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Abstract

This paper examines the range of anonymity that is compatible with a
Paretian social welfare relation (SWR) defined on the set of infinite utility
streams. We consider three cases of coherence properties for a Paretian SWR:
acyclicity, quasi-transitivity, and Suzumura consistency. For each case, we
show that the set of permissible permutations of a Paretian SWR, namely a
set of permutations with respect to which every utility stream is declared to
be indifferent to the permuted stream by a given Paretian SWR, is character-
ized with a weakening of group structure of a set of permutations. Using the
characterization results, we obtain that anonymity defined by the set of all
cyclic permutations is the unique maximal anonymity for a Paretian acyclic
SWR and a Paretian quasi-transitive SWR. On the other hand, we show that,
to define maximal anonymity for a Paretian Suzumura-consistent, a maximal
group of cyclic permutations must be used. This paper also characterizes
the class of anonymous Paretian SWRs by using an anonymity axiom de-
fined by a set Q of permutations that satisfies the restrictions specified in the
characterizations of permissible permutations. We show that, for each of the
three cases of coherence properties, the class of anonymous Paretian SWRs
coincides with the class of all SWRs that include the Q-Pareto relation as a
subrelation.
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1 Introduction

In evaluating infinite utility streams which represent the utility levels of infinitely
many generations, two basic axioms have been accepted. One is the Pareto axiom,
which postulates positive sensitivity of the evaluation to every generation’s utility,
and the other is an anonymity axiom, which formalizes equal treatment of genera-
tions by asserting that two streams related by a permutation are indifferent. In the
infinite-horizon setting, whether an anonymity axiom is compatible with a Paretian
relation (a binary relation satisfying the Pareto axiom) depends on which set of per-
mutations is considered in the anonymity axiom in question. The anonymity axiom
defined by the set of all possible permutations is incompatible with any Paretian re-
lation (Lauwers, 1997a; van Liedekerke, 1995). This incompatibility still holds for
some restricted sets of permutations (Fleurbaey and Michel, 2003; Lauwers, 1998;
Sakai, 2010b). However, if we consider the set of all finite permutations, there ex-
ists a social welfare quasi-ordering (SWQ) that satisfies both the Pareto axiom and
the corresponding anonymity axiom (Svensson, 1980).1 Further, the anonymity
axiom defined by the set of all fixed-step permutations, a superset of the set of all
finite permutations, is compatible with Paretian SWQs (Lauwers, 1997b).2

Recent work of Mitra and Basu (2007) presented a systematic analysis of
Pareto-compatible anonymity axioms. They identified the set of permissible per-
mutations of a Paretian SWQ, a set of permutations with respect to which every
utility stream is declared to be indifferent to the permuted stream by a given Pare-
tian SWQ. They show that the set of permissible permutations of a Paretian SWQ
(i) consists only of cyclic permutations and (ii) constitutes a group with respect to
composition of permutations. Furthermore, they establish that the converse impli-
cation is true, namely, if a set of permutations is a group of cyclic permutations,
then there exists a Paretian SWQ for which the set of permissible permutations
coincides with the given set of permutations.

The purpose of this paper is to examine permissible permutations of a Paretian
social welfare relation (SWR) that satisfies a coherence property weaker than tran-
sitivity.3 The coherence properties that we consider are acyclicity, quasi-transitivity,
and Suzumura consistency. Acyclicity requires that a binary relation has no cycle
of strict preferences. Quasi-transitivity postulates that strict preferences are transi-
tive. Suzumura consistency, which is first introduced by Suzumura (1976) under
the name consistency, requires that a binary relation has no cycle involving at least
one strict preference. That is, Suzumura consistency excludes preference cycles
which are known as the phenomenon of money-pump. Both quasi-transitivity and
Suzumura consistency imply acyclicity, whereas they are logically independent.
Besides being intuitively appealing, these coherence properties are of importance

1An SWQ is a reflexive and transitive binary relation.
2For the finite anonymous or fixed-step anonymous Paretian SWQs proposed in the literature, see

the review article by Asheim (2010). See also the researches we cite in the discussion about Figure
3 in Sect. 5.

3An SWR is a reflexive binary relation.
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from a theoretical point of view. It is well known that acyclicity is necessary and
sufficient for a binary relation to yield maximal elements in a finite set of alterna-
tives. Quasi-transitivity is sufficient and almost necessary for a binary relation to
yield social decision making satisfying the Arrow-Platt path independence condi-
tion (Blair, Bordes, Kelly, and Suzumura, 1976). Suzumura consistency is neces-
sary and sufficient for the existence of an ordering extension (Suzumura, 1976).4

In the literature, it is known that the anonymity axiom defined by the set of
all variable-step permutations is compatible with Paretian quasi-transitive SWRs
(Fleurbaey and Michel, 2003; Sakai, 2010a).5 However, there is no systematic
analysis that clarifies which sets of permutations yield an anonymity axiom that is
compatible with Paretian SWRs when the coherence property required is one of
acyclicity, quasi-transitivity, and Suzumura consistency.

In our analysis, we consider four properties of a set of permutations. Property 1
requires that the composition operation is closed in a given set of permutations.
Properties 2 and 3, respectively, postulates that a set of permutations must contain
the identity permutation and the inverse permutation for each permutations in the
set. The conjunction of Properties 1, 2, and 3 is equivalent to requiring a set of
permutations to be a group of permutations. The forth property is Property 1∗.
It requires that the composition of any finite number of permutations in a given
set must be a cyclic permutation. When we consider a set of cyclic permutations,
this property is a weakening of Property 1. We first establish that cyclicity of
permutations and Properties 2 and 3 together are necessary and sufficient for the
existence of a Paretian acyclic SWR for which the set of permissible permutations
coincides with a given set of permutations. Further, we obtain that even in the case
where the acyclicity of a Paretian relation is strengthened to quasi-transitivity, the
necessary and sufficient condition is given by the same set of restrictions. On the
other hand, we show that if a Paretian SWR is required to be Suzumura-consistent,
the necessary and sufficient condition is given by adding Property 1∗. In each of
the three characterization results, the sufficiency part is proved by showing that
the extended Pareto rule, which we call Q-Pareto relation, satisfies the requisite
conditions.6

Using the above-mentioned results, we discuss a maximal anonymity axiom
that is compatible with Paretian SWRs for each case of the three coherence prop-
erties. We obtain that the set of all cyclic permutations yields the unique maximal
anonymity axiom for Paretian acyclic SWRs and Paretian quasi-transitive SWRs.
On the other hand, a maximal anonymity axiom that is compatible with Paretian

4This characterization result strengthens the variant of Szpilrajn’s (1930) lemma due to Arrow
(1963) and Hansson (1968) that establishes that any quasi-ordering has an ordering extension.

5It should be noted that Campbell (1985), Fleurbaey and Michel (2003), Sakai (2003, 2006),
and Shinotsuka (1998) have discussed, without assuming any coherence property of a binary rela-
tion, the conflict between the Pareto axiom and the anonymity axiom defined by the set of all finite
permutations. However, in their analyses, a certain continuity of a binary relation is assumed.

