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A New Keynesian Model with Endogenous

Technological Change

Shunsuke Shinagawa ∗ Tomohiro Inoue†

Abstract

In this study, we introduce endogenous technological change based
on R&D into the new Keynesian model, in which nominal wages are
suppose to be sticky. The purpose of this paper is to examine how
money growth affects long-run economic growth. The economy ex-
hibits the sustained growth based on sustained R&D for sufficiently
high money growth rates, and along such a balanced growth path,
the faster money growth brings the larger employment and faster eco-
nomic growth. Further, under some parameter restrictions, no bal-
anced growth path exists for small money growth rates, and the econ-
omy is trapped in the steady state without long-run growth. These
results suggest that money growth may be an important factor for
long-run economic growth.

JEL classification: O11, O42, E12, E31
keywords: endogenous growth, R&D-based growth model, new Keyne-
sian Phillips curve, nominal rigidities, money growth

1 Introduction

Macroeconomists discuss separately the long-run theory and the short-run
theory. The central theory of the former studies is optimal growth theory1 or
endogenous growth theory, which analyzes the supply side of the economy.
The central theory of the latter is new Keynesian theory, in which prices or
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Shinjuku-ku, Tokyo, 169-8050, Japan, Email : shinagawa@aoni.waseda.jp
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1See Ramsey (1928), Cass (1965), Koopmans (1965).
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nominal wages are supposed to be sticky and the price adjustment process
is analyzed.2

Such divided framework is justified by the natural rate hypothesis.3

However, if the price stickiness remains at the steady state of the short-
run model, money is not superneutral in the long run and the natural rate
hypothesis loses its validity. In this situation, price stickiness must be taken
into consideration in the long-run model.

Opinions are divided among macroeconomists on long-run superneutral-
ity of money. In this study, assuming the Rotemberg-type adjustment cost
in the labor market, we derive the new Keynesian Phillips curve (NKPC)
under which long-run superneutrality of money does not hold.45

Tsuzuki and Inoue (2010) and Inoue and Tsuzuki (2011) have proposed
the Dynamic General Equilibrium (DGE) model with the NKPC and tech-
nological change. In their model, the natural rate hypothesis did not hold,
and the output gap existed when the money growth rates was lower than the
rate of the technological change. However, their analyses assumed exogenous
technological change, as the Solow model.6

This paper provides the new Keynesian DGE model based on Inoue and
Tsuzuki (2011) with endogenous technological progress, instead of exogenous
growth, introducing the explicit R&D activities. That is, in this paper, the
new Keynesian theory, which represents the short-run theory, is integrated
with the endogenous growth theory, which represents the long-run theory.
Using such a model, we examine how money growth affects long-run output,
employment, and economic growth along the balanced growth path.

The rest of this paper is organized as follows: The next section sets up
the model used in our theoretical investigation. Section 3 derives the law of
motion and the steady state, which characterize the equilibrium path of the
economy. It also investigates the existence and the uniqueness of the steady
state. Section 4 examines the local determinacy of the steady state. Section

2For details of the new Keynesian theory, see Woodford (2003) and Gali (2008). As
for the endogenous growth theory, see e.g., Barro and Sala-i Martin (2004).

3For the natural rate hypothesis, see Friedman (1968) and Lucas (1972).
4Akerlof et al. (1996) has argued that long-run superneutrality holds for the inflation

rates that is higher than 3%, however money is not superneutral for low inflation rates.
This paper discuss the latter situation.

5In this respect, it can be interpreted that our NKPC is based on the spirit of the
traditional Keynesian’s Phillips curve. On the contrary, the other type NKPC based on
Firedman’s expectations-augmented Phillips curve is conceivable. Under such NKPC,
money is superneutral in the long run.

6See Solow (1956). Tsuzuki and Inoue (2011) have proposed the new Keynesian model
in which sustained growth becomes endogenous by human capital accumulations.
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5 provides conclusions.

