ͽÄêɽ -¾ÜºÙ¾ðÊó-
·ï̾ | WS Farhad Husseinov»á |
³«»ÏÆü»þ | 2010ǯ 6·î 21Æü (·îÍËÆü) 16»þ30ʬ (GMT+09:00) |
½ªÎ»Æü»þ | 2010ǯ 6·î 21Æü (·îÍËÆü) 18»þ00ʬ (GMT+09:00) |
¾ì½ê | 1¹æ´Û¡¡¸½ÂåÀ¯¼£·ÐºÑ¸¦µæ½ê²ñµÄ¼¼ |
¾ÜºÙ | ¡ÚÊó¹ð¼Ô¡Û¡§Farhad Husseinov»á ¡Ú¥¿¥¤¥È¥ë¡Û¡§Monotonic extension and its applications in the choice theory ¡Ú¾ì½ê¡Û¡§1¹æ´Û ¸½ÂåÀ¯¼£·ÐºÑ¸¦µæ½ê ²ñµÄ¼¼ ¡Ú³µÍ×¡Û Farhad Husseinov¶µ¼ø¤Ï¸½ºßË¡À¯Âç³ØÂÚºßÃæ¤Î¥È¥ë¥³¡¢¥¢¥ó¥«¥é¤Ë¤¢¤ëBilkentÂç³Ø¤Î¶µ¼ø¤Ç¡¢¿ôÍý·ÐºÑ³Ø¡¢¥²¡¼¥àÍýÏÀ¤òÀìÌç¤È¤·¤Æ¤¤¤ë¡£ºÇ¶á¤Ç¤Ï¥³¥¢¤Ë´Ø¤¹¤ë¸¦µæ¤¬Â¿¤¤¡£º£²ó¤ÏñĴ´Ø¿ô¤ÎϢ³³ÈÄ¥¤Ë´Ø¤¹¤ëºÇ¿·¤Î¸¦µæÀ®²Ì¤òÊó¹ð¤·¤Æ¤¤¤¿¤À¤¯¡£¤³¤ì¤Ï2Ãʳ¬ÁªÂòÌäÂê¤Ë¤ª¤±¤ë·ÐºÑ¼çÂΤÎÁªÂò¹Ôư¤Î¸¦µæ¤Ë±þÍѤµ¤ì¤ë¡£¤½¤Î°ÕÌ£¤Ç¼Ò²ñŪÁªÂòÌäÂê¤Ë¤â´ØÏ¢¤¬¤¢¤ë¡£ The existence of an extension of a continuous and (strictly)monotonic function defined on a closed subset of a Euclidean space thatpreserves these properties to the entire space is proved. These results are applied to study the choice behavior in the context of two-stage choice situation where in the first stage a menu, and in the second stage an alternative from the chosen menu is chosen. |
¥«¥Æ¥´¥ê¡¼ | ¥ï¡¼¥¯¥·¥ç¥Ã¥×¡¦¥»¥ß¥Ê¡¼ |