6The Pareto rule has been originally introduced by Sen (1970) and Weymark (1984) in the frame-
work of finite population social choice.
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Suzumura-consistent SWRs is a non-constructible object. We establish this by (i)
showing that, for any set Q of cyclic permutations satisfying Properties 1∗, 2, and
3, its closure Q (defined with respect to the composition operation) is a group of
cyclic permutations and (ii) combining this with the impossibility of constructing
a maximal group of cyclic permutations proved by Lauwers (2010b). In contrast to
this non-constructibility result, our result that confirms group structure of Q leads
to the following positive result regarding the construction of non-maximal groups
of cyclic permutations: given two constructible groups of cyclic permutations, if
the union of them satisfies Property 1∗, we can construct another group of cyclic
permutations that includes both the two given groups of cyclic permutations. We
demonstrate the application of this finding and present a new group of cyclic per-
mutation that includes the set of all fixed-step permutations as a strict subset.

In this paper, we also provide characterizations of classes of anonymous Pare-
tian SWRs. We show that, if an anonymity axiom is defined by a set Q of cyclic
permutations satisfying Properties 2 and 3, the class of all acyclic (resp. quasi-
transitive) SWRs that satisfy the Pareto and the corresponding anonymity axioms
coincides with the class of all acyclic (resp. quasi-transitive) SWRs that includes
the Q-Pareto relation as a subrelation. Further, we obtain that, if the considered set
Q of permutations also satisfies Property 1∗, the class of all Suzumura-consistent
SWRs that satisfy the axioms coincides with the class of all Suzumura-consistent
SWRs that includes the Q-Pareto relation as a subrelation. This class of Suzumura-
consistent SWRs includes a class of SWQs as a subclass. We also provide a char-
acterization of this class of SWQs. We show that the class of all SWQs that satisfy
the Pareto and anonymity axioms coincides with the class of all SWQs that in-
clude, as a subrelation, the Q-Suppes-Sen SWQ associated with the closure Q of
the given set Q. The similar result has been established by Banerjee (2006) with
an anonymity axiom defined by a group Q of cyclic permutations. The difference
between his result and ours is that we weaken the requirement of group structure
of Q to Properties 1∗, 2, and 3.

The next section provides notation and basic definitions. In Sect. 3, the char-
acterizations of permissible permutations of Paretian SWRs are established. In
Sect. 4, we present some examples of sets of permutations satisfying the proper-
ties considered, and we discuss maximal anonymity axioms. Sect. 5 provides the
characterizations of classes of anonymous Paretian SWRs. We conclude in Sect. 6.

2 Preliminaries

2.1 Social welfare relations

Let R be the set of all real numbers and N be the set of all positive integers.
Throughout this paper, we let X = RN be the set of all utility streams x =
(x1, x2, . . . ). For all i ∈ N, xi is interpreted as the utility level of the ith gen-
eration.

Negation of a statement is indicated by the symbol ¬. Our notation for vector
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inequalities on X is as follows: for all x, y ∈ X , x ≥ y if xi ≥ yi for all i ∈ N,
and x > y if x ≥ y and x 6= y. Given two sets A and B, we write A ⊆ B to
mean A is a subset of B; A ⊂ B to mean A ⊆ B and A 6= B; and A 6⊆ B to mean
A\B 6= ∅.

A binary relation % on X is a subset of X × X . For convenience, the fact that
(x, y) ∈% will be symbolized by x % y. The asymmetric part of % is denoted by
� and the symmetric part by ∼, i.e. x � y if and only if x % y and ¬(y % x),
and x ∼ y if and only if x % y and y % x. A binary relation %A is said to be a
subrelation of a relation %B if, for all x, y ∈ X , (i) x ∼A y implies x ∼B y and
(ii) x �A y implies x �B y. Conversely, we say that a binary relation %A extends
a relation %B if %B is a subrelation of %A. If an ordering %A extends a relation
%B , we say that %A is an ordering extension of %B .

We consider four coherence properties of a binary relation. A binary relation
is said to be (i) transitive if and only if, for all x, y,z ∈ X , x % z holds whenever
x % y and y % z; (ii) Suzumura-consistent if and only if, for all K ∈ N\{1} and
all x0, . . . ,xK ∈ X , if xk−1 % xk for all k ∈ {1, . . .K} then ¬(xK � x0); (iii)
quasi-transitive if and only if, for all x, y, z ∈ X , x � z holds whenever x � y
and y � z; (iv) acyclic if and only if, for all K ∈ N\{1} and all x0, . . . ,xK ∈ X ,
xk−1 � xk for all k ∈ {1, . . .K} implies ¬(xK � x0). Transitivity implies
Suzumura consistency and quasi-transitivity, both of which in turn imply acyclicity.
Suzumura consistency and quasi-transitivity are logically independent.

A social welfare relation (SWR) is a reflexive binary relation, i.e., a binary
relation satisfying that, for all x ∈ X , x % x. A social welfare quasi-ordering
(SWQ) is a transitive SWR.

2.2 Permutations

We represent any permutation on the set N by a permutation matrix.7 A permuta-
tion matrix is an infinite matrix P = (pij)i,j∈N such that (i) for all i ∈ N, there
exists j(i) ∈ N such that pij(i) = 1 and pij = 0 for all j 6= j(i); and (ii) for all
j ∈ N, there exists i(j) ∈ N such that pi(j)j = 1 and pij = 0 for all i 6= i(j). Let
P be the set of all permutation matrices. Note that, for all x ∈ X and all P ∈ P ,
the product Px = (Px1, Px2, . . .) belongs to X , where Pxi =

∑
k∈N pikxk

for all i ∈ N. For all P = (pij)i,j∈N ∈ P and all n ∈ N, P (n) denotes the
n × n matrix (pij)i,j∈{1,...,n}. Let I denote the infinite identity matrix. For any
P ∈ P , let P ′ be the inverse of P satisfying P ′P = PP ′ = I .8 A permutation
P = (pij)i,j∈N ∈ P is said to be a finite permutation if there exists n ∈ N such
that pii = 1 for all i > n. The set of all finite permutations is denoted by F .

A permutation P = (pij)i,j∈N ∈ P is said to be cyclic if, for any i ∈ N, there
exist n(i) ∈ N and n(i)-dimensional vector (i1, . . . , in(i)) of positive integers such

7Hereafter, we will use the terms “permutation” and “permutation matrix” interchangeably. Fur-
ther, we use the term “product of permutation matrices” for “composition of permutations”.

8For any P , Q ∈ P , the product PQ is defined by (rij)i,j∈N with rij =
P

k∈N pikqkj .
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that i1 = i and pi2i1 = · · · = pin(i)in(i)−1
= pi1in(i)

= 1. The set of all cyclic
permutations is denoted by C.