2 Model

We consider a continuous time version dynamic model based on Inoue and
Tsuzuki (2011) and Grossman and Helpman (1991, Chap.3). Let us assume
economy populated by many infinitely lived households under monopolistic
competition in the labor market, and there are rigidities of nominal wage.
There is a single final good, which is produced using intermediate goods
and supplied competitively. A new variety of intermediate goods is invented
by allocating labor for R&D activities, and inventors enjoy an infinitely-
lived monopoly power.7 The available intermediate goods are produced by
multiple intermediate firms using labor. Finally, the financial authorities
adopt the k-percent rule, and expand money supply at a constant rate.8

2.1 Employment agency

The manufacturing sector and R&D sector regard each household’s labor ser-
vice as an imperfect substitute for the other household’s labor. To simplify
the analysis, we assume that an employment agency combines differenti-
ated labor forces into composite labor forces according to the Dixit-Stiglitz
function:9

ℓ =

[∫ 1

0
ℓβj dj

] 1
β

, β ∈ (0, 1),

and supplies composite labor to the intermediate goods sector and the R&D
sector. ℓj denotes differentiated labor forces supplied by household j, and
ℓ is composite labor forces. The number of households is normalized to 1.
η = 1/(1 − β)(> 1) is the elasticity of substitution between each pair of
differentiated labor.

Cost minimization of the employment agency yields the following de-
mand functions for differentiated labor j ∈ [0, 1]:

ℓj =

(
Wj

W

)− 1
1−β

ℓ,

7The analyses on a “patent length” using variety-expanding framework was presented
by Kwan and Lai (2003), Futagami and Iwaisako (2003, 2007) and Furukawa (2007b).

8See Friedman (1969).
9See Dixit and Stiglitz (1977) and Blanchard and Kiyotaki (1987).
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where Wj denotes the nominal wage rate of labor force j, and W denotes
the nominal wage rate of composite labor forces, which is given by

W =

[∫ 1

0
W

− β
1−β

j dj

]− 1−β
β

.

2.2 Final goods sector

We assume that perfect competition prevails in the final goods market. The
final goods firm produces the quantity y according to the Dixit-Stiglitz func-
tion as follows:

y =

[∫ N

0
xαi di

] 1
α

, α ∈ (0, 1),

where xi is the amount of intermediate goods indexed by i ∈ [0, N ], and ϕ =
1/(1− α) (> 1) represents the elasticity of substitution between every pair
of intermediate goods. N is the number of available intermediate goods, and
represents the technology level of the economy. The final goods firm faces
diminishing returns in each intermediate good, therefore larger N implies
higher productivity.

Cost minimization of the final goods producing firm yields the following
demand functions for intermediate goods i ∈ [0, Nt]:

xi =

(
pi
p

)− 1
1−α

y, (2.1)

where pi is the price of intermediate goods i, and p is the price of final good
or the price level, which is given by

p =

[∫ N

0
p
− α

1−α
i di

]− 1−α
α

.

2.3 Intermediate goods sector

Each intermediate good is produced using one unit of composite labor,
thus the marginal cost is equal to the nominal wage level, W . Because
of infinitely-lived patent, all intermediate goods are supplied monopolisti-
cally. Maximization of the monopoly profit, Πi = (pi −W )xi subject to the
demand function (2.1) yields

pi = px ≡ 1

α
W, xi = x ≡ ℓx

N
, ∀i ∈ [0, N ]. (2.2)
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where ℓx represents the amount of composite labor allocated to the produc-
tion of the intermediate goods. All intermediate goods enter symmetrically
into the production of final good. Moreover, the maximized monopoly profit
is

Πi = Π =
1− α

α
Wxi =

1− α

α
W
ℓx
N
, ∀i ∈ [0, N ]. (2.3)

From (2.2), the market equilibrium levels of output, y, and the price of
final good, p, are obtained as

y = N
1
αx = N

1−α
α ℓx, (2.4)

p = N− 1−α
α px = N− 1−α

α
1

α
W. (2.5)

We can rewrite (2.5) as

w ≡ W

p
= αN

1−α
α . (2.6)

2.4 R&D sector

The number of intermediate goods, N , expands according to the following
equation10:

Ṅ

N
= µℓn, N(0) > 0, (2.7)

where µ(> 0) is the parameter that reflects the productivity of R&D. ℓn rep-
resents the amount of composite labor allocated to R&D, and labor market
clearing requires ℓ = ℓx + ℓn.

In equilibrium, the following free-entry condition must be satisfied:

V ≤ W

µN
, with an equality whenever Ṅ > 0. (2.8)

The right-hand side is the nominal unit cost of R&D. V represents the value
of the patent, which is given by the the discounted stream of the monopoly
profit:

V (t) =

∫ ∞

t
Π(τ)e−

∫ τ
t R(ι)dιdτ, (2.9)

10Here, we retain the linear relation between increase in knowledge and stock of knowl-
edge based on the first-generation R&D-based endogenous growth model such that Romer
(1990). However, Jones (1995a,b) have argued that this linearity is problematic assump-
tion. A survey of this issue is presented by Jones (1999, 2005) and Li (2000, 2002).
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where R is the nominal interest rate. Differentiating (2.9) with respect to
time, t, yields the following no-arbitrage condition:

