal Coordination Equilibrium

5.1. Intrapersonal Coordination Equilibria through the I.D.View Γi

In Section 4.2, we described the process of improving the weighted payoff for person
i using his i.d.view Γi. In this section, first, we define a resulting equilibrium of this
process. Let Γi = h(soa, sob), (Sia, Sib), (ρia, ρib),Hii,Hiji be the i.d.view derived from the
memory kit κi.

Definition 5.1 (I.C.Equilibrium). We say that the regular pair (soa, s
o
b) is a an

intrapersonal coordination equilibrium (i.c.equilibrium) in Γi iff for all sa ∈ Sia

Hii([soa, s
o
b ]a, [s

o
a, s

o
b]b) ≥ Hii([sa, s

o
b]a, [sa, s

o
b]b) (5.1)

Hij([soa, s
o
b ]a, [s

o
a, s

o
b]b) ≥ Hij([sa, s

o
b ]a, [sa, s

o
b ]b);

and for all sb ∈ Sib,

Hii([soa, s
o
b]a, [s

o
a, s

o
b]b) ≥ Hii([soa, sb]a, [s

o
a, sb]b) (5.2)

Hij([soa, s
o
b]a, [s

o
a, s

o
b]b) ≥ Hij([soa, sb]a, [s

o
a, sb]b)

That is, person i thinks, based on his i.d.view Γi, that soa gives higher payoff to both
persons 1 and 2 than any other action sa ∈ Sia, and sob has the same property.

The argument illustrated in Fig.4.2 is a specific case leading to the above definition.
Inequalities (5.1) and/or (5.2) may include the case where we have the strict inequality
for Hii but the equality for Hij ; this may hold if person i’s tp-understanding is trivial
or poor. Thus, although the definition of an i.c.equilibrium is given by two inequality
systems for each role, it includes cases where he has a poor tp-understanding or even
his d-understanding is poor, e.g., Sia and S

i
b are small sets.

Our main target is an i.c.equilibrium for reciprocal cases, where we will have coop-
eration results. Nevertheless, we look at this case among other different cases in order
to be able to discuss the conditions for cooperation to result. We start with cases of
non-cooperative outcomes in Section 5, and discuss the cooperation results in Section
6.

Before going to the next section, we will give one more definition. Suppose that
person i = 1, 2 has an i.d.view Γi = h(soa, sob), (Sia, Sib), (ρia, ρib),Hii,Hiji derived from a
memory kit κi = h(soa, sob), (Dia,Dib), (hia, hib); (ρia, ρib)i.
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Definition 5.2 (Mutual I.C.Equilibrium). We say that the pair (soa, s
o
b) of regular

actions is a mutual i.c.equilibrium iff it is an i.c.equilibrium for both Γ1 and Γ2.

Our goal is to study the 2-person game situation and the interactions of the persons
there, rather than just to consider an i.c.equilibrium from the viewpoint of one person.
Therefore, our final objective is to study a mutual i.c.equilibrium. Nevertheless, since
it is required to be an i.c.equilibrium for each person, a research method becomes to
study first an i.c.equilibrium. Then, we will synthesize it to a mutual i.c.equilibrium.

5.2. Non-reciprocal Active Domain and Reciprocal Active Domain

There is a spectrum of reciprocal degrees of switching roles between the two persons.
The non-reciprocal domains (2.8) and active domains (2.9) are located at the lowest side
of this spectrum, while the fully reciprocal domains are located at the other extreme.
It is our intention to show that cooperation is emerging as the reciprocal degree is
increasing. To show this, we first show that at the lowest end, no cooperation occurs,
more concretely, for the non-reciprocal domains and active domains, the i.c.equilibrium
yields non-cooperative outcomes. In Section 6, we will consider the other extreme case
of the spectrum of reciprocal degrees.

The first theorem is about the non-reciprocal domains.

Theorem 5.1 (Non-reciprocal Active Domain): Consider the non-reciprocal active
domain (DNia ,D

N
ib ) defined by (2.8) where person i takes role a. Then, the pair (s

o
a, s

o
b)

of regular actions is an i.c.equilibrium in Γi if and only if it is a Nash equilibrium in
person i’s d-understanding gii.

Proof. For domains (DNia ,D
N
ib ), person i’s d-understanding g

ii is given as Sir = Sr, S
i
−r =

{so−r} and hiir (sr; so−r) = hr(sr; so−r), hii−r(sr; so−r) = θ−r for sr ∈ Sr.
Let sr be an arbitrary element in Sr. Let (s

o
a, s

o
b) be an i.c.equilibrium in Γi. Then,

Hii([soa, s
o
b ]a, [s

o
a, s

o
b ]b) = ρirhr(s

o
a, s

o
b) + (1− ρir)θ−r

≥ ρirh
ii
r (sr; s

o
−r) + (1− ρir)θ−r = H

ii([sr; s
o
−r]a, [sr; s

o
−r]b).

This implies hr(s
o
r; s

o
−r) ≥ hr(sr; so−r). Since role −r has the unique choice, i.e., Si−r =

{so−r}, (soa, sob) is a Nash equilibrium in gii. Tracing the argument back, we have the
only-if part, i.e., if (soa, s

o
b) is a Nash equilibrium in g

ii, then (soa, s
o
b) be an i.c.equilibrium

in Γi.

In the above theorem, a Nash equilibrium in person i’s d-understanding gii is simply
a payoff maximization point in the base game G with the fixed so−r. Hence, we have the
following corollary.

Corollary 5.2 (Mutual I.C.Equilibrium in the Non-reciprocal Active Do-
mains): Let DNAi be the non-reciprocal active domain with the regular actions (soa, s

o
b)
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for i = 1, 2. Then, (soa, s
o
b) is a mutual i.c.equilibrium if and only if it is a Nash equilib-

rium in the base game G.

We could obtain the corresponding Nash equilibrium results also for the non-reciprocal
active-passive domain given in Section 2.2.

Next, we consider the reciprocal active domain and show that the insensitivity of
persons having only active domains leads to a similar result even with a reciprocal role-
switching.