The following characterization of a cyclic permutation has been provided by
Lauwers (2010b) and Mitra and Basu (2007), which will prove useful in establish-
ing our results.9

Lemma 1 (Lauwers 2010b, Lemma 1; Mitra and Basu 2007, Lemma 1). A permu-
tation P ∈ P is cyclic if and only if there exists no x ∈ X satisfying Px > x.

A set Q of permutations is a group (together with matrix multiplication) if and
only if it satisfies Property 1 (closure), Property 2 (existence of the unit element),
and Property 3 (existence of the inverse element).10

Property 1: For all P , Q ∈ Q, PQ ∈ Q.

Property 2: For all P ∈ Q, there exists Q ∈ Q such that PQ = QP = P .

Property 3: For all P ∈ Q, there exists Q ∈ Q such that PQ = QP = I .

Since Q is a set of permutations, the permutation Q in Property 2 must be I and
the permutation Q in Property 3 must be P ′.

We also consider the following variant of Property 1. It requires that any prod-
uct of a finite number of elements in a set Q of permutations must be cyclic.

Property 1∗: For any finite sequence {P k}K
k=1 in Q with K > 1, the product

P 1 · · ·P K belongs to C.

Note that, for any set of cyclic permutations, Property 1 implies Property 1∗.

2.3 Permissible permutations and Pareto and anonymity axioms

For a binary relation % on X , the set Π(%) of permissible permutations associated
with % is defined by

Π(%) = {P ∈ P : Px ∼ x for all x ∈ X}. (1)

Π(%) collects all permutations with respect to which every utility stream x is
declared to be indifferent to the permuted stream Px by the given relation %.
The concept of permissible permutations has been introduced by Mitra and Basu
(2007).

9In Mitra and Basu (2007), the original version of this lemma is established for the domain
X = [0, 1]N. Lauwers (2010b) strengthens their result by showing that it holds for any domain X
satisfying {0, 1}N ⊆ X .

10In algebra, a set of objects is said to be a group if it satisfies associativity in addition to Properties
1, 2, and 3. Given a set O of objects, O together with an operation ◦ satisfy associativity if, for all
A, B, C ∈ O, A ◦ (B ◦ C) = (A ◦ B) ◦ C. Since any set of permutations is associative, we omit
associativity in the definition of a group of permutations.
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For a set Q of permutations, the anonymity axiom associated with Q is defined
as follows.

Q-Anonymity: For all x ∈ X and all P ∈ Q, Px ∼ x.

Different sets Q of permutations yield different anonymity axioms. If Q = F , we
obtain F-Anonymity, which is also called finite anonymity in the literature. Some
other examples of Q-Anonymity will be presented in Sect. 4. Note that an SWR %
satisfies Q-Anonymity if and only if Q ⊆ Π(%). Hence, Π(%)-Anonymity is the
strongest anonymity that can be satisfied by the given SWR.

We consider SWRs satisfying the following Pareto axiom.

Pareto: For all x, y ∈ X with x > y, x � y.

Throughout this paper, an SWR satisfying the Pareto axiom is referred to as a
Paretian SWR.

3 Permissible permutations of Paretian SWRs

3.1 Acyclicity and quasi-transitivity

In this section, we provide necessary and sufficient conditions on a set Q of per-
mutations for the existence of a Paretian SWR % for which the set of permissible
permutations Π(%) coincides with Q. We consider three cases of the coherence
property of an SWR, namely, acyclicity, quasi-transitivity, and Suzumura consis-
tency. We first show that cyclicity of permutations and Properties 2 and 3 together
are necessary and sufficient for the existence of a Paretian acyclic SWR % that
satisfies Π(%) = Q. Further, we will see that even if the acyclicity of an SWR
is strengthened to quasi-transitivity, the necessary and sufficient condition is given
by the same restrictions. In Sect. 3.2, we show that if the acyclicity of an SWR
is strengthened to Suzumura consistency, the necessary and sufficient condition is
given by adding Property 1∗ to cyclicity of permutations and Properties 2 and 3.

We begin with the following proposition due to Mitra and Basu (2007). It
shows that if a Paretian SWR % is acyclic, the set Π(%) of permissible permuta-
tions must be a set of cyclic permutations satisfying Properties 2 and 3.11

Proposition 1 (Mitra and Basu 2007). Let % be a Paretian acyclic SWR on X .
(i) Π(%) ⊆ C.
(ii) Π(%) satisfies Properties 2 and 3.

11Part (i) of the lemma corresponds to Proposition 1 in Mitra and Basu (2007). The original version
of this result is established for a Paretian SWQ. However, since it follows from Lemma 1, the same
result holds for a Paretian acyclic SWR. Part (ii) follows from Mitra and Basu’s (2007) argument in
the proof of their Proposition 2.
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By Proposition 1, cyclicity of permutations and Properties 2 and 3 are neces-
sary conditions for the existence of a Paretian acyclic SWR % for which the set
of permissible permutations Π(%) coincides with a given set Q. We show that
these restrictions together are sufficient for the existence of such an SWR. We es-
tablish this sufficiency result by constructing an SWR that satisfies the requisite
conditions.

For an arbitrary set Q of cyclic permutations satisfying Properties 2 and 3, we
define the binary relation %Q associated with Q as follows: for all x, y ∈ X ,{

x �Q y iff x > y; (2a)

x ∼Q y iff there exists P ∈ Q such that Px = y. (2b)

The asymmetric part of %Q is an infinite-horizon version of the Pareto rule due
to Sen (1970) and Weymark (1984). The symmetric part of it corresponds to Q-
Anonymity associated with the given set Q. We will call this extended Pareto
rule Q-Pareto relation. As Lemma 2 demonstrates, the Q-Pareto relation is well-
defined as a binary relation.

Lemma 2. Let Q be a set of cyclic permutations satisfying Properties 2 and 3. %Q
is well-deifned as a binary relation on X .

Proof. Let %=�Q ∪ ∼Q. We show that ∼Q=∼ and �Q=�. We first verify
∼Q=∼. Assume x ∼Q y. Note that, by (2b) and Property 3,

x ∼Q y if and only if y ∼Q x. (3)

Thus, by the definition of %, x ∼ y.
Next, assume x ∼ y. By the definition of %, we obtain

x �Q y or x ∼Q y,

and
y �Q x or y ∼Q x.

Suppose ¬(x ∼Q y). By (3), ¬(y ∼Q x). Thus, x �Q y and y �Q x hold. By
(2a), we obtain x > y and y > x, a contradiction. Thus, x ∼Q y holds.

Next, we show �Q=�. Assume x �Q y. By the definition of %, x % y
holds. We verify that x � y holds by showing ¬(x ∼ y). By (2a), x �Q y
implies x > y. Since Q ⊆ C, it follows from Lemma 1 that there is no P ∈ Q
satisfying Py > y. Thus, Py 6= x for all P ∈ Q. By (2b), ¬(y ∼Q x). Since
∼Q=∼, we obtain ¬(y ∼ x), or equivalently, ¬(x ∼ y). Next, assume x � y.
By the definition of %, x �Q y or x ∼Q y. Since ∼Q=∼, if x ∼Q y holds, then
we have a contradiction to x � y. Thus, x �Q y. �

The next proposition establishes the sufficiency result. It shows that the Q-
Pareto relation associated with a set Q of cyclic permutations satisfying Properties
2 and 3 is a Paretian quasi-transitive SWR, and furthermore, the set Π(%Q) of
permissible permutations coincides with Q.
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Proposition 2. Let Q be a set of cyclic permutations satisfying Properties 2 and 3.
(i) %Q is a Paretian quasi-transitive SWR.
(ii) Π(%Q) = Q.

