

 $\Gamma^{l}(\pi^{l})$ $\longrightarrow \Gamma^2(\pi^2)$ $\Gamma^{o}(2,1)$ *a*:1 *b*:2 Ŷ $\Gamma^{o}(1,2)$ $\Gamma^{1}(\pi^{1})$ $\Gamma^{o}(1,2)$ *a*:1 b:2J J $\Gamma^2(\pi)$ $r^{2}(\pi'^{2})$ $\Gamma^{0}(2,1)$ *a*:2 *b*:1 97 F One person involved in Many social situations Fig^₄2

An extensive game is given as $\Gamma = ((X, \prec), (\lambda, W), \{(\varphi_x, A_x)\}_{x \in X}, (\pi, N), h)$ with the following properties: K1: (Game Tree): (X, \prec) is a finite forest (a tree by K14); K11: X is a finite set of nodes, and \prec is a partial oerdering over X; K12: $\{x \in X : x \prec y\}$ is totally ordered with \prec for all $y \in X$; K13: $X^D = \{x \in X : x \prec y \text{ for some } y \in X\}$ and $X^E = X - X^D$; K14(Root): (X, \prec) has the smallest element; K2: (Information function): W is a finite set of information pieces, and $\lambda : X \to W$ is a surjection with $\lambda(x) \neq \lambda(x')$ for any $x \in X^D$ and $x' \in X^E$; K3: (Available action sets): A_x is a finite set of available actions for each $x \in X$; K31: $A_x = \phi$ for all $x \in X^E$; K32: $A_x = A_x$ if $\lambda(x) = \lambda(x')$; K33: for any $x \in X, \varphi_x$ is a bijection from the set of immediate successors of x to A_x ; 10

K4: (Player Assignment): N is a finite set of players, and $\pi: W \to 2^N$ is a player assument with K41: $|\pi(w)| = 1$ for all $w \in \{\lambda(x) : x \in X^D\}$ and $\pi(w) = N$ if $w \in \{\lambda(x) : x \in X^E\}$; K42 : for all $j \in N$, $j \in \pi(w)$ for some $w \in \{\lambda(x) : x \in X^D\}$; K5: (Payoff functin): $h = \{h_i\}_{i \in \mathbb{N}}$, where $h_i : \{\lambda(x) : x \in X^E\} \to R$ is a payoff function for player $i \in N$. **Possible Weakenings:** • Elimination of K14(Root); 1. K33 can be weakened into: for any x in X, 2. K33f: φ_x is a function from the set of immediate successors to A_x: K33i: φ_x is an injection; K33s: φ_x is a surjection.

An information protocol is given as (W, A, <)(+ player assingment + payoff functions): 1): W is a finite set of information pieces; 2): A is a finite set of available actions; 3): < is a finite set of $\bigcup_{m=0}^{\infty} [(W \times A)^m \times W]$. $\langle \xi, w \rangle = \langle (w_1, a_1), ..., (w_m, a_m), w_{m+1} \rangle$ is a (partial) history. **Basic Axiom B1** (subsequence-closed): If $\langle \xi, w \rangle$ is in <, then any subsequence $\langle \eta, v \rangle$ of $\langle \xi, w \rangle$ is also in <. **Basic Axiom B2** (Basic Extension): If $\langle \xi, w \rangle$ and $\langle (w, a), u \rangle$ are in <, then $\langle \xi(w, a), v \rangle$ is in < for some $v \in W$.

• A sequence $\langle \xi, w \rangle$ in < is called a position iff it is an initial sequence of some maximal sequence in < .

Axiom N1 (Root):

There is a w_0 in W such every position $\langle \xi, w \rangle$ starts with w_0 .

Axiom N2 (Determination): Let $\langle \xi, w \rangle$, $\langle \eta, v \rangle$ be positions.

If $\xi = \eta$ and ξ is nonempty, then w = v.

Axiom N3 (Independent Extension): Let $\langle \xi, w \rangle$ be a position and let $\langle (w, a), v \rangle$ be in < . Then $\langle \xi, (w, a), u \rangle$ is a position for some $u \in W$.

The memory kit T_{D_i} is defined by $T_{D_i} = \{m_i^o \langle \xi, w \rangle : \langle \xi, w \rangle \in D_i\}.$ Inductively Derived View An i.d.view for *i* from T_{D_i} is a personal view (Π^i, m^i) iff $ID1: W^i = \{w \in W^o : w \text{ occurs in } T_{D_i}\}; W^{iD} \subseteq W^{oD} \text{ and } W^{iE} \subseteq W^{oE};$ $ID2(Actions): A^i_w \subseteq A^o_w \text{ for each } w \in W^i;$ $ID3(Feasible Sequences): \Delta T_{D_i} \subseteq \prec^i;$ Other three conditions (definitions). • In this formulation, we consider only player's own experiences, but do not think about a player's subjective thinking of other people. • What is the experiential source for other people's thinking?

Other Problems

• Status of the Epistemic Logic with Shallow Depths

- Ex Ante Decision in the Derived Subjective View
- Complexity of Interpersonal Thinking;
- Complexity of Intrapersonal Thinking.
- Checking of his Subjective View with new Experiences
- 1. Doxastic Decisions;
- 2. Errors of the 1st type and 2nd type.
- Communication, Education, etc.

19

References

- <u>M. Kaneko</u> and J. J. Kline, Inductive Game Theory: a Basic Scenario, *Journal of Mathematical Economics*, 2008a, Vol. 44, 1332-1363.
- <u>M. Kaneko</u> and J. J. Kline, Information Protocols and Extensive Games in Inductive Game Theory (with J. J. Kline), to appear in *International Journal of Mathematics, Game Theory and Algebra* 17, issue 5/6, 2008b.
- <u>M. Kaneko</u> and J. J. Kline, Partial Memories, Inductive Derivations of Individual Views, and their Interactions with Behavior, to appear in *Economic Theory.* 2008.
- <u>E. Akiyama, R. Ishikawa, M. Kaneko</u>, J. J. Kline, A Simulation Study of Learning a Structure: Mike's Bike Commuting, to appear in *Economic Theory.* 2008.

20