Theorem 5.3 (Reciprocal Active Domain): Let (DAia,D
A
ib) be the reciprocal active

domain for person i = 1, 2, with the regular actions (soa, s
o
b). Suppose that θa ≤ ha(soa, sob)

and θb ≤ hb(soa, sob). Then the following two statements hold:
(1): If (soa, s

o
b) is a Nash equilibrium in the 2-role strategic game G = (a, b, Sa, Sb, ha, hb),

then it is an i.c.equilibrium.

(2): Suppose that hr(s
o
a, s

o
b) = θr for r = a, b. Then the converse of (1) holds.

Proof. With this domain, the d-understanding gii = (a, b, Sia, S
i
b, h

ii
a , h

ii
b ) is given by:

for r = a, b, Sir = Sr, h
ii
r (sr; s−r) = hr(sr; s−r) if s−r = so−r, and h

ii
r (sr; s−r) = θr

otherwise. The tp-understanding gij = (a, b, Sia, S
i
b, h

ij
a , h

ij
b ) is given as: for r = a, b, S

i
r =

Sr, h
ij
r (sr; s−r) = hr(sr; s−r) if (sr; s−r) = (sor; s

o
−r), and h

ij
r (sr; s−r) = θr otherwise.

(1): Let (soa, s
o
b) be a Nash equilibrium in G = (a, b, Sa, Sb, ha, hb). Consider role a and

let sa be an arbitrary action in Sa. Then, we have ha(s
o
a, s

o
b) ≥ ha(sa, sob). Thus, using

the assumption that θb ≤ hb(soa, sob), we have

Hii([soa, s
o
b]a, [s

o
a, s

o
b]b) = ρiah

ii
a (s

o
a, s

o
b) + (1− ρia)h

ii
b (s

o
a, s

o
b)

≥ ρiaha(sa, s
o
b) + (1− ρia)θb = H

ii([sa, s
o
b ]a, [sa, s

o
b ]b).

Now, the inequality for Hij is:

Hij([soa, s
o
b ]a, [s

o
a, s

o
b ]b) = ρiah

ij
b (s

o
a, s

o
b) + (1− ρia)h

ij
a (s

o
a, s

o
b)

≥ ρiaθb + (1− ρia)θa = H
ij([sa, s

o
b]a, [sa, s

o
b]b).

Thus, we have (5.1) of an i.c.equilibrium. Condition (5.2) can be shown in the same
way letting sb be an arbitrary action in Sb.

(2): Let (soa, s
o
b) be an i.c.equilibrium in Γi. Then, we have

ρiaha(s
o
a, s

o
b) + (1− ρia)hb(s

o
a, s

o
b) = Hii([soa, s

o
b ]a, [s

o
a, s

o
b]b)

≥ Hii([soa, s
o
b ]a, [s

o
a, s

o
b]b) = ρiaha(sa, s

o
b) + (1− ρia)θb.

Since hb(s
o
a, s

o
b) = θb, we have ha(s

o
a, s

o
b) ≥ ha(sa, sob). In the case of role b, we have a

parallel argument, so (soa, s
o
b) is a Nash equilibrium in Γi.
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For the reciprocal active domains, we can have a corollary about a mutual i.c.equilibrium
by combining the statements of Theorem 5.3 as in a similar manner to obtain Corollary
5.2 from Theorem 5.1. Even we may assume that one person has the non-reciprocal
active domain and the other has a reciprocal active domain, and have a similar corollary.
But this combination appears to be strange externally. External requirements will be
given in Section 8. Here, it is enough to say that at the low end of the spectrum of
reciprocal degrees, we have non-cooperative outcomes.

6. Intrapersonal Coordination Equilibrium for Reciprocal Domains

The results in Section 5.2 are noncooperative outcomes, since effectively due to lack
of role-switching, or insensitivity to the other’s trials, Γi does not describe anything
about j’s thinking. In contrast, when domains Dia and Dib are both reciprocal and the
persons are sensitive to the other’s trials, we would have very different results, which
we will discuss in this section.

First, we will show the following result, which gives necessary conditions for an
i.c.equilibrium. We emphasize that the frequency weights disappear in these conditions.
These are reminiscent of utilitarianism, which has a different interpretation from “util-
itarianism” in moral philosophy. This will be discussed in Section 7.

Theorem 6.1 (Utilitarian Criterion): Let (soa, s
o
b) be an i.c.equilibrium for Γi with

(soa, s
o
b) ∈ Dia ∩Dib.

(1): If (sa, s
o
b) ∈ Dia ∩Dib, then ha(soa, sob) + hb(soa, sob) ≥ ha(sa, sob) + hb(sa, sob).

(2): If (soa, sb) ∈ Dia ∩Dib, then ha(soa, sob) + hb(soa, sob) ≥ ha(soa, sb) + hb(soa, sb).
Proof. We show only (1). Let (sa, s

o
b) ∈ Dia ∩Dib. Since (soa, sob) is an i.c.equilibrium,

by (5.1), we have

ρiah
ii
a (s

o
a, s

o
b) + (1− ρia)h

ii
b (s

o
a, s

o
b) ≥ ρiah

ii
a (sa, s

o
b) + (1− ρia)h

ii
b (sa, s

o
b); (6.1)

ρiah
ij
b (s

o
a, s

o
b) + (1− ρia)h

ij
a (s

o
a, s

o
b) ≥ ρiah

ij
b (sa, s

o
b) + (1− ρia)h

ij
a (sa, s

o
b).

Since (soa, s
o
b) and (sa, s

o
b) are in Dia ∩Dib, it holds that for r = a, b,

hiir (s
o
a, s

o
b) = h

ij
r (s

o
a, s

o
b) = hr(s

o
a, s

o
b) and h

ii
r (sa, s

o
b) = h

ij
r (sa, s

o
b) = hr(sa, s

o
b).

Hence, summing up the first and second inequalities in (6.1), we have

ha(s
o
a, s

o
b) + hb(s

o
a, s

o
b) ≥ ha(sa, sob) + hb(sa, sob).