Proof. (i) By (2a), %Q is Paretian and quasi-transitive. Since Q satisfies Property
2, I ∈ Q. Thus, by (2b), %Q is reflexive.

(ii) We first show Q ⊆ Π(%Q). Let P ∈ Q and x ∈ X . By (2b), x ∼Q Px.
Thus, P ∈ Π(%Q). Next, we show Π(%Q) ⊆ Q. Let P ∈ Π(%Q). Consider
x ∈ X such that xn = 1

2n for all n ∈ N. By (1), Px ∼Q x. By (2b), there exists
Q ∈ Q such that Q(Px) = x. Since xi 6= xj for all i, j ∈ N with i 6= j, it
must be that QP = I , i.e., P = Q′. Since Q ∈ Q and Q satisfies Property 3,
P ∈ Q. �

Recall that quasi-transitivity implies acyclicity. Hence, combining Proposi-
tions 1 and 2, we obtain that cyclicity of permutations and Properties 2 and 3 to-
gether are necessary and sufficient for the existence of a Paretian acyclic SWR
% for which the set Π(%) of permissible permutations coincides with a given set
Q of permutations. Further, these restrictions are necessary and sufficient for the
existence of a Paretian quasi-transitive SWR that satisfies Π(%) = Q. This co-
incidence of the results for an acyclic SWR and a quasi-transitive SWR can be
explained as follows. The set of permissible permutations of a relation is defined
in terms of the symmetric part of the relation. On the other hand, acyclicity and
quasi-transitivity are properties concerned with the asymmetric part of a relation.
Hence, which of these coherence properties we impose on an SWR does not affect
the structure of the set of permissible permutations of the SWR as long as ax-
ioms we impose on the SWR are stated for the asymmetric part of the SWR (e.g.,
Pareto).

We compare our results with the result of Mitra and Basu (2007) obtained for
the case of a Paretian SWQ. Mitra and Basu (2007, Propositions 2 and 3) show that
cyclicity of permutations and group structure together are necessary and sufficient
for the existence of a Paretian SWQ % satisfying Π(%) = Q. Recall that a group of
permutations is a set of permutations satisfying Properties 1, 2, and 3. Hence, the
class of sets of permissible permutations associated with a Paretian acyclic SWR or
a Paretian quasi-transitive SWR is larger as compared to the case where a Paretian
SWR is required to be transitive. Some examples of sets of cyclic permutations
that satisfy Properties 2 and 3 but violate Property 1 will be provided in Sect. 4.

3.2 Suzumura consistency

We now consider the case where a Paretian SWR is required to be Suzumura-
consistent. Recall that Suzumura consistency implies acyclicity. Thus, from Propo-
sition 1, it follows that the set Π(%) of permissible permutations of a Paretian
Suzumura-consistent SWR % must be a set of cyclic permutations satisfying Prop-
erties 2 and 3. The following proposition shows that Π(%) additionally satisfies
Property 1∗.

9



Proposition 3. If % is a Paretian Suzumura-consistent SWR on X , then Π(%)
satisfies Property 1∗.

Proof. Let {P k}K
k=1 be a finite sequence in Π(%) with K > 1. We will show that

the product P 1 · · ·P K is cyclic. The proof is done by contradiction. Let {Qk}K−1
k=0

be the finite sequence in P defined by

Q0 = P K and Qk = P K−kQk−1 for all k ∈ {1, . . . , K − 1}.

By definition, QK−1 = P 1 · · ·P K . Suppose QK−1 6∈ C. By Lemma 1, there
exists x ∈ X such that QK−1x > x. Since % is Paretian,

QK−1x � x. (4)

Since {P k}K
k=1 is a sequence in Π(%), it follows from the definition of {Qk}K−1

k=0

that

x ∼ Q0x and Qk−1x ∼ Qkx for all k ∈ {1, . . . , K − 1}. (5)

From (4) and (5), we obtain a contradiction to that % is Suzumura-consistent. Thus,
QK−1 ∈ C, i.e., the product P 1 · · ·P K is cyclic. �

We now examine whether cyclicity of permutations and Properties 1∗, 2, and 3
together are sufficient for the existence of a Paretian Suzumura-consistent SWR %
for which the set Π(%) of permissible permutations coincides with a given set Q of
permutations. In Proposition 2, we obtained that the Q-Pareto relation associated
with a set Q of cyclic permutations satisfying Properties 2 and 3 is a Paretian SWR
and Π(%Q) = Q holds. As the following proposition shows, if Q also satisfies
Property 1∗, it is Suzumura-consistent. Hence, the answer to the above question is
in the afirmative.

Proposition 4. If Q is a set of cyclic permutations satisfying Properties 1∗, 2, and
3, then %Q is Suzumura-consistent.

Proof. Let K ∈ N\{1} and x0, . . . ,xK ∈ X and suppose that xk−1 %Q xk for
all k ∈ {1, . . . ,K}. We show, by contradiction, that ¬(xK �Q x0). Suppose
xK �Q x0. By (2a),

xK > x0. (6)

By (2b), for all k ∈ {0, . . . , K − 1}, if xk ∼Q xk+1 holds, then there exists
P k ∈ Q such that P kxk = xk+1. Further, by (2a), for all k ∈ {0, 1, . . . , K − 1},
if xk �Q xk+1, then xk > xk+1. Let

Q = P K−1 · · ·P 0,
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where P k = I for all k ∈ {0, . . . ,K−1} such that xk �Q xk+1. Then, we obtain

xK ≤ P K−1xK−1

≤ P K−1P K−2xK−2

...

≤ P K−1 · · ·P 0x0

= Qx0. (7)

Since Q satisfies Property 2, I ∈ Q. Thus, {P k}K−1
k=0 is the finite sequence in

Q. Since Q satisfies Property 1∗, Q must be cyclic. However, by (6) and (7), we
obtain Qx0 > x0. By Lemma 1, this is a contradiction. Thus, ¬(xK �Q x0). �

By Propositions 1, 2, 3, and 4, cyclicity of permutations and Properties 1∗, 2,
and 3 together are necessary and sufficient for the existence of a Paretian Suzumura-
consistent SWR for which the set Π(%) of permissible permutations coincides with
a given set Q of permutations. Hence, the class of sets of permissible permutations
associated with a Paretian Suzumura-consistent SWR is smaller as compared to the
cases of a Paretian acyclic SWR and of a Paretian quasi-transitive SWR. However,
since Property 1∗ is weaker than Property 1 for all sets of cyclic permutations, it is
larger than the class of sets of permissible permutations of a Paretian SWQ (recall
the result of Mitra and Basu (2007) we mentioned after Proposition 2). An exam-
ple of a set of cyclic permutations that satisfies Properties 1∗, 2, and 3 but violates
Property 1 will be provided in the next section.