R =
Π+ V̇

V
(2.10)

2.5 Households

Household j possesses nominal money balances,Mj , and stock of the monopoly
firms, Sj . The stock Sj yields interest at rate R. Thus, the budget constraint
of household j is given by

Ȧj = Ṁj + Ṡj =Wjℓj +RSj − pcj , ∀j ∈ [0, 1],

where Aj is the nominal asset of household j, ℓj is labor supplied elastically
by household j, and cj is consumption of household j. The final goods

market clears when y = c ≡
∫ 1
0 cjdj. We can rewrite the budget constraint

in real terms as follows:

ȧj =
Wj

p
ℓj + raj −Rmj − cj ,

where r ≡ R−π is the real interest rate, mj ≡Mj/p is real money balances
and aj ≡ Aj/p is the stock of assets in real terms.

Household j obtains utility from consumption, cj , and real money bal-
ances, mj , and disutility from labor supply, ℓj , and wage negotiations. Thus,
the instantaneous utility function of household j is11

u(cj ,mj , ℓj , ωj) = ln cj + lnmj −
ℓ1+ψj

1 + ψ
− γ

2
ω2
j ,

where ψ(> 0) is the elasticity of the marginal disutility of labor supply.
γ(≥ 0) denotes the scale of the nominal wage adjustment cost from wage
negotiations and ωj ≡ Ẇj/Wj .

12 If γ = 0, the nominal wage is flexible,
however if γ > 0, the nominal wage is sticky.

11The money-in-utility-function approach was initiated by Sidrauski (1967).
12We specify the adjustment cost function as a quadratic expression following Rotemberg

(1982).
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Summarizing the above, household j faces the following dynamical opti-
mization problem:

max
cj ,mj ,ωj

∫ ∞

0

[
ln cj + lnmj −

ℓ1+ψj

1 + ψ
− γ

2
ω2
j

]
e−ρtdt,

subject to ȧj = raj +
Wj

p
ℓj − cj −Rmj ,

Ẇj = ωjWj ,

ℓj =

(
Wj

W

)− 1
1−β

ℓ,

where ρ(> 0) is the subjective discount rate. Since all households behave
symmetrically according to the same equations, Wj = W , cj = c, wj =
w, ℓj = ℓ, and mj = m hold. When γ > 0, the solution to the above
optimization problem is characterized by the Euler equation and the wage
version of the New Keynesian Phillips curve (NKPC), as follows:13。

ċ

c
+ ρ+ π = R =

c

m
, (2.11)

ω̇

ω
= ρ+

β

1− β

ℓw

cγω
− 1

1− β

ℓ1+ψ

γω
, (2.12)

where m ≡
∫ 1
0 mjdj is real money balances in the whole of the economy.

The transversality condition for the households is given by

lim
t→∞

a(t)

c(t)
e−ρt = 0 (2.13)

On the other hand, when γ = 0 the following equation holds instead of
the NKPC (2.12):

β
w

c
= ℓψ (2.14)

2.6 Money growth

Financial authorities are assumed to expand money supply,M , at a constant
rate θ. That is, the financial policy rule is given by Ṁ/M = θ. Therefore,
the following equation holds:

ṁ

m
= θ − π.

13Appendix A provides detailed derivations.
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3 Equilibrium Path

When the nominal wage is sticky (γ > 0), and the positive composite labor
is allocated to R&D at any time (ℓn > 0), the equilibrium path is charac-
terized by the transversality conditions (2.13) and the following differential
equations:14

Ṙ

R
= R− θ − ρ, (3.1)

χ̇

χ
= R− ρ− ω, (3.2)

ω̇

ω
= ρ+

(
ℓ

χ
− ℓ1+ψ

)
η

γω
, (3.3)

where χ ≡ ℓx/(αβ), and

ℓ = ℓ(R,χ, ω) =
ω −R

µ
+ βχ. (3.4)

When R, χ, and ω are given, we obtain the ℓx, ℓn, π as follows:

ℓx = αβχ, (3.5)

ℓn =
ω −R

µ
+ (1− α)βχ, (3.6)

π = π(R, ℓx, ω) = ω − 1− α

α
µℓn. (3.7)

3.1 Steady State

If the law of motion (3.1) – (3.3) has fixed points, these are derived as
follows:

R∗ = θ + ρ,

ω∗ = θ,

χ∗ ≡ χ∗(ℓ∗), ℓ∗ > ℓ ≡ α

1− α

ρ

µ
,

where χ∗(ℓ∗) is the increasing function of ℓ∗ defined as

χ∗(ℓ∗) =
ℓ∗

β
+

ρ

βµ
. (3.8)

14The full derivations are given in Appendix B. We can show that the similar differential
equations system is derived from the lab-equipment model based on Rivera-Batiz and
Romer (1991).