When the persons are sensitive to the other’s trials, and roles are switched as in
the reciprocal active-passive domains, i.e., DAPia = DAPib =

S
r=a,b{(sr; so−r) : sr ∈ Sr},
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parts (1) and (2) of Theorem 6.1 are simply the true payoff-sum maximization along
the actions of each role. In the game of Table 2.1 with these domains, this payoff-
sum maximization gives two possible candidates for an i.c.equilibrium: (sa2, sb1) and
(sa1, sb2). Each of them together with (D

AP
ia ,D

AP
ib ) becomes an i.c.equilibrium. However,

in the game of Table 2.2 with the affine transformation of role b’s payoff, only (sa2, sb1)
is an i.c.equilibrium. Thus we observe that an i.c.equilibrium is not invariant to such
transformations of payoffs.

Theorem 6.1 gives necessary conditions for the resulting outcome of an i.c.equilibrium.
The existence of an i.c.equilibrium in a reciprocal case is related to the degree of reci-
procity in the frequency weights ρia, ρib. Although Dia,Dib are mathematically still
independent of ρia, ρib, they should be closely related in interpretation: When Dia and
Dib are reciprocal (not very different), so is (ρia, ρib) (not very different, too), and vice
versa.

Now, we have the following theorem. In this theorem, a 2-role gameG = (a, b, Sa, Sb, ha,
hb) is arbitrarily fixed. Only (Dia,Dib) and (ρia, ρib) must be specified. Recall that the
internal reciprocity is defined by (2.7).

Theorem 6.2 (Existence of an I.C.Equilibrium 1): Let (ρia, ρib) = (
1
2 ,
1
2). Then,

there is a pair (soa, s
o
b) ∈ S1×S2 such that for any internally reciprocal domain (Dia,Dib)

with (soa, s
o
b) ∈ Dia, the pair (soa, sob) is an i.c.equilibrium in Γi.

Proof. Let us choose a pair (soa, s
o
b) ∈ Sa × Sb so that

ha(s
o
a, s

o
b) + hb(s

o
a, s

o
b) ≥ ha(sa, sb) + hb(sa, sb) for all (sa, sb) ∈ Sa × Sb. (6.2)

Since Sa × Sb is a finite set, we can find a pair (soa, sob) ∈ Sa × Sb satisfying (6.2).
Since (Dia,Dib) is internally reciprocal, it follows from Theorem 3.1 and (2.3) that

for all (sa, sb) ∈ Sia × Sib,

if sa = s
o
a or sb = s

o
b , then h

ii
r (sa, sb) = h

ij
r (sa, sb) = hr(sa, sb).

Hence, using (6.2), we have, for all sa ∈ Sia and sb ∈ Sib,

1

2
hiia (s

o
a, s

o
b) +

1

2
hiib (s

o
a, s

o
b) ≥

1

2
hiia (sa, s

o
b) +

1

2
hiib (sa, s

o
b)

1

2
hija (s

o
a, s

o
b) +

1

2
hijb (s

o
a, s

o
b) ≥

1

2
hija (sa, s

o
b) +

1

2
hijb (sa, s

o
b).

The parallel inequalities for the replacement sob by sb ∈ Sib hold. Hence, (soa, sob) is an
i.c.equilibrium in Γi.

In the above proof, the pair (soa, s
o
b) chosen by (6.2) reaching the maximum payoff

sum is independent of person i. Hence, Theorem 6.1 can be read for both persons with
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Figure 6.1: Candidates for an i.c.equilibria

a common point (soa, s
o
b). Hence, (s

o
a, s

o
b) is a mutual i.c.equilibrium. We state this fact

as a corollary.

Corollary 6.3 (Existence of a Mutual I.C.Equilibrium): Let (ρia, ρib) = (12 ,
1
2)

for i = 1, 2. Then, there is a pair (soa, s
o
b) ∈ S1 × S2 such that for any internally recip-

rocal domain (Dia,Dib) with (s
o
a, s

o
b) ∈ Dia for i = 1, 2, the pair (soa, s

o
b) is a mutual

i.c.equilibrium.

In the proof of Theorems 6.2, the pair (soa, s
o
b) is chosen as a global maximization

point over the entire matrix. But a necessary choice is made over the set such as the
one described in Fig.6.1. Once this is recognized, a simple algorithm to such a point is
found: Take any pair in the matrix. Then, if there is one pair with a higher weighted
sum of payoffs obtained by one person’s deviation, we move to this pair. If this pair has
the same property, then we move again. Then, we will reach one pair without a further
improvement. This convergence holds since the matrix is finite and each step has an
improvement in the weighted sum of payoffs. The resulting pair may not be a global
maximization point.

Theorems 5.1 and 5.2 suggest that an i.c.equilibrium may not exist in the nonre-
ciprocal cases with insufficient role-switching. The following example shows possible
nonexistence, even under D1a = D1b, without ρia = ρib = 1/2.

Example 6.1: Consider the game of Table 2.1. Suppose that D1a and D1b are the
active-passive domain given by (2.10) with (soa, s

o
b) = (sa2, sb1), and ρia = ρib = 1/2.

Then, (sa2, sb1) is an i.c.equilibrium. In this case, we can choose the full set S1 × S2
or the smallest set {(sa2, sb1)} as D1a and D1b without breaking this i.c.equilibrium. In
the same way the alternative regular behavior (soa, s

o
b) = (sa1, sb2) is an i.c.equilibrium

across the same active-passive domain.
For the payoffs of Table 2.2, however, only (sa2, sb1) is an i.c.equilibrium. Thus,
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this equilibrium concept is not independent of a positive linear transformation of a the
payoff function of a specific role.

Let us return to the game of Table 2.1 with the active-passive domain D1a and D1b
with (soa, s

o
b) = (sa2, sb1) and also containing (sa1, sb1). When the frequency weights are

different, it may not have an i.c.equilibrium. Let ρia = 9/10 and ρib = 1/10. Then, we
have

9

10
hiia (sa1, sb1) +

1

10
hiib (sa1, sb1) = 3 > 2.8

=
9

10
hiia (sa2, sb1) +

1

10
hiib (sa2, sb1).

Hence, (sa2, sb1) is not an i.c.equilibrium. The other candidate for an i.c.equilibrium is
(sa1, sb2), but this is not an equilibrium either. Thus, with this weight, the assertion of
Theorem 6.2 does not hold.