4 Examples of sets of cyclic permutations and maximal
anonymity

In this section, we present some examples of sets of cyclic permutations that satisfy
Properties 2 and 3. Further, we examine which sets of permutations are maximal
(with respect to set inclusion) in the class of all sets of cyclic permutations satis-
fying Properties 2 and 3 and the class of all sets of cyclic permutations satisfying
Properties 1∗, 2, and 3.

All of the sets of permutations we present below are strict supersets of the set F
of all finite permutations. Thus, Q-Anonymity axioms associated with them realize
extended anonymity stronger than F-Anonymity. We begin with two particular sets
of cyclic permutations that satisfy Properties 2 and 3 but violate Properties 1 and
1∗.

Example 1. The set C of all cyclic permutations is, of course, a set of cyclic per-
mutations. It satisfies Properties 2 and 3. Next, consider the set V defined by

V =
{

P ∈ P :
for all n ∈ N, there exists n′ ∈ N with n′ ≥ n such that
P (n′) is a finite-dimensional permutation matrix

}
.
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V is the set of all variable-step permutations, which has been proposed by Fleur-
baey and Michel (2003). V is a strict subset of C and, thus, it is a set of cyclic
permutations. It also satisfies Properties 2 and 3. Neither C nor V satisfy Proper-
ties 1 and 1∗ (on this, see, e.g., Example 2 in Mitra and Basu (2007), p. 93).

C-Anonymity is stronger than V-Anonymity since V ⊂ C. From Proposition 2,
it follows that C-Anonymity and V-Anonymity are compatible with the existence of
a Paretian quasi-transitive SWR. However, by Proposition 3, neither C-Anonymity
nor V-Anonymity are compatible with a Paretian Suzumura-consistent SWR.

Next, we present sets of cyclic permutations that satisfy Properties 1, 2, and 3,
i.e., groups of cyclic permutations. One of the most common examples of groups
of cyclic permutations is the set F of all finite permutations. Two groups of cyclic
permutations presented in the next example include F as a strict subset.

Example 2. Let S and Vp be the sets of permutations defined as follows:

S =
{

P ∈ P :
there exists s ∈ N such that, for all n ∈ N,
P (ns) is a finite-dimensional permutation matrix

}
,

Vp =
{

P ∈ P :
there exists m ∈ N such that, for all n ∈ N\{1},
P (nm) is a finite-dimensional permutation matrix

}
.

S is the set of all fixed-step permutations, which has been introduced by Lauw-
ers (1997b). Vp is newly introduced in this paper. It collects particular variable-
step permutations that reshuffle contiguous generations taken by a power function.
They satisfy

S ⊂ V and Vp ⊂ V.

Thus, they are sets of cyclic permutations. Since Vp contains permutations in which
the size of contiguous generations reshuffled is strictly increasing,

Vp 6⊆ S.

Further, since 3m is odd for all m ∈ N,

S 6⊆ Vp.

S is a group of cyclic permutations (Mitra and Basu, 2007, pp. 96-97). Thus, it
satisfies Properties 1, 2, and 3. It is straightforward that Vp satisfies Properties
2 and 3. Further, it satisfies Property 1. This can be verified as follows. Let
P , Q ∈ Vp. Then, there exist m,m′ ∈ N such that, for all n ∈ N\{1}, P (nm)
and Q(nm′

) are finite-dimensional permutation matrices. Define R = PQ and
m̄ = mm′. Then, for all n ∈ N\{1}, R(nm̄) is a finite-dimensional permutation
matrix. Thus, R ∈ Vp.

Since Property 1 implies Property 1∗ for any set of cyclic permutations, S and
Vp also satisfy Property 1∗.
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Since S ⊂ V and Vp ⊂ V , both S-Anonymity and Vp-Anonymity are weaker
than V-Anonymity. By Propositions 2 and 4, they are compatible with the existence
of a Paretian Suzumura-consistent SWR. Further, by the result of Mitra and Basu
(2007) we mentioned after Proposition 2, they are compatible with the existence of
a Paretian SWQ.

Next, we present an example of a set of cyclic permutations that satisfies Prop-
erties 1∗, 2, and 3 but violates Property 1.

Example 3. Consider the union S ∪ Vp. For convenience, let Q denote S ∪ Vp

in the discussion below. By Example 2, Q is a set of cyclic permutations and it
satisfies Properties 2 and 3. We demonstrate that it satisfies Property 1∗ but violates
Property 1. First, we show that it satisfies Property 1∗. Consider any finite sequence
{P k}K

k=1 in Q with K > 1. Let Q = P 1 · · ·P K . For all k ∈ {1, . . . , K}, if
P k ∈ S, then there exists sk ∈ N such that, for all n ∈ N, P k(nsk) is a finite-
dimensional permutation matrix, and if P k ∈ Vp, then there exists mk ∈ N such
that, for all n ∈ N\{1}, P k(nmk) is a finite-dimensional permutation matrix. Let
s = ΠK

k=1sk and m = ΠK
k=1mk where, for all k ∈ {1, . . . , K}, sk = 1 if P k ∈ Vp

and mk = 1 if P k ∈ S . Then, for all n ∈ N\{1}, Q((ns)m) is a finite-dimensional
permutation matrix. This implies Q ∈ V . Since V ⊂ C, Q ∈ C.

Next, we verify that Q violates Property 1. Let P = (pij)i,j∈N be the permu-
tation defined by

pij = pji = 1 if i is odd and j = i + 1.

Further, let Q = (qij)i,j∈N be the permutation defined by{
pij = pji = 1 if (i, j) = (n2 + 1, (n + 1)2) for some n ∈ N
pii = 1 if i 6= n2 + 1 and i 6= (n + 1)2 for all n ∈ N.

Note that P ∈ S and Q ∈ Vp. Thus, P ,Q ∈ Q. Let R = PQ. Note that if
R(n) is a finite-dimensional permutation matrix, then n is even. Since 3m is odd
for all m ∈ N, there is no m ∈ N such that, for all n ∈ N\{1}, R(nm) is a finite-
dimensional permutation matrix. This implies R 6∈ Vp. Further, since the size of
contiguous generations reshuffled in R is strictly increasing, there is no s ∈ N such
that, for all n ∈ N, R(ns) is a finite-dimensional permutation matrix. This implies
R 6∈ S . Thus, R 6∈ Q.

Since S ∪ Vp includes S and Vp, Q-Anonymity defined by Q = S ∪ Vp is
stronger than S-Anonymity and Vp-Anonymity. However, since S ∪ Vp ⊂ V , it
is weaker than V-Anonymity. By Propositions 2 and 4, Q-Anonymity defined by
Q = S ∪ Vp is compatible with the existence of a Paretian quasi-transitive SWR
and of a Paretian Suzumura-consistent SWR.

