À©ÅÙ¹½ÃÛ¤ÎÀ¯¼£·ÐºÑ³Ø¡Ý´üÂԼ¸½¼Ò²ñ¤Ë¸þ¤±¤Æ¡Ý
English
GLOPEII¤Ë¤Ä¤¤¤Æ News ¥¤¥Ù¥ó¥È¥¹¥±¥¸¥å¡¼¥ë ¥ï¡¼¥­¥ó¥°¥Ú¡¼¥Ñ¡¼ GLOPE II À¤ÏÀÄ´ºº°ìÍ÷ ¥ê¥ó¥¯

ͽÄêɽ -¾ÜºÙ¾ðÊó-

·ï̾ WS À±ÌϺ»á
³«»ÏÆü»þ 2011ǯ 7·î 14Æü (ÌÚÍËÆü)   16»þ30ʬ (GMT+09:00)
½ªÎ»Æü»þ 2011ǯ 7·î 14Æü (ÌÚÍËÆü)   18»þ00ʬ (GMT+09:00)
¾ì½ê £±¹æ´Û£´£°£±¶µ¼¼
¾ÜºÙ ÌÚÍË¥»¥ß¥Ê¡¼

¡ÚÊó¹ð¼Ô¡Û¡¡À±ÌϺ¡ÊÅìµþ¹©¶ÈÂç³Ø¼Ò²ñ¹©³ØÀì¹¶Âç³Ø±¡À¸¡Ë
¡Ú¥¿¥¤¥È¥ë¡Û Quantile regression in spatial autoregressive semivarying-coefficient models
¡Ú³µÍסÛ
This study develops a quantile regression estimator for the spatial autoregressive semivarying-coefficient model. Semivarying-coefficient models assume that some of the regression coefficients vary with some known variables, while other coefficients are fixed to be constant. The proposed model is general in that it encompasses both the standard spatial autoregressive model and the geographically weighted regression model. For model estimation, we use a two-step GMM approach. We establish the asymptotic properties for the estimator including consistency and asymptotic normality. Under certain conditions, it is shown that the constant coefficient
estimator is root-n-consistent, and that the functional coefficient estimator has the oracle property. The finite sample properties of the estimator are assessed using a set of Monte Carlo experiments. Finally, the proposed estimator is applied to the well-known Boston housing data of Harrison and Rubinfeld (1978). The estimated coefficients including the spatial autocorrelation parameter show a certain degree of heterogeneity at different quantiles and different locations.

ËÜÊó¹ð¤Ï¡¤ÊªÍý¶õ´Ö¤ËʬÉÛ¤¹¤ë¼çÂΤ«¤éÆÀ¤¿¥Ç¡¼¥¿¤òʬÀϤ¹¤ë¤Ë¤¢¤¿¤Ã¤Æ¡¤¤½¤Î¶õ´ÖŪÁê´Ø´Ø·¸¤ò¤Ç¤­¤ë¤À¤±¾¯¤Ê¤¤²¾Äê¤Î¤â¤È¤Ç¼è¤ê½ü¤­¡¤¿¿¤Î°ø²Ì´Ø·¸¤òÀö¤¤½Ð¤¹¤¿¤á¤Î¿·¼êË¡¤òÄ󰯤¹¤ë¤â¤Î¤Ç¤¢¤ë¡¥¤¿¤È¤¨¤Ð»Ù»ýÀ¯Åޤ˴ؤ¹¤ëÀ¤ÏÀÄ´ºº·ë²Ì¤òʬÀϤ¹¤ë¾ì¹ç¤Ë¤Ï¡¤¡Ö¤É¤ÎÁªµó¶è¤Ëµï½»¤¹¤ë¤«¡×¤¬½ÅÍפÊÀâÌÀÍ×°ø¤Î°ì¤Ä¤È¤Ê¤ë¡¥¤³¤ì¤ò¤µ¤é¤Ë¾ÜºÙ¤Ë¸¡Æ¤¤¹¤ì¤Ð¡¤¤½¤Î¼çÂΤ¬Ï¢Â³Åª¤Ê¶õ´Ö¤Î¤É¤³¤Ëµï½»¤·¡¤¤½¤Î¶á˵¤Ë¤Ï¤É¤Î¤è¤¦¤ÊÆÃÀ­¤ò¤â¤Ä¼çÂΤ¬Ê¬ÉÛ¤·¤Æ¤¤¤ë¤Î¤«¡¤¤½¤ÎÁê¸ß°Í¸À­¤ò¿µ½Å¤ËÀÚ¤êʬ¤±¤ë¤³¤È¤¬½ÅÍפǤ¢¤ë¤³¤È¤¬Íý²ò¤µ¤ì¤ë¡¥¤·¤«¤·¡¤¶á˵¼çÂΤȶɽêŪ¤ËÁê¸ß°Í¸¤¹¤ë¥â¥Ç¥ë¤Î·×ÎÌŪʬÀϤǤϡ¤·ë²Ì¤¬¥â¥Ç¥ë¤ÎÀßÄê¤Ë¤­¤ï¤á¤ÆÉÒ´¶¤ËÈ¿±þ¤¹¤ë¤³¤È¤¬¹­¤¯ÃΤé¤ì¤Æ¤¤¤ë¡¥¤·¤¿¤¬¤Ã¤ÆËÜÊó¹ð¤Ç¼è¤ê°·¤ï¤ì¤Æ¤¤¤ë¡¤¥â¥Ç¥ë¤ÎÆÃÄê²½¤Î²¾Äê¤òÂçÉý¤Ë´Ë¤á¤¿¥»¥ß¥Ñ¥é¥á¥È¥ê¥Ã¥¯¤Ê¼êË¡¤Ï¡¤Ê¬ÀÏ·ë²Ì¤Î´è·òÀ­¡¦°ìÈÌÀ­¤ò³ÎÊݤ¹¤ë¤¿¤á¤ËºÇ¤â¸ú²ÌŪ¤Ê¥¢¥×¥í¡¼¥Á¤Ç¤¢¤ë¤È¤ß¤Ê¤»¤ë¡¥¤æ¤¨¤Ë¡¤ËÜÊó¹ð¤Ç²òÀ⤵¤ì¤ë¿·¤¿¤Ê¼êË¡¤Ï¡¤G-COE¤Ë¤ª¤±¤ë½ô²ÝÂê¤ËÂн褹¤ë¤Ë¤¢¤¿¤Ã¤Æ¤âÍ­ÍѤʤâ¤Î¤Ë¤Ê¤êÆÀ¤ë¡¥

¥«¥Æ¥´¥ê¡¼ ¥ï¡¼¥¯¥·¥ç¥Ã¥×¡¦¥»¥ß¥Ê¡¼
¥µ¥¤¥È¥Þ¥Ã¥×
Home¤Ø