8



When ℓ∗ is given, the steady-state value of χ is derived according to (3.8).
We obtain the steady-state value of the employment level, ℓ∗, as the root of
the following implicit function:15

Λ(ℓ∗) ≡ γθρ

η
+

ℓ∗

χ∗(ℓ∗)
− (ℓ∗)1+ψ = 0. (3.9)

The steady-state values of ℓx and ℓn are

ℓ∗x(ℓ
∗) = αℓ∗ + α

ρ

µ
, (3.10)

ℓ∗n(ℓ
∗) = (1− α)ℓ∗ − α

ρ

µ
. (3.11)

However, to guarantee that ℓ∗n is positive, ℓ∗ must be larger than ℓ.
If ℓ∗ (> ℓ) exists , at this fixed point, y, and N grow at constant rates,

i.e., the economy achieves the balanced growth. We shall define this steady
state as the balanced growth path. From (2.4) and (2.7), the balanced growth
rate of output is derived as

g∗y(ℓ
∗) =

1− α

α
µℓ∗n(ℓ

∗).

From (3.7), the inflation rate along the balanced growth path is given by
the difference between the money growth rate and the long-run growth rate
as shown by Siegel (1983), that is,

π∗ = θ − g∗y(ℓ
∗). (3.12)

However, the long-run growth rate is exogenous and constant in Siegel
(1983).16

3.1.1 Existence and uniqueness of the balanced growth path

Case of non-negative money growth If the money growth rate, θ, is
non-negative, we can show existence and uniqueness of the balanced growth
path in the following way.

15See Appendix C.1.
16Siegel’s equation includes the positive population growth rate, which is supposed to

be zero in our model.
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Proposition 1 Let θ ≥ 0. If and only if θ > θ1, the implicit function,
Λ(ℓ) = 0, has a unique root, such that ℓ = ℓ∗ > ℓ. On the other hand, if
θ ≤ θ1, Λ(ℓ) = 0 has no root in (ℓ,∞). θ1 is a constant defined as follows:

θ1 ≡
η

γρ

{[
α

1− α

ρ

µ

]1+ψ
− αβ

}
.

proof. See Appendix C.2.

θ > θ1 is a necessary and sufficient condition for Λ(ℓ) > 0. When the
parameters satisfies

ρ

µ
< Γ1 ≡

1− α

α
(αβ)

1
1+ψ ,

θ1 < 0 holds, thus θ ≥ 0 > θ1 always holds, whereas if ρ/µ ≥ Γ1, the
existence of the balanced growth path requires that the money growth rate,
θ, is sufficiently large. When θ is small and the balanced growth path does
not exist, there is only the no-growth steady state mentioned below.

Case allowing negative money growth When we allow the negative
value of θ, Proposition 1 is rewritten to a weaker proposition as follows.

Proposition 2 If θ > θ1, Λ(ℓ) = 0 has a unique root such that ℓ > ℓ.

proof. See Appendix C.3.

That is, θ > θ1 is a necessary but not a sufficient condition for the
existence of a unique balanced growth path. To repair the sufficiency, the
following parameter restriction is required:

Assumption 1

ρ

µ
≥ Γ2 ≡

1− α

α

[
αβ(1− α)

1 + ψ

] 1
1+ψ

.

Γ1 > Γ2 always holds. Assumption 1 is a necessary and sufficient condition
for Λ′(ℓ) ≤ 0.

Proposition 3 Let the parameters satisfy Assumption 1. If and only if θ >
θ1, the implicit function, Λ(ℓ) = 0, has a unique root, such that ℓ = ℓ∗ > ℓ.
In contrast, if θ ≤ θ1, Λ(ℓ) = 0 has no root in (ℓ,∞).
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θ > θ1 θ = θ1 θ < θ1

θ ≥ 0 1 0 (–) 0 (–)
θ ∈ (θ2, 0) 1 0 (1) 0 (2)
θ = θ2 – 0 0 (1)
θ < θ2 – – 0

Table 1: The number of balanced growth paths.
The number in each cell indicates the number of balanced growth paths. The case that

Assumption 1 is not fulfilled corresponds to the number in parenthesis. “–’ shows that

there does not exist such combinations of parameters.

proof. See Appendix C.4.