We now examine maximal sets of permutations in the class of all sets of cyclic
permutations satisfying Properties 2 and 3 and the class of all sets of cyclic permu-
tations satisfying Properties 1∗, 2, and 3. We first consider the class of all sets of
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cyclic permutations satisfying Properties 2 and 3. From Example 1, it is straight-
forward that the set C of all cyclic permutations is the unique maximal of the class.
By Propositions 1 and 2, this means that C-Anonymity is the strongest anonymity
that is compatible with the existence of a Paretian acyclic SWR and of a Paretian
quasi-transitive SWR.

Next, we consider the class of all sets of cyclic permutations satisfying Prop-
erties 1∗, 2, and 3. We show that a maximal set of permutations in this class is a
group of cyclic permutations. To establish this result, we define the closure of a set
of permutations.

For a set Q of permutations, the closure Q of Q is defined as follows:

Q =
{

P ∈ P :
there exists a finite sequence {P k}K

k=1 in Q satisfying
P = P 1 · · ·P K

}
. (8)

Note that Q ⊆ Q for all Q ⊆ P .
The next proposition shows that, for any set Q of cyclic permutations satisfying

Properties 1∗, 2, and 3, the closure Q is the smallest group of cyclic permutations
that includes Q.

Proposition 5. Let Q be a set of cyclic permutations satisfying Properties 1∗, 2,
and 3.

(i) Q is a group of cyclic permutations.
(ii) Q ⊆ Q̃ holds for any group Q̃ of cyclic permutations with Q ⊆ Q̃.

Proof. (i) First, we prove Q ⊆ C. Let P ∈ Q. By (8), there exists a finite sequence
{P k}K

k=1 in Q satisfying P = P 1 · · ·P K . If K > 1, then P ∈ C since Q satisfies
Property 1∗. If K = 1, it is straightforward that P ∈ C since P ∈ Q and Q ⊆ C.
Next, we prove that Q satisfies Properties 1, 2, and 3. We begin with the proof
of Property 1. Let P , Q ∈ Q. By (8), there exist finite sequences {P k}K1

k=1

and {Qk}K2
k=1 in Q satisfying that P = P 1 · · ·P K1 and Q = Q1 · · ·QK2 . Let

R = P 1 · · ·P K1Q1 · · ·QK2 . By (8), R ∈ Q. Note that R = PQ. Thus, Q
satisfies Property 1.

It is straightforward that Q satisfies Property 2 since I ∈ Q and Q ⊆ Q.
Finally, we show that Q satisfies Property 3. Let P ∈ Q. By (8), there

exists a finite sequence {P k}K
k=1 in Q satisfying P = P 1 · · ·P K . Since Q

satisfies Property 3, Q contains the inverse P k′ for all k ∈ {1, . . . , K}. Let
Q = P K′ · · ·P 1′. By (8), Q ∈ Q. Since P k′P k = P kP k′ = I for all
k ∈ {1, . . . , K}, PQ = QP = I holds. Thus, Q satisfies Property 3.

(ii) Let Q̃ be a group of cyclic permutations with Q ⊆ Q̃. We show that
Q ⊆ Q̃. Let P ∈ Q. By (8), there exists a finite sequence {P k}K

k=1 in Q satisfying
P = P 1 · · ·P K . Since Q ⊆ Q̃, P k ∈ Q̃ holds for all k ∈ {1, . . . , K}. If K = 1,
it is straightforward that P ∈ Q̃. Next, we consider the case of K > 1. Let
{Qk}K

k=1 be the finite sequence in P defined by

Q1 = P 1 and Qk = Qk−1P k for all k ∈ {2, . . . , K}.
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F ⊂ S
∩ ∩
Vp ⊂ S ∪ Vp ⊂ S ∪ Vp ⊂ V ⊂ C

Figure 1: Set inclusion among sets of cyclic permutations

Since Q̃ satisfies Property 1, Qk ∈ Q̃ for all k ∈ {2, . . . , K}. By definition,
QK = P . Thus, P ∈ Q̃. �

From Propositions 5, it follows that a maximal set in the class of all sets of
cyclic permutations satisfying Properties 1∗, 2, and 3 is a group of cyclic permu-
tations. Thus, by Propositions 1, 2, 3, and 4 and the result of Mitra and Basu
(2007) we mentioned after Proposition 2, maximal anonymity that is compatible
with the existence of a Paretian Suzumura-consistent SWR coincides with maxi-
mal anonymity for a Paretian SWQ. Lauwers (2010b) has shown that a maximal
group of cyclic permutations is a non-constructible object since it entails the use of
a non-constructive mathematics such as the existence of free ultrafilter. Hence, we
cannot obtain an explicit definition of maximal anonymity for a Paretian Suzumura-
consisitent SWR.

We should note that Proposition 5 has a positive implication regarding the con-
struction of a non-maximal group of cyclic permutations. Let Q1 and Q2 be con-
structible groups of cyclic permutations (e.g., S and Vp). Proposition 5 tells that it
is possible to construct another group of cyclic permutations that includes both Q1

and Q2 if the union Q1 ∪Q2 satisfies Property 1∗. This can be verified as follows.
Since Q1 and Q2 are groups of cyclic permutations, Q1 ∪ Q2 is a set of cyclic
permutations. Further, it satisfies Properties 2 and 3. Hence, by Proposition 5, the
closure Q1 ∪Q2 is a group of cyclic permutations if Q1 ∪ Q2 satisfies Property
1∗. This finding can be applied to the groups S and Vp of cyclic permutations.
By Example 3, the union S ∪ Vp satisfies Property 1∗. Thus, S ∪ Vp is a group of
cyclic permutations.12

Figure 1 clarifies the relationship (in terms of set inclusion) between the sets of
cyclic permutations that we have discussed in this section. Further, the properties
satisfied by them are summarized in Table 1. For each row in Table 1, properties
satisfied (resp. violated) by the set in the first column are indicated by + (resp. –).

5 Characterizations of Q-anonymous Paretian SWRs

In Sect. 3, we have established that if Q is a set of cyclic permutations satisfy-
ing Properties 2 and 3, there exists a Q-anonymous and Paretian quasi-transitive

12An example of a group Q of cyclic permutations satisfying S ∪ Vp ⊂ Q ⊂ V is presented by
Demichelis, Mitra, and Sorger (2010). On this, see their Lemma 3.
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Table 1: Properties of sets of cyclic permutations

Set of cyclic Properties
permutations 1 1∗ 2 3
C – – + +
V – – + +
S ∪ Vp + + + +
S ∪ Vp – + + +
Vp + + + +
S + + + +
F + + + +

(and, thus, acyclic) SWR, and if it additionally satisfies Property 1∗, there exists a
Q-anonymous and Paretian Suzumura-consistent SWR. In this section, following
these findings, we consider a set Q of cyclic permutations satisfying Properties 2
and 3 and provide characterizations of the classes of all Q-anonymous and Paretian
acyclic SWRs and of all Q-anonymous and Paretian quasi-transitive SWRs. Fur-
ther, adding the restriction that Q satisfies Property 1∗, we characterize the class
of all Q-anonymous and Paretian Suzumura-consistent SWRs. We also provide a
characterization of the class of all Q-anonymous Paretian SWQs.

