ͽÄêɽ -¾ÜºÙ¾ðÊó-
·ï̾ | WS ²ÃÆ£¿¸»á |
³«»ÏÆü»þ | 2009ǯ 11·î 27Æü (¶âÍËÆü) 16»þ30ʬ (GMT+09:00) |
½ªÎ»Æü»þ | 2009ǯ 11·î 27Æü (¶âÍËÆü) 18»þ00ʬ (GMT+09:00) |
¾ì½ê | 3¹æ´Û2³¬Âè»°²ñµÄ¼¼ |
¾ÜºÙ | ¡ÚÊó¹ð¼Ô¡Û ²ÃÆ£¿¸¡ÊÅìµþÂç³Ø¼Ò²ñ²Ê³Ø¸¦µæ½ê½õ¶µ¡Ë ¡Ú¥¿¥¤¥È¥ë¡Û Conditions for Cyclic Social Preference ¡Ú¾ì½ê¡Û 3¹æ´Û2³¬Âè»°²ñµÄ¼¼ ¡Ú³µÍ×¡Û ²ÃÆ£¿¸»á¤ÏÅìµþÂç³Ø¼Ò²ñ²Ê³Ø¸¦µæ½ê½õ¶µ¤Ç¤¢¤ê¡¤¼Ò²ñŪÁªÂòÍýÏÀ¤ª¤è¤Ó»º¶ÈÁÈ¿¥ÏÀÅù¤òÀìÌç¤È¤¹¤ë¼ã¼ê¤Î¸¦µæ¼Ô¤Ç¤¢¤ë¡¥º£²ó¤Ï°Ê²¼¤Ëµó¤²¤ë¡¤Æ±»á¤Î¼Ò²ñŪÁªÂòÍýÏÀ¤Ë¤«¤ó¤¹¤ëºÇ¿·¤Î¸¦µæ·ë²Ì¤òÊó¹ð¤·¤Æ¤¤¤¿¤À¤¯¡¥¤³¤ì¤ÏGLOPE£²¤ÎËÜ¥×¥í¥¸¥§¥¯¥È¤Î¸¦µæ¤È¤â´ØÏ¢¤¬¿¼¤¤¡£ ³µÍ×Our aims is to describe how we can capture the structure of Collective choice rule without the field expansion lemma. We consider two requirements on social preference cycle: acyclicity and Suzumura consistency. We first examine procedural conditions for an acyclic collective choice rule. Recently, Schwartz [A Procedural Condition Necessary and Sufficient for Cyclic Social preference, J. Econ. Theory 137 (2007), 688-695] has provided a generalization of the voting paradox by using the impotent partition condition. We provide another procedural condition, and show another generalization of the voting paradox. Moreover, we connect two generalizations, and analyze the conditions for an acyclic collective choice rule. Next, we investigate the decisive structure behind Suzumura consistent collective choice rules. To capture the implication of Suzumura consistency on the decisive structure, we focus on the family of semi-decisive sets. A semi-decisive set is a group that has veto power. It is shown that if a Suzumura consistent collective choice rule satisfies weak Pareto, then the family of semi-decisive sets forms a prefilter. |
¥«¥Æ¥´¥ê¡¼ | ¥ï¡¼¥¯¥·¥ç¥Ã¥×¡¦¥»¥ß¥Ê¡¼ |