That is, under Assumption 1, θ > θ1 is a necessary and sufficient con-
dition for a unique balanced growth path, again. Sufficiently high money
growth rates are required to achieve sustained economic growth.

On the other hand, when parameters do not satisfy Assumption 1, it
is possible that multiple balanced growth paths exist for negative money
growth rates.

Proposition 4 Let ρ/µ < Γ2 hold. There exists the threshold of θ, θ2(<
θ1), and Λ(ℓ) = 0 has two roots, ℓ∗1 and ℓ∗2, which belong to (ℓ,∞) if and
only if θ2 < θ < θ1 holds.17

proof. See Appendix C.5.

Letting ℓ∗1 < ℓ∗2, we obtain g∗y(ℓ
∗
n(ℓ

∗
1)) < g∗y(ℓ

∗
n(ℓ

∗
2)). Therefore, when

the money growth rate, θ, is negative and belongs to (θ2, θ1), the balanced
growth paths with the high growth rate and low growth rate coexist. Since
R, χ and ω are jump variables, our model has no mechanism to choose be-
tween them, i.e., global indeterminacy arises.18 The behavior of the economy
is determined depending on what the agents expect.

The arguments of Propositions 1–4 are summarized in Table 1.

3.2 Money growth, inflation and economic growth

Let θ > θ1 holds and a unique balanced growth path exist. Then, we obtain
the following proposition.

17Since Γ1 > Γ2, θ1 is negative as long as Assumption 1 is not satisfied.
18As for local indeterminacy, 4 provides detailed analyses.
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Proposition 5 Let θ > θ1 hold. In response to a permanent increase in
the money growth rate, θ, the economy experiences larger employment, and
faster economic growth along the unique balanced growth path.

This proposition can be easily proved as follows. First, applying the
implicit function theorem to (3.9), we show

dℓ∗

dθ
= − Λθ

Λℓ∗
> 0, (3.13)

where ΛX denotes a partial derivative of Λ, with respect to X. Λθ is equal to
γρ/η and positive, and Λℓ∗ is negative as shown in Appendix C.2, therefore,
dℓ∗/dθ is positive. Since (ℓ∗x)

′(ℓ∗) > 0 and (ℓ∗n)
′(ℓ∗) > 0, a increase in ℓ∗

raises labor allocated each sectors.19 As a result, since (g∗y)
′(ℓ∗n) > 0, the

larger value of θ raises g∗y . That is, the faster money growth is, the faster
economic growth is.

The positive relation between θ and g∗y has been shown in Proposition 5.
Therefore, even if the financial authorities add 0.1% to the money growth
rate, the rise of long-run inflation rate is smaller than 0.1% because of the
rise of the long-run growth rate, g∗y (See (3.12)). Further, for the high
productivity of R&D, which is captured by large µ, it is possible that the
inflation rate even decreases.

Proposition 6 Let θ > θ1 hold. In response to a permanent increase in
the money growth rate, θ, the long-run inflation rate, π∗, decreases for
sufficiently large µ.

proof. See Appendix C.6.

3.3 Output Gap

We shall refer to the output and the employment level in the flexible-price
economy (i.e., when γ = 0) as the natural output level and the natural
employment level, respectively. The output gap is the difference between the
actual output level and the natural output level.

In the flexible-price economy, the employment level, ℓ, is characterized
by (2.14) instead of NKPC(2.12). Then, Substituting (2.6), (2.4), (3.10),
and y = c into (2.14), we obtain the natural employment level along the
balanced growth path, ℓ∗∗, as the root of the following implicit function:

Λ|γ=0(ℓ
∗∗) ≡ ℓ∗∗

χ∗(ℓ∗∗)
− (ℓ∗∗)1+ψ = 0.

19In addition, ℓn/ℓx increases.
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When θ = 0, Λ(ℓ) becomes the identical form with Λγ=0(ℓ). Therefore,
when the financial authorities apply the monetary policy with θ = 0, ℓ∗ = ℓ∗∗

holds and the output gap caused by price stickiness is eliminated. However,
if ρ/µ ≥ Γ1, the implicit function, Λ|γ=0(ℓ) = 0, has no root that is larger
than ℓ.

3.4 No-growth steady state

There exists a different steady state from the balanced growth path, at which
no labor is allocated to R&D and long-run growth never occur. We refer to
such a steady state as the no-growth steady state. At the no-growth steady
state, since the free-entry condition (2.8) does not hold with an equality,
(3.4), (3.5), and (3.6) are not fulfilled, and ℓn = 0 and ℓ = ℓx hold instead
of them.