When ρia = 1/3 and ρib = 2/3, (sa2, sb1) becomes again an i.c.equilibrium, though
the necessary conditions given by Theorem 6.1 remains. Thus, we have some interval
containing ρia so that for weights in the interval, we have an i.c.equilibrium.

The above example indicates that even though an i.c.equilibrium may disappear
for some (ρia, ρib), it may remain for (ρia, ρib) close to (

1
2 ,
1
2). This fact is relevant, as

stated in Section 2.1, for our interpretation that the values of weights ρia and ρib should
not interpreted as exact values. The following variant of Theorem 6.2 shows that this
interpretation has some legitimacy. We state the theorem without a proof.

Theorem 6.4 (Existence of an I.C.Equilibrium 2): Let (soa, s
o
b) be a pair so that

ha(s
o
a, s

o
b) + hb(s

o
a, s

o
b) > ha(sa, s

o
b) + hb(sa, s

o
b) for all sa ∈ Sia\{soa}

ha(s
o
a, s

o
b) + hb(s

o
a, s

o
b) > ha(s

o
a, sb) + hb(s

o
a, sb) for all sb ∈ Sib\{sob}.

Then there is a α ∈ (0, 12) such that for any ρia ∈ (12 − α, 12 + α) and any internally
reciprocal (Dia,Dib) with Dia 3 (soa, sob), (soa, sob) is an i.c.equilibrium in Γi.

We could also consider conditions for existence taking into account θa and θb as well
as ρia, ρib. Since, however, this leads us further astray from our main intentions, we do
not pursue this here.

7. Applications to the Prisoner’s Dilemma, Ultimatum Game and Dic-
tator Game

Here, we apply the results of Section 6 to the prisoner’s dilemma game, ultimatum
game and dictator game. For those games, experimental results differ consistently from
the predictions based on the standard equilibrium theory. Cooperative outcomes (equal
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division) result more often in experiments than the predicted non-cooperative outcomes
(cf. Cooper et al. [4], Güth et al. [8], Kahneman et al. [12] and also Camerer [3]).
Here, we consider some variants of those games, and apply our theory to them.

Prisoner’s Dilemma: This is typically expressed as a bimatrix game such as in Table
7.1. Consider the reciprocal active-passive domains (DAPia ,D

AP
ib ) with the regular actions

(soa, s
o
b) and ρia = 1/2. It follows from Theorems 6.1 and 6.2 that (soa, s

o
b) = (sa1, sb1)

is the unique i.c.equilibrium. On the other hand, if we multiply the payoffs for role
b by 6 to obtain the game of Table 7.2, then (soa, s

o
b) = (sa1, sb2) becomes the unique

i.c.equilibrium. Here we see that the affine transformation of payoffs affects behav-
ioral predictions in our theory. If we go further and change the payoffs to Table 7.3,
which maintain the dominant strategies of the game, then the new game has now two
i.c.equilibria which are (sa1, sb2) and (sa2, sb1).

Table 7.1 Table 7.2 Table 7.3
sb1 sb2

sa1 (5, 5)IC (2, 6)
sa2 (6, 2) (3, 3)NE

sb1 sb2
sa1 (5, 5) (2, 36)IC

sa2 (6, 12) (3, 18)NE

sb1 sb2
sa1 (5, 5) (2, 10)IC

sa2 (10, 2)IC (3, 3)NE

Next consider the effects of these changes on the non-reciprocal active domains.
In each case, (soa, s

o
b) = (sa2, sb2) remains the unique i.c.equilibrium, which is also (a

dominant strategy) Nash equilibrium. We need several comments on our predictions.
First, the above three bimatrix games are all regarded as the prisoner’s dilemma

from the standard game theoretical point of view. However, the i.c.equilibrium concept
behaves differently in those games. In the full reciprocal case, the i.c.equilibrium moves
to the payoff-sum maximization points in those games. This is one possible prediction
of our theory, which can be tested in experiments.

Second, in the non-reciprocal case, the i.c.equilibrium coincides with the Nash equi-
librium as was stated in Corollary 5.2. The reader may wonder whether this is consistent
with the existing experimental results, which state that the cooperative outcome more
likely results. However, one important difference we should notice is that in our theory,
the payoff functions are assumed to be a priori unknown. If this “unknown” is taken
properly into account in experiments, we expect that (soa, s

o
b) = (sa2, sb2) could more

likely result.
Finally, the reader may also wonder why the cooperative outcome has been observed

in experiments when the payoffs are assumed to be known to the subjects. As far as the
game is symmetric such as in Table 7.1, this “known” assumption works as a substitute
for role-switching in providing information about the payoff of the other role, and the
cooperative outcome may observed without role switching. However, in non-symmetric
cases such as in Table 7.2, we do not expect the same results. These cases need further
experimental study as well as for an extension of our theory itself to incorporate a
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Figure 7.1: Ultimatum Game

postulate different from Ob2 (observation only of his own payoff pair).

Ultimatum Game: Suppose that the 2-role game is given as the following ultimatum
game: A person assigned to role a proposes a division of $100 to persons 1 and 2, and
a person assigned to role b receives the proposal (xa, xb) and chooses an answer Y or N
to the proposal. We assume that only three alternative choices are available at a, i.e.,
Sa = {(99, 1), (50, 50), (1, 99)}. The person at role b chooses Y or N contingent upon
the offer made by a, i.e., Sb = {(α1,α2,α3) : α1,α2,α3 ∈ {Y,N}}. If the person at role a
chooses (99, 1) and the person at b chooses (α1,α2,α3), then the outcome depends only
upon α1; if α1 = Y, then they receive (99, 1) and if α1 = N, then they receive (0, 0). For
the other cases, we define payoffs in a parallel manner. The game is depicted in Fig.7.1.

This game has a unique backward induction solution: ((99, 1), (Y, Y, Y )).This is quite
incompatible with experimental results, which have indicated that (50, 50) is more likely
chosen by the mover at a, as mentioned above.

We assume one additional component for the persons. They have a strictly concave
and monotone utility function u(m) over [0, 100]. This introduction does not change the
above equilibrium outcome. But it changes the i.c.equilibrium drastically.