Let Q be a set of cyclic permutations satisfying Properties 2 and 3. We first
establish a characterization of the class of all Q-anonymous and Paretian acyclic
SWRs. By (2a) and (2b), the Q-Pareto relation is defined by combining Pareto with
Q-Anonymity. Hence, every acyclic SWR that satisfies Pareto and Q-Anonymity
includes the Q-Pareto relation as a subrelation. Further, conversely, any acyclic
SWR that includes the Q-Pareto relation as a subrelation satisfies Pareto and Q-
Anonymity. From this observation, we obtain the following proposition. We omit
the detailed proof for the sake of brevity.

Proposition 6. Let Q be a set of cyclic permutations satisfying Properties 2 and
3. An acyclic SWR % on X satisfies Pareto and Q-Anonymity if and only if %Q is
a subrelation of %.

Proposition 6 means that the class of all Q-anonymous and Paretian acyclic
SWRs coincides with the class of all acyclic SWRs that includes the Q-Pareto
relation as a subrelation. Hence, the Q-Pareto relation is the least element with
respect to set inclusion in the class of all Q-anonymous and Paretian acyclic SWRs.
For a formal discussion about this, see Banerjee (2006, Theorem 1) and Basu and
Mitra (2007, p. 355).

Next, we characterize the class of all Q-anonymous and Paretian quasi-transitive
SWRs and of all Q-anonymous and Paretian Suzumura-consistent SWRs. Since
quasi-transitivity and Suzumura consistency, respectively, imply acyclicity, these
two classes of SWRs are subclasses of the class of SWRs we characterized in
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Proposition 6. Note that, by Proposition 2 (i), the Q-Pareto relation is quasi-
transitive, and by Proposition 4, it is Suzumura-consistent if the given set Q satis-
fies Property 1∗. Hence, as a corollary of Proposition 6, we obtain the following
characterization results.

Corollary 1. (i) Let Q be a set of cyclic permutations satisfying Properties 2 and
3. A quasi-transitive SWR % on X satisfies Pareto and Q-Anonymity if and only if
%Q is a subrelation of %.

(ii) Let Q be a set of cyclic permutations satisfying Properties 1∗, 2, and 3. A
Suzumura-consistent SWR % on X satisfies Pareto and Q-Anonymity if and only if
%Q is a subrelation of %.

We should note that the if-and-only-if statement in Corolalry 1 (ii) is true with-
out the assumption of Property 1∗. However, in this case, the class of Q-anonymous
and Paretian Suzumura-consistent SWR is empty. This result follows from Propo-
sition 3.

We now examine the class of all Q-anonymous Paretian SWQs. This class
is a subclass of the class of all Q-anonymous and Paretian Suzumura-consistent
SWRs. Thus, if the set Q of permutations violates Property 1∗, it is empty by the
same reason we noted above. However, it is not empty if Q satisfies Property 1∗.
This can be verified by using transitive closure. The transitive closure of a binary
relation %, denoted by %, is defined as follows: for all x, y ∈ X ,

x %y iff

{
there exists a finite sequence {xk}K

k=1 in X such that
x = x1, y = xK , and xk % xk+1 for all k ∈ {1, . . . , K − 1}.

(9)

We collect the properties of transitive closure. Let % and %′ be binary relations
on X . The transitive closures of them satisfy the following properties (see, e.g.,
Bossert and Suzumura (2010, p. 34)):

(T1): %⊆ %;

(T2): % is transitive iff %= %;

(T3): % is the smallest transitive relation containing %;

(T4): %⊆%′ implies % ⊆ %′.

Further, the following property is satified:

(T5): If % is Suzumura-consistent, then % extends %.

This can be verified as follows. By T1, if x % y, then x %y holds. Now suppose
x � y. By T1, x %y. If y % x also holds, then by (9), there exists a finite sequence
{xk}K

k=1 in X such that x1 = y, xK = x, and xk−1 % xk for all k ∈ {1, . . . ,K}.
In the case of K = 1, we have a contradiction since x � y. Further, in the case
of K > 1, it leads to a contradiction since x � y and % is Suzumura-consistent.
Thus, x � y implies x %y and ¬(y %x).
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From T3 and T5, it follows that the class of all Q-anonymou Paretian SWQs co-
incides with the class of all the transitive closures of the Q-anonymous and Paretian
Suzumura-consistent SWRs. By Corollary 1 (ii), this class contains the transitive
closure %Q of the Q-Pareto relation. Hence, it is nonempty.

To present a characterization of the class of all Q-anonymous Paretian SWQs,
we define the Q-Suppes-Sen relation %QS associated with a set Q of permutations
as follows: for all x, y ∈ X ,

x %QS y iff there exists P ∈ Q such that Px ≥ y. (10)

The Q-Suppes-Sen relation has been introduced by Svensson (1980) for the case
of Q = F . Mitra and Basu (2007) extended it to an arbitrary group Q of cyclic
permutations. If Q is a group of cyclic permutations, %QS is an SWQ (Mitra and
Basu, 2007, Proposition 3).

The following lemma shows that if Q is a set of cyclic permutations satisfying
Properties 1∗, 2, and 3, then the transitive closure %Q of the Q-Pareto relation
coincides with the Q-Suppes-Sen SWQ %QS

associated with the closure Q of Q.

Lemma 3. Let Q be a set of cyclic permutations satisfying Properties 1∗, 2, and
3. Then,

%Q =%QS
.

Proof. First, we show that %Q ⊆%QS
. By (2a), (2b), and (8), we obtain %Q⊆

%QS
. By T4,

%Q ⊆ %QS
. (11)

By Proposition 5 (i), Q is a group of permutations. Thus, %QS
is transitive. By T2,

%QS
=%QS

. (12)

By (11) and (12), we obtain %Q ⊆%QS
.

Next, we show that %QS
⊆ %Q. Suppose x %QS

y. By (10), there exists

P ∈ Q such that Px ≥ y. By (8), there exists a finite sequence {P k}K
k=1 in Q

satisfying P = P 1 · · ·P K . Define the finite sequence {yk}K
k=1 in X by

y1 = P Kx, and yk = P K−k+1yk−1 for all k ∈ {2, . . . ,K}.

Note that yK = Px. By (2b), we obtain

x ∼Q y1 (13)

and, for all k ∈ {2, . . . , K},

yk−1 ∼Q yk (14)
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Since Px ≥ y, yK ≥ y holds. Further, since Q satisfies Property 2, I ∈ Q holds.
Thus, by (2a, 2b),

yK %Q y. (15)

By (13), (14), and (15), we obtain x %Q y. �

In the next proposition, we provide a characterization of the class of all Q-
anonymous Paretian SWQs.