The value of each variable at this steady state is derived as follows:

R0 = θ + ρ,

π0 = ω0 = θ,

χ0 =
l0x
αβ

,

ℓ0 = ℓ0x =

[
γθρ

η
+ αβ

] 1
1+ψ

.

Under Assumption 1, the no-growth steady state, (R0, χ0, ω0), is a unique
steady state of the economy for θ ≤ θ1, whereas it coexists with the bal-
anced growth path, (R∗, χ∗, ω∗) for θ > θ1. Along the balanced growth
path, the economy exhibits sustained growth at the rate, g∗y , while at the
no-growth steady state, exhibits no sustained growth. Further, for θ > θ1,
since Λ(ℓ0) > 0 holds, then we can show that ℓ0 < ℓ∗. That is, the no-
growth steady state has lower employment level than the balanced growth
path. Since R, χ and ω are jump variables, our model has no mechanism to
choose between them. That is, again, global indeterminacy arises.20

20If two balanced growth paths exist as shown in Proposition 4, there are three steady
state in all, and global indeterminacy arises among them.
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4 Local determinacy of balanced growth paths

In order to examine the local stability, we linearize the system (3.1)–(3.3)
around the fixed point, (R∗, χ∗, ω∗).Ṙχ̇

ω̇

 = J

R−R∗

χ− χ∗

ω − ω∗

 , where J ≡

θ + ρ 0 0
χ∗ 0 −χ∗

0 ηβ
γ Λ′(ℓ∗) ρ

 ,
where Λ′(ℓ) has been derived as (C.1). One of three eigenvalues of the
Jacobian matrix, J , is θ + ρ(> 0), and other two eigenvalues are equal to
the eigenvalues of the following sub matrix:

J1 ≡

[
0 −χ∗

ηβ
γ Λ′(ℓ∗) ρ

]
.

Here, trJ1 = ρ > 0 and detJ1 =
ηβ
γ χ

∗Λ′(ℓ∗) hold.

For the unique balanced growth path First, we study the dynamical
property of the unique balanced growth path, which is mentioned in Propo-
sition 1 – 3. Since Λ′(ℓ∗) < 0 holds, detJ1 is negative. Therefore J1 has
two real eigenvalue with opposite sign. As a result, Jacobian matrix, J , has
one negative real root and two positive real roots. Since R, χ and ω are
jump variables, the fixed point is locally indeterminate.21

For the multiple balanced growth path Next, we analyze the case of
the multiple equilibrium, which is argued in Proposition 4. Let ℓ∗1 and ℓ∗2
denote the roots of Λ(ℓ) = 0, and ℓ∗1 < ℓ∗2. Then, Λ

′(ℓ∗1) > 0 and Λ′(ℓ∗2) < 0
hold. For ℓ∗1, trJ1 > 0 and detJ1 > 0 hold, so that the both two roots of J1
have positive real parts. Since all eigenvalues of J has positive real parts,
this fixed point is locally determinate.22

On the other hand, as for ℓ∗2, since detJ1 < 0, J1 or J has one negative
real root. Therefore, the fixed point is locally indeterminate.

21Such local indeterminacy can be connected with sunspots or business cycle. A analysis
on (both local and global) indeterminacy using the variety-expanding framework was pre-
sented by Benhabib and Perli (1994), Evans et al. (1998), Furukawa (2007a,b), Haruyama
(2009).

22However, there are two balanced growth paths and a no-growth steady state, therefore,
global indeterminacy remains.
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5 Conclusions

This study has developed a new Keynesian model introducing R&D activ-
ities and endogenous technological change. When the money growth rate
is sufficiently high, the economy has a unique balanced growth path, and
can sustain long-run positive growth based on sustained R&D efforts. Fur-
thermore, the faster money growth brings the larger employment and faster
economic growth along a balanced growth path. In contrast, under some
parameter restrictions, when the money growth rate is sufficiently small,
there does not exist a balanced growth path and the economy is trapped in
the no-growth steady state. These results suggest that money growth may
be an important factor for long-run economic growth.