Under the assumption that each i = 1, 2 has the reciprocal active-passive domain
DAPia = DAPib and ρ1a = ρ2a = 1/2, a pair ((99, 1), (Y, Y, Y )) is not an i.c.equilibrium
since

1

2
hiia ((99, 1), (Y, Y, Y )) +

1

2
hiib ((99, 1), (Y, Y, Y ))

=
1

2
u(99) +

1

2
u(1) < u(50) =

1

2
u(50) +

1

2
u(50)

=
1

2
hiia ((50, 50), (Y, Y, Y )) +

1

2
hiib ((50, 50), (Y, Y, Y )).

The inequality follows the strict concavity of u. In this game, an i.c.equilibrium is given
as ((50, 50), (α1, Y,α3)), where α1,α3 are not determined. We find that the concept
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Figure 7.2: Dictator Game

of i.c.equilibrium is consistent with the experimental results. In fact, we have other
i.c.equilibria, e.g., ((99, 1), (Y,N,N)) and even ((1, 99), (N,N, Y )), which are also Nash
equilibria of this game.

There are several issues here. One is that we have treated this game as a strategic
game to fit into the theory given in this paper. In order to study it as an extensive
game, we need to extend our theory to extensive games or information protocols such
as in [15] and [16]. Another issue is that the i.c.equilibrium does not consider joint
deviations, so equilibria like ((99, 1), (Y,N,N)) can persist. As mentioned in Section
4.2, we could have extended our theory to include joint deviations, but chose not to do
so, since it would include other conceptual problems. With such an extension, we could
discuss how the other equilibria such as ((99, 1), (Y,N,N)) may or may not remain in
our theory.

Here, instead of extending the present theory, we simplify the ultimatum game so
as to treat it as a strategic game to show how the results become more clear cut. We
will treat a simpler version of the dictator game given by Kahneman et al. [12] (see also
Camerer [3] for a survey of experimental studies of dictator games).

Dictator Game: Let us eliminate action N from each move of role b. The game is
depicted as Fig.7.2. This has no action choice for role b, and thus, it is regarded a 1-role
game from the standard game theoretic point of view. However, payoffs to role b matter
in our theory. First, we consider:

Case 1: Reciprocal Active-Passive Domains: Here, we first specify the domain
and frequencies of role-switching with (soa, s

o
b) = ((50, 50), Y ) : for i = 1, 2,

Dia = {((99, 1), Y ), ((50, 50), Y ), ((1, 99), Y )},Dib = {((50, 50), Y )} (7.1)

ρ1a = ρ2a = 1/2.

Then Sia = {(99, 1), (50, 50), (1, 99)} and Sib = {Y } for i = 1, 2. Here, we have the unique
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i.c.equilibrium ((50, 50), Y ).
If we apply the Nash equilibrium concept, then the person assigned to role a chooses

(99, 1) to maximize his payoff (utility) and to receive 99, and the one at role b should
simply follow this and receive payoff 1. This is not an i.c.equilibrium: Indeed, when
they switch the roles, one person obtains $99 and $1 with frequencies 1/2 and 1/2,
respectively. This alternating payoffs are less preferred to taking $50 constantly, since
the utility function u is strictly concave.

To discuss whether this result can be regarded as capturing the experimental results
reported so far, we consider another extreme case.

Case 2: Non-reciprocal Active Domains:

D1a = {((99, 1), Y ), ((50, 50), Y ), ((1, 99), Y )} and D1b = ∅ (7.2)

ρ1a = 1 and ρ2b = 1.

That is, person 1 always chooses a division of $100, and person 2 follows it. In this case,
we have also a unique i.c.equilibrium ((99, 1), Y ) : Person 1 exclusively enjoys role a. In
this case, the domains for person 2 are: D2a = ∅ and D2b = {((99, 1), Y )}.

The results for the above two cases are extremely opposite. We should discuss
whether the prediction of our theory may reconcile the discrepancy between the game
theory and reported experimental results.

Discussions of the Above Results: Social Contexts:
A lot of experimental studies are reported based on the ultimatum game and dic-

tator game. As already stated, the experimental results consistently differ from the
non-cooperative game-theoretical predictions. The results are rather closer to our co-
operative results. However, experimental theorists have tried to interpret their results
in terms of “fairness”, “altruism”, and/or “social preferences”, which are expressed as
constraint maximization of additional objective functions (cf., Camerer [3]). In contrast,
we have extended and/or specified the basic social context, and derived the emergence
of cooperation. Thus, our treatment is very different from what have been discussed in
the literature of behavioral economics and game theory. Perhaps, ours will serve a new
theoretical viewpoint to experimental economics.

We have discussed above about possible experimental studies for the prisoner’s
games. Here, we discuss only the dictator game and our result, since the dictator
game and results for it are simpler than the results for the ultimatum game. One possi-
ble hypothesis is that the fully reciprocal Case 1 with equal sharing corresponds to the
standard experimental design where the roles and the opponents are chosen randomly
in each round keeping their anonymity. This experimental design already captures our
internal reciprocity well and the experimental results of sharing fit well.

Exactly speaking, we find a gap between the above experimental design and our
internal reciprocity, since the random choice of a subject from the pool differs from
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the role-switching of the two fixed subjects. Nevertheless, our entire view explains this
gap: A basic assumption of inductive game theory is that a person takes patterned
behavior in a complex social web, meaning that he behaves in the same or similar
situation following the same pattern of behavior. The situation our theory targets is
repeated but it may be scattered in the social web, like Fig.1.1. A subject taken from
society brings his behavior pattern, and he behaves following it in the experiment. The
cooperative behavior described by an i.c.equilibrium may be taken by a person to an
experiment where he again behaves cooperatively.

Some alternative experimental design may be developed to capture the non-reciprocal
Case 2. In this design, the roles could be fixed over some rounds, say 20 rounds, with
an anonymous opponent. Here, we might expect the non-sharing i.c.equilibrium of case
2 to result.

The idea of patterned behavior should be applied even to optimization behavior.
Though we have described the optimal behavior of a person as an i.c.equilibrium, this
does not imply that a subject is an instantaneous optimizer. Rather, each typically
follows his patterned behavior and only sometimes maximizes his payoffs. Optimization
results only in the long-run. This idea is an answer from the entire approach of inductive
game theory to the question: “How do socio-cognitive dimensions influence behavior in
games?” in Camerer [3], p.476.