Proposition 7. Let Q be a set of cyclic permutations satisfying Properties 1∗, 2,
and 3. An SWQ % on X satisfies Pareto and Q-Anonymity if and only if %QS

is a
subrelation of %.

Proof. The proof of the if-part is straightforward and can be omitted. We prove
the only-if-part. First, we show that x %QS

y implies x % y, or equivalently,
%QS

⊆%. By Corollary 1 (ii), %Q is a subrelation of %. Thus, %Q⊆%. By T4,

%Q ⊆ %. Since % is transitive, we obtain, by T2, % =%. Thus, %Q ⊆%. By
Lemma 3, %QS

⊆%.
Next, we show that x �QS

y implies x � x. Assume x �QS
y. By Lemma

3, we obtain x %Q y and ¬(y %Q x). By (9), x%Q y implies that there exists a
finite sequence {xk}K

k=1 in X such that x1 = x, xK = y, and xk %Q xk+1

for all k ∈ {1, . . . , K − 1}. Further, ¬(y %Q x) implies that there exists h ∈
{1, . . . , K − 1}, xh �Q xh+1. Since %Q is a subrelation of %, we obtain that, for
all k ∈ {1, . . . , K − 1}, xk % xk+1 and xh � xh+1. Since % is transitive, we
obtain x1 � xK , i.e., x � y. �

By Proposition 7, %QS
is the least element of the class of all Q-anonymous

Paretian SWQs. The result similar to Proposition 7 is obtained by Banerjee (2006).
He shows that if Q is a group of cyclic permutations, then the class of all Q-
anonymous Paretian SWQs coincides with the class of all SWQs that include %QS

as a subrelation (Banerjee 2006, Proposition 2). Proposition 7 strengthens his char-
acterization result by weakening the requirement of group structure to Properties
1∗, 2, and 3.

In Figures 2 and 3, we summarize the relationship (in terms of set inclusion) be-
tween the four classes of SWRs we studied in this section: Classes I, II, III, and IV,
respectively, correspond to the classes of (i) acyclic, (ii) quasi-transitive, (iii) Suzu-
mura consistent, and (iv) transitive SWRs that satisfy Pareto and Q-Anonymity. In
the figures, we also present the least element of Classes I, II, and III: namely %Q
and that of Class IV: %QS

. Figure 2 illustrates the case where a set Q of cyclic per-
mutations satisfies Properties 2 and 3 but violates Property 1∗. In this case, there
is no Q-anonymous and Paretian Suzumura-consistent SWR. Thus, Classes III and
IV are empty. In Figure 3, we illustrate the case where a set Q of cyclic permuta-
tions satisfies Properties 1∗, 2, and 3. Since Suzumura consistency is necessary and
sufficient for the existence of an ordering extension, Class IV contains an ordering
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I

II

• %Q

Figure 2: The case of Q that violates
Property 1∗

I

II

III

IV

• %QS
• %Q

Figure 3: The case of Q that satisfies
Property 1∗

extension of the Q-Pareto relation. It is known, however, that any ordering on X
that satisfies Pareto and F-Anonymity must involve the use of non-constructive
mathematics (Lauwers, 2010a; Zame, 2007).13 Thus, the ordering extension of the
Q-Pareto relation cannot be explicitly described if Q includes F .

Finally, we briefly note earlier contributions in connection with the four classes
of SWRs in Figures 2 and 3. First, Fleurbaey and Michel (2003) and Sakai (2010a)
propose complete, quasi-transitive SWRs that satisfy Pareto and V-Anonymity
(SWRs called Type 3 and Type 6 in Fleurbaey and Michel (2003) and the future
agreement and the future domination extensions in Sakai (2010a)). When we con-
sider Q = V , their SWRs belong to Class II in Figure 2. Second, for an arbitrary
group Q of cyclic permutations, Banerjee (2006) and Kamaga and Kojima (2009)
propose Q-anonymous Paretian SWQs that extends the Q-Suppes-Sen SWQ (the
Q-utilitarian SWQ in Banerjee (2006) and the Q-leximin and the Q-generalized
Lorenz SWQs in Kamaga and Kojima (2009)). Their SWQs belong to Class IV in
Figure 3 when we fix Q as a group of cyclic permutations. Third, various exten-
sions of the leximin and utilitarian overtaking SWQs that satisfies S-Anonymity
have been proposed in the literature (Asheim and Banerjee (2010), Fleurbaey and
Michel (2003), Kamaga and Kojima (2010), and Lauwers (1997b)). Those SWQs
belong to Class IV when we consider the case of Q = S. Lastly, in the case of
Q = F , Class IV contains numerous SWQs proposed in the literature (e.g., the
utilitarian SWR formulated by Basu and Mitra (2007) and the leximin SWR con-
sidered by Bosseet, Sprumont, and Suzumura (2007)).

6 Conclusion

We have characterized the set of permissible permutations of a Paretian SWR for
three cases of coherence properties: acyclicity, quasi-transitivity, and Suzumura
consistency. Together with the characterization result of Mitra and Basu (2007) ob-
tained for a Paretian SWQ, our results complete the analysis of Pareto-compatible
anonymity for various cases of coherence properties of SWRs considered in the

13This impossibility result has been conjectured by Fleurbaey and Michel (2003).
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literature. Based on our characterization results, we obtained that, in the cases
where Paretian acyclic SWRs and Paretian quasi-transitive SWRs are considered,
anonymity defined by the set C of all cyclic permutations is the strongest Pareto-
compatible anonymity, which cannot be realized by a Paretian SWQ. On the other
hand, maximal anonymity for a Paretian Suzumura-consistent SWR cannot be
stronger than those compatible with a Paretian SWQ. This is a negative result.
However, we emphasize that we should not conclude that weakening transitivity
to Suzumura consistency is of no use in exploring stronger anonymity. As we
have demonstrated by using the constructible groups S and Vp of cyclic permu-
tations, the analysis of anonymity that is compatible with a Paretian Suzumura-
consistent SWR plays an important role in exploring an explicit construction of
stronger anonymity axioms that are compatible with a Paretian SWQ.

In this paper, we have also characterized the classes of Q-anonymous and
Paretian acyclic SWRs, Q-anonymous and Paretian quasi-transitive SWRs, and
Q-anonymous and Paretian Suzumura-consistent SWRs. Further, we established a
new characterization of the class of Q-anonymous Paretian SWQs. The least ele-
ments of these four classes, namely the Q-Pareto relation and the Q-Suppes-Sen
SWQ, are very weak in the sense that many pairs of utility streams are declared
to be non-comparable. In contrast to the large literature that analyzes SWQs that
extends the Q-Suppes-Sen SWQ, there have been only a few attempts to analyze
anonymous Paretian SWRs satisfying weaker coherence properties like acyclicity,
quasi-transitivity, and Suzumura consistency. An issue to be addressed in future
work is to analyze acyclic, quasi-transitive, or Suzumura-consistent SWRs that
make it possible to compare more paris of utility streams than the Q-Pareto rela-
tion.
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