Appendix A Dynamical Optimization of Households

Let us define the Hamiltonian function of the optimal problem (2.11) as
follows:

H = ln cj + lnmj −
1

1 + ψ

[(
Wj

W

)− 1
1−β

ℓ

]1+ψ

− γ

2
ω2
j

+ ξ1

[
raj +

Wj

p

(
Wj

W

)− 1
1−β

ℓ− cj −Rmj

]
+ ξ2ωjWj ,

where ξ1 and ξ2 are co-state variables of aj and Wj , respectively. A set of
necessary conditions for optimality can be written as follows:

∂H
∂cj

=
1

cj
− ξ1 = 0, (A.1)

∂H
∂mj

=
1

mj
− ξ1R = 0, (A.2)

∂H
∂ωj

= −γωj + ξ2Wj = 0, (A.3)

ξ̇1 = ρξ1 −
∂H
∂aj

= (ρ− r)ξ1, (A.4)

ξ̇2 = ρξ2 −
∂H
∂Wj

= ρξ2 −

[
ℓ1+ψj

(1− β)Wj
− β

1− β
ξ1
ℓj
p
+ ξ2ωj

]
. (A.5)

Further, the transversality condition is given by

lim
t→∞

ξ1(t)aj(t)e
−ρt = 0.
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Derivation of (2.11) From (A.1) and (A.2), we get R = cj/mj . In
addition, from (A.2) and (A.4), we get −ċj/cj = ρ − r. Substituting
c = cj ,m = mj ,∀j, and r = R− π into these equations yields (2.11).

Derivation of (2.12) and (2.14) When γ > 0, from (A.3), ξ2 > 0 holds.
Therefore, We can divide the both sides of (A.5) by ξ2 as follows:

ξ̇2
ξ2

= ρ−

[
ℓ1+ψj

(1− β)Wj
− β

1− β
ξ1
ℓj
p

]
ξ−1
2 − ωj .

Substituting ξ1 = 1/cj and ξ2 = γωj/Wj into above equation, we obtain

ω̇j
ωj

− Ẇj

Wj
= ρ−

[
ℓ1+ψj

(1− β)Wj
− β

1− β

ℓj
pcj

](
Wj

γωj

)
− ωj .

Since Wj =W , ωj = ω, ℓj = ℓ, cj = c、∀j, (2.12) holds.
On the other hand, when γ = 0, ξ2 and ξ̇2 are equal to zero from (A.3).

Then, from (A.5) and ξ1 = 1/cj , we obtain

β
(Wj/p)

cj
= ℓψj .

Therefore, (2.14) holds.

Appendix B Derivation of the law of motion

Appendix B.1 Derivation of (3.7)

From (2.6),

ẇ

w
= ω − π =

1− α

α

Ṅ

N
,

or

π = ω − 1− α

α
µℓn.

Substituting ℓn = αβχ, we obtain (3.7).
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Appendix B.2 Derivation of (3.4) and (3.6)

From the free-entry condition (2.8),

V̇

V
= ω − µℓn.

From (2.10), (2.3), and (2.8),

V̇

V
= R− Π

V
= R− 1− α

α
ℓxµ.

Eliminating V̇ /V from above two equations, we obtain

ℓn =
ω −R

µ
+

1− α

α
ℓx,

and substituting ℓx = αβχ, we get (3.6). Moreover, substituting (3.6) and
(3.5) into the labor market clearing condition, ℓ = ℓx + ℓn, yields (3.4).

Appendix B.3 Derivation of (3.1)

From (2.11),

Ṙ

R
=
ċ

c
− ṁ

m
= (R− ρ− π)− (θ − π)

= R− ρ− θ.

Appendix B.4 Derivation of (3.2)

From (2.4),

ẏ

y
=

1− α

α

Ṅ

N
+
ℓ̇x
ℓx
.

From the Euler equation (2.11) and the final goods market clearing condi-
tion, y = c,

R− ρ− π =
1− α

α
µℓn +

ℓ̇x
ℓx
.

Using (3.7) and χ̇/χ = l̇x/lx, we obtain (3.2).
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Appendix B.5 Derivation of (3.3)

From (2.4) and (2.6), (ℓ/c)w = (ℓ/y)w = αℓ/ℓx holds, and substituting this
equation into (2.12) yields

ω̇

ω
= ρ+

[
αβ

ℓ

ℓx
− ℓ1+ψ

]
η

γω
.

Using lx = αβχ, we get (3.3).

Appendix C Balanced growth path

Appendix C.1 Derivation of ℓ∗

At the steady state, ω∗ −R∗ = −ρ holds, then substituting into (3.4) yields
(3.8). Moreover, from (3.3), we obtain

ω̇

ω
= ρ+

(
ℓ∗

χ∗(ℓ∗)
− (ℓ∗)1+ψ

)
η

γθ
= 0

Therefore, we show that Λ(ℓ∗) = 0 holds at the steady state.