Now we turn to morality or fairness. It is our contention that as far as a situation
is recurrent and reciprocal enough, the persons possibly cooperate in the form of the
simple payoff sum maximization. Since this is, perhaps, quite pervasive for human re-
lations among small numbers of people, they could have such patterned behavior, and
consequently, such behavior is then observed in experiments. This gives an “anthropo-
logical”, i.e., “experiential” grounding for morality. This differs from the rationalistic
school of morality - - it comes from rationalistic reasoning about morality (such as in
Harsanyi [9]). It also differs from Adam Smith’s [25] “moral sentiments” - - people
are born with a moral sense. In our case, the “morality” of the form of the payoff-sum
maximization emerges from social interactions and role-switching in complex social web,
and is neither rationalized nor inborn. We regard this as an anthropological foundation
for the “utilitarianism” expressed in the form of Theorem 6.1.

8. Externally Reciprocal Relations

Although we have considered mutual i.c.equilibria, our primary concern was what hap-
pens with experiences in the mind of one person. Actually, since people are in a game
setting, experiences and understandings from them are also externally interactive and
affect each other. In this section, we will consider various external reciprocal relations.
Our basic idea is that the persons’ reciprocal relationships are gradually emerging as
time is going on. In this process, an active experience and a passive experience may
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behave quite differently. In this section, we will focus on unilateral trials and the gen-
eration of a resulting memory kit based on such trials.

The starting point is as follows. Suppose that persons 1 and 2 have their accumulated
domains D1 = (D1a,D1b) and D2 = (D2a,D2b), respectively, with the regular actions
(soa, s

o
b). These accumulated domains should be correlated since the passive experiences

of one person are generated by active experiences of the other. Using this idea, we could
impose the following condition on domains of accumulation:

Active generates Passive: for all sr ∈ Sr, r = a, b and i, j = 1, 2 (i 6= j),

(sr; s
o
−r) ∈ Dj(−r) implies (sr; so−r) ∈ Dir. (8.1)

That is, if person j has a passive experience, then person i must have this as an active
experience causing j’s passive experience. This is of the same nature as the Postulates
EP3 and EP4 of Section 2. Based on these postulates, (8.1) formulates the idea that
a person is more sensitive to being active with respect to memories. This gives an
element of reciprocity but is only a necessary form of reciprocity. For example, the
non-reciprocal active domains DN1 and DN2 still satisfy (8.1).

Each person may be more sensitive to his own deviations; as time is going on, he
may have learned also passive experiences. Eventually, the converse of (8.1) could hold:

Equal Sensitivity of Active/Passive Experiences: for all sr ∈ Sr, r = a, b and
i, j = 1, 2 (i 6= j),

(sr; s
o
−r) ∈ Dj(−r) if and only if (sr; so−r) ∈ Dir. (8.2)

That is, (8.1) becomes the equivalence between both sides.
The non-reciprocal active domains DN1 and DN2 no longer satisfy this condition. If

we keep the assumption that they do not switch roles, but (8.2) is assumed, then we
should amend the non-reciprocal active-passive domains DNAP1 and DNAP2 described
in (1) of Section 2.2. These amendments are consistent with the assumption that they
do not switch the roles at all. We can see that the amendments do not change the
behavioral consequence from Theorem 4.1, though the tp-understanding g12 changes
slightly, i.e., person 1 now recognizes the action set Sb.

Role-Switching with Similar Frequencies: The above example suggests that (8.2)
is not enough to establish external reciprocal relationships between 1 and 2. We need
also the assumption that they switch the roles from time to time with relatively equal
frequencies.

Nevertheless, the equal sensitivity (8.2) and the frequency-wise reciprocity are still
not enough for the fully reciprocal relationships.

Example. 8.1 (Different Trials): Consider the game in Table 2.1 and the following
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D1,D2 with the regular actions (s
o
a, s

o
b) = (sa1, sb1);

D1a = {(sa1, sb1), (sa2, sb1), (sa1, sb3)}, and D1b = {(sa1, sb1), (sa1, sb2), (sa3, sb1)};
D2a = {(sa1, sb1), (sa3, sb1), (sa1, sb2)}, and D2b = {(sa1, sb1), (sa1, sb3), (sa2, sb1)}.

That is, person 1 makes trials of only the second actions sa2 at role a and sb2 at role b,
while person 2 makes trials of only the third actions sa3 at a and sb3 at b. Even though
(8.2) holds, and their roles are switched, their differences in trial behaviors generates
different domains of experiences, i.e., Dia 6= Dib for i = 1, 2 and D1r 6= D2r for r = a, b,
though D1a = D2b and D2a = D1b. These inequalities prevent them from constructing
meaningful tp-understandings. This fact implies that regardless of the weights ρ1, ρ2,
that if (sa1, sb1) is an i.c.equilibrium and θr = hr(sa1, sb1) for r = a, b, then it is a Nash
equilibrium in the restricted game (a, b, {sa1, sa2}, {sb1, sb3}, ha, hb).

Thus, we need to take one more step to obtain full reciprocity

The Same Trials: The two persons switch the roles and make similar trials as well.
The extreme case is formulated as: for all sr ∈ Sr, r = a, b and i, j = 1, 2 (i 6= j),

(sr; s
o
−r) ∈ Dir if and only if (sr; so−r) ∈ Djr. (8.3)

That is, they make the same trials at each role.
Recalling Proj(Dir) := {(sa, sb) ∈ Dir : sa = soa or sb = sob}, we can change (8.2)

and (8.3) to equivalent but mathematically clearer conditions.

Lemma 8.1 (Internal-External Reciprocity). Conditions (8.2) and (8.3) hold for
(D1a,D1b) and (D2a,D2b) if and only if

(1)(Internal Reciprocity): Proj(Dia) = Proj(Dib) for i = 1, 2;

(2)(External Reciprocity): Proj(D1r) = Proj(D2r) for r = a, b.

Proof. When (1) and (2) hold, the four sets, Proj(Dir), i = 1, 2 and r = a, b are the
same. Hence, the if-part is straightforward. We prove the only-if part. Suppose (8.2)
and (8.3) for (D1a,D1b) and (D2a,D2b).

Consider (1). Let (sa, sb) ∈ Proj(D1a). This means that (sa, sb) = (sa, s
o
b) or

(soa, sb). Fist, let (sa, sb) = (sa, s
o
b). Then, (sa, s

o
b) ∈ Proj(D2a) by (8.3), which is

written as (sa; s
o
−a) ∈ Proj(D2a). By (8.2), we have (sa; so−a) ∈ Proj(D1(−a)), i.e.,

(sa, s
o
b) ∈ Proj(D1b). Next, let (sa, sb) = (soa, sb). Thus, (sb; s

o
−b) ∈ Proj(D1(−b)). We

have (sb; s
o
−b) ∈ Proj(D2b) by (8.2). Hence, by (8.3), we have (sb; so−b) ∈ Proj(D1b).

We have shown Proj(Dia) ⊆ Proj(Dib). The converse can be obtained by a symmetric
argument. Thus, we have (1).

Consider (2). Let (sa, sb) ∈ Proj(D1a). This means that (sa, sb) = (sa, sob) or (soa, sb).
Let (sa, sb) = (sa, s

o
b). By (8.3), we have (sa, s

o
b) ∈ Proj(D2a). i.e., (sa, so−a) ∈ Proj(D2a).

Now, let (sa, sb) = (soa, sb). By (1), (s
o
a, sb) ∈ Proj(D1b). This is written as (sb; so−b) ∈

35



Proj(D1b). By (8.2), we have (sb; s
o
−b) ∈ Proj(D2a). We have shown that Proj(D1a) ⊆

Proj(D2a). The converse can be obtained by a symmetric argument. Thus we have
(2).

Hence, when (8.2) and (8.3) hold, these Proj(Dir) coincide for i = 1, 2 and r =
a, b. Hence, as far as the frequency weights are reciprocal, i.e., ρ1a = ρ2a = 1/2, an
i.c.equilibrium and a mutual i.c.equilibrium support an cooperative outcome up to the
experienced actions.

In Theorem 2.1, we have already seen that internal reciprocity (1) is necessary and
sufficient for gii and gij to coincide within the mind of one person i. The next step is to
consider when the two persons reach the same views. In this case, under the assumption
of ρ1a = ρ2a = 1/2, a mutual i.c.equilibrium makes sense.

Actually, (8.2) and (8.3) are necessary and sufficient for all gii and gij (i, j = 1, 2, i 6=
j) to coincide across persons. We state this result as a theorem.

Theorem 8.2.(Internally and Externally Reciprocal Relations): Then, (8.2)
and (8.3) hold for (D1a,D1b) and (D2a,D2b) if and only if for any r = a, b and i, j = 1, 2
(i 6= j),
(1): Sir = S

j
r ;

(2): for any (sa, sb) ∈ Proj(S1a × S1b ) and θa, θb, h
ii
r (sa, sb) = h

ij
r (sa, sb) = hr(sa, sb).

Proof. (Only-If): Suppose that (8.2) and (8.3) hold for (D1a,D1b) and (D2a,D2b).
Then, Lemma 8.1 states that Proj(Dir)’s are all the same for i = 1, 2 and r = a, b. Hence,
(1) is satisfied by the d-understanding gii = (a, b, Sia, S

i
b, h

ii
a , h

ii
b ) and tp-understanding

gij = (a, b, Sia, S
i
b, h

ij
a , h

ij
b ) for i, j = 1, 2 (i 6= j). Assertion (2) also follows by (3.2) and

(3.1).

(If): By (1) and (2.3), we have, for i = 1, 2, Proj(Dia ∪ Dib) = Proj(S1a × S1b ). Let

(sa, sb) ∈ Proj(Dia ∪Dib). Then, since hiir (sa, sb) = h
ij
r (sa, sb) = hr(sa, sb) for any θa, θb

by (2), we have (sa, sb) ∈ Dir∩Di(−r). This holds for i = 1, 2. Hence, (sa, sb) ∈ Proj(Dia)
and (sa, sb) ∈ Proj(Dib). Hence, we have shown (1) and (2) of Lemma 8.1. Thus, (8.2)
and (8.3) hold for (D1a,D1b) and (D2a,D2b).

An implication of Theorem 8.2 is that under (8.2), (8.3) and the frequency assump-
tion that (ρia, ρib) = (

1
2 ,
1
2) for i = 1, 2, person i can predict the correct payoff function

over the relevant domains, that is, for any sr ∈ Sjr = Sir,

Hij([sr; s
o
−r]a, [sr; s

o
−r]b) = H

jj([sr; s
o
−r]a, [sr; s

o
−r]b). (8.4)

Hence, those persons think about the game in the perfectly synchronized manner, a
fortiori, if (soa, s

o
b) is a mutual i.c.equilibrium, then they reach the understanding that

it is an i.c.equilibrium for both persons.
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We do not claim that these two types of reciprocities are reached even after the
situation has been played with full role-switching. Here, we give only one example
where each has internally reciprocal domains but they are not externally reciprocal

Example 8.2 (Internally Reciprocal for each but not External Reciprocal).
Two persons 1 and 2 have played the game with full role-switching, and have made
the same trial deviations from the regular actions. Now, suppose that person 1 has a
stronger memory ability than person 2. In this case, person 1 keeps more experiences
than 2, while internal reciprocity holds for each person, i.e., Proj(D1a) = Proj(D1b) )
Proj(D2a) = Proj(D2b). In this case, each person has the same d- and tp-understandings,
but they are different over the persons.

In this case, the dynamics suggested in Fig.5.2 may not work. For example, person
1 thinks that a deviation sa gives a better weighted payoff, and he thinks that person 2
thinks in the same manner. But, if the experience (sa, s

o
b) is not accumulated in person

2’s mind, person 2 does not deviate as 1 predicts. In this case, person 1 may find that
person 2’s i.d.view is different.

This kind of a difference in their views may be a source for their communications.
This is beyond the scope of this paper and will be discussed in a separate paper.