Appendix C.2 Proof of Proposition 1

The derivative of Λ(ℓ) is given by

Λ′(ℓ) =
1

[χ∗(ℓ)]2
ρ

βµ
− (1 + ψ)ℓψ (C.1)

Since (χ∗)′(ℓ) = 1/β > 0, Λ′′(ℓ) < 0. Λ′(0) = βµ/ρ > 0, then Λ(ℓ) is
concave and a unimodal form for ℓ > 0. Further, since Λ(0) = γθρ/η ≥ 0
and limℓ∗→∞ Λ(ℓ∗) = −∞ hold for θ > 0, Λ(ℓ) = 0 has a unique positive
root.

Λ(ℓ) > 0 is satisfied for θ > θ1. In this case, Λ(ℓ) = 0 has a unique root,
ℓ∗, which is larger than ℓ, and Λ′(ℓ∗) < 0 always holds. In contrast, since
Λ(ℓ) ≤ 0 is satisfied for θ ≤ θ1, Λ(ℓ) = 0 has no root in (ℓ,∞). (See Figure
1.)

Appendix C.3 Proof of Proposition 2

Λ(ℓ) > 0 holds for θ > θ1. Since limℓ∗→∞ Λ(ℓ∗) = −∞, Λ(ℓ) = 0 has a
unique root that belongs to (ℓ,∞).23

23However, when θ < 0, we can not rule out the possibility of the existence of balanced
growth paths in spite of θ ≤ θ1 or Λ(ℓ) < 0.
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-
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θ > θ1θ < θ1

Λ(ℓ)

O

Figure 1: A unique balanced growth path (for θ > 0).

Appendix C.4 Proof of Proposition 3

Some algebra shows that

Λ′(ℓ) =
1 + ψ

ℓ

[
1

1 + ψ
αβ(1− α)− ℓ1+ψ

]
.

Therefore, if and only if Assumption 1 is fulfilled, Λ′(ℓ) ≤ 0 holds. Λ′′(ℓ) < 0
guarantees that Λ(ℓ) is a decreasing function for ℓ > ℓ. Since Λ(ℓ) < 0 for
θ ≤ θ1, Λ(ℓ) = 0 has no root in (ℓ,∞).

Appendix C.5 Proof of Proposition 4

Since Λ(ℓ) is concave and unimodal for positive ℓ, there uniquely exists
ℓmax > 0 such that Λ′(ℓmax) = 0, and Λ(ℓ) is maximal at ℓmax. ℓmax does
not depend on θ, while Λ(ℓmax) is increasing in θ. Therefore, there uniquely
exists a threshold value of θ, θ2, such that Λ(ℓmax) = 0 holds for θ = θ2 and
Λ(ℓmax) > 0 for θ > θ2. Thus, Λ(ℓ) = 0 has two positive root for θ > θ2.
Since Λ′(ℓ) > 0 for ρ/µ < Γ2, both roots are larger than ℓ.(See Figure 2.)

Appendix C.6 Proof of Proposition 6

Differentiating (3.12) with respect to θ yields

∂π∗

∂θ
= 1−

∂g∗y
∂θ

= 1− (1− α)2

α
µ
∂ℓ∗

∂θ
.
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Λ′(ℓ) > 0ρθγ
η

O

Figure 2: multiple balanced growth paths

Our purpose is to show that this equation becomes negative for large µ.
Substituting (3.13) into the above equation, we obtain the following condi-
tion:

−(1− α)2γρ

αη
µ < Λ′(ℓ∗). (C.2)

We can calculate ℓ∗ as µ→ ∞ as follows:2425

ℓ∗ =

(
γθρ

η
+ β

) 1
1+ψ

.

Then, we obtain

Λ′(ℓ∗) =
ρβ

ℓ∗µ
− (1 + ψ)(ℓ∗)ψ = −(1 + ψ)

(
γθρ

η
+ β

) ψ
1+ψ

, as µ→ ∞.

As µ → ∞, the right-hand side of (C.2) converges the finite negative value
as shown above, whereas, the left-hand side continue to decrease toward
−∞. Taking the continuity of both sides into consideration, we can argue
that (C.2) holds for sufficiently large µ.

24Since χ∗ = 1/λ∗, we can rewrite the implicit function as

Λ|µ→∞(ℓ∗) =
γθρ

η
+ β − (ℓ∗)1+ψ = 0.

25Since Λµ > 0, ∂ℓ∗/∂µ = −Λµ/Λ
′(ℓ∗) > 0 holds by applying the implicit function

theorem．
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