9. Conclusions

We have introduced the concept of social roles into inductive game theory, and have
given an experiential foundation of the other’s beliefs/knowledge. Based on this foun-
dation, we have shown the possibility for the emergence of cooperation and argued that
persons are more likely to cooperate when their role-switching is more reciprocal. The
experiential foundation of the other’s beliefs/knowledge is essential for the emergence
of cooperation. In this section, we first summarize our findings in this paper, and next
we discuss extensions and future work.

9.1. Summary of Findings

It was our basic presumption that a person’s understanding of the other’s thinking
should be experiential. We introduced role-switching so that person i could experience
and obtain an experiential understanding of the other’s thinking.

In our exploration of a person’s transpersonal understanding of the other, we have
taken several steps exemplified by various postulates. We postulated in TP1 (projection
of self) and TP2 (experiential reason to believe) that each person projects his own
experiences onto the other provided he has experiential reason to believe the other has
had the same experience. These postulates were summarized in the requirement that
both (sa, sb) ∈ Dir and (sa, sb) ∈ Dir in the definition of hijr (sa, sb) in (3.2) of i’s
tp-understanding. This will be discussed below more.
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By such a requirement, the complete transpersonal understanding of the other’s
thinking requires reciprocity in role-switching. With such reciprocity, it became natural
to consider the frequency weighted payoff of a person across roles. Correspondingly,
we developed the concept of an i.c.equilibrium to capture the notion of equilibrium (or
stability) within such a framework.

Nevertheless, with different degrees of reciprocity, we have many cases for the do-
mains of accumulation generated, some of which were well suited for cooperation, and
others not. The reciprocal active-passive domain was shown to be well suited for co-
operation to emerge in an i.c.equilibrium (Theorem 6.2). On the other hand, the non-
reciprocal and reciprocal active domains generate only non-cooperative Nash equilibria
as i.c.equilibria (Theorems 5.2 and 5.3). In this paper, we pursued only a few cases
to express the main thrust of the arguments about the potential for the emergence of
cooperation.

In Section 7, we discussed the consistency of our theory with experimental results
from the prisoner’s dilemma, ultimatum, and dictator games. We also proposed some
alternative experimental designs to test the relevance of role-switching for behavior in
experiments, which will serve a connection to experimental/behavioral economics/game
theory (cf., Camerer [3]).

Section 8 gave external conditions for the internal reciprocity which was at the heart
of the emergence of cooperation in our theory. This exploration showed that in addition
to reciprocal role-switching, the same trials by both persons, and equal and broad
sensitivities were sufficient (Theorem 8.2) to generate the equivalent understandings
that are fertile grounds for cooperation (Theorem 6.2).

9.2. Extensions and Future Work

First, we discuss some implicit assumptions underlying of formulation of person i’s
derivation of the tp-understanding about the other’s understanding of the situation. It
is experiential in the sense that all components are derived from his own accumulated
experiences. Here, we need social roles, role-switching, and also the basic assumption
that the 2-role game is given independent of persons (actors). In this sense, we have fol-
lowed the tradition of symbolic interactionism from Mead [21]. In reality, this could not
be true, but our assumption is an idealization. Not only this, we need other assumptions
for our treatment. These were specified from place to place in this paper.

Specifically, the definition of person i’s tp-understanding gij from his memory kit
κi includes such an assumption. The salient part is the condition (sa, sb) ∈ Di(−r)
in the definition of hijr (sa, sb) in (3.2). This means that person i has the experience
(sa, sb) in his domain Di(−r) : He infers that person j must have also this experience,
and project his experienced payoff hr(sa, sb) onto j. That is, (sa, sb) must be a common
experience for persons i and j from the viewpoint of person i. This sounds like the
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requirement of some evidence for the definition of common knowledge in Lewis [20].
This will possibly serve a bridge to epistemic logic; in particular, to common knowledge
logic of Fagin-Halpern-Moses-Vardi [7] (see also Kaneko [13]).

In our context, if a person experiences one pair (sa, sb) from both roles, he would
infer/guess that the other person has the same experience from both roles, and also
that the other infer the symmetric statement. If we pursue, rigorously, this argument
as an infinite regress, then we would have common knowledge (beliefs) in the sense of
an infinite hierarchy of beliefs (see Kaneko [14], Chap.4 for this argument of an infinite
regress). In this case, we need other assumptions on an hierarchy of logical abilities of
the persons. As Lewis [20] did not intend to mean an infinite hierarchy of knowledge
(beliefs), it would be better to stop at some shallow interpersonal depths of nested
beliefs. We will discuss a rigorous treatment of this in the epistemic logic of shallow
depths (Kaneko-Suzuki [19]) in a separate paper.

Next, we turn to some extensions like the emergence of cooperation in n-role games.
Notice that emergence of cooperation is conditional upon the degree of reciprocity of
role-switching. We restricted ourselves to a 2-person situation and still cooperation
needs a specific reciprocity. Therefore, our result may be interpreted as showing a
difficulty in reaching cooperation. One immediate question is to ask what would happen
with the present study in a 3- or more persons case. This remains an open problem,
but we should give our thought about it.

In an n-person case, since one person can experience a few social roles only, it might
not be appropriate to extend directly the result of this paper into the n-person case.
Rather we should consider possibilities of cooperations of 2- or 3-person groups in the
entire n-person game. These groups of small sizes could represent the extent of a person’s
cooperation potential. In this limited sense, our research does not suggest us to return
to the standard n-person cooperative game theory from von Neumann-Morgenstern [26].

Rather, patterned behavior in different but similar situations may be a key to have
an extension of our theory. This is related to the basic presumption of inductive game
theory: A social situation formulated as a 2-role game (more generally, an n-role game)
is not isolated from other social situations in the entire social web. As a research
strategy in this paper, we focused on a specific 2-role game, but we should not forget
that this simple case belongs to the complex social web depicted as Fig.1.1. Overlaps
and connections between similar situations becomes unavoidable.

Also, we remind the readers that our behavioral postulate is of patterned (regu-
lar) behavior, rather than instantaneous payoff maximization. This patterned behavior
may have some uniformity (regularity), which could ease some difficulty in reaching
cooperation such as one difficulty of multiplicity we met in the ultimatum game in Sec-
tion 7. This thought may suggest more experiential studies of behavior in society and
experimental studies in labs.
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