
 

G-COE GLOPE II Working Paper Series 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
                                          

If you have any comment or question on the working paper series, please contact each author. 

When making a copy or reproduction of the content, please contact us in advance to request 

permission. The source should explicitly be credited. 

GLOPEⅡ Web Site: http://globalcoe-glope2.jp/ 

 

 

Comparative Statics and Welfare Variations 
 

 

 

 

Koji Shirai 

 

 

 

 

 

 

 

 

 

Working Paper No.41 



Comparative Statics and Welfare Variations

Koji Shirai∗†

August 31, 2010

Abstract

By employing the order theoretical comparative statics, this study shows the equivalence of the
following three concepts: the normality of consumer demand, the monotonicity of the welfare varia-
tions, and the complementarity of an indirect utility function. It is shown that the normality of the
demand for a specific commodity is equivalent with Quah’s Ci-quasisupermodularity of an indirect
utility function, which is satisfied if an indirect utility is concave in income and supermodular in in-
come and the consumption level of that commodity. In addition, this condition is the necessary and
sufficient condition for the monotonicity of the welfare variations in income. The order theoretical
comparative statics enables us to allow non-quasiconcave and non-differentiable utility functions. In
addition, the existence of indivisible commodities and nonlinear price system can also be allowed.
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1 Introduction

Subsequent to a lot of successful applications for game theory, the order theoretical comparative
statics has become an important technique in the consumer theory. Although the applicability
of lattice programming for consumer theory was already pointed out in the celebrated paper by
Milgrom and Shannon (1994), the comprehensive treatment is established in the relatively recent
studies by Antoniadou (2007), Quah (2007), and Mirman and Ruble (2008). They show the con-
dition for the monotonicity of the consumer’s demand, in particular, the normality of the demand
without imposing the classical regularity conditions such as the differentiability and strict quasi-
concavity of a utility function. In addition to these studies, Weber (2010) relates Quah’s theory to
the monotone comparative statics of welfare variations (the compensating variation and equivalent
variation) in income level.

Following these literature, this study provides a link between the normality of the demand
and the monotonicity of welfare variations from the view point of order theoretical comparative
statics. Under the strict quasiconcavity and smoothness of a utility function, the equivalence of
these properties is known, for instance, by Hanemann (1980). Hanemann also shows that the
monotonicity of welfare variations ensured, if an indirect utility function is concave in income
level and supermodular in income and state change. In fact, the result in Weber (2010) can be
seen as the generalization of the latter, in that Weber shows the same result without imposing the
smoothness and strict quasiconcavity on a direct utility function. As a counterpart of Weber’s study,
this study generalizes the Hanemann’s former result to the non-differentiable and non-quasiconcave
environments. In addition, we show the characterization of the monotone welfare variations in terms
of the property of an indirect utility function, which is, as in Weber (2010), related to Quah (2007).
Similar to the joint assumption of concavity and supermodularity, our condition on an indirect
utility function can be seen as a kind of complementarity between income and state change. As a
result, the three way connection is provided: the normality of the demand, the “complementarity”
of an indirect utility function, and the monotonicity of welfare variations.

More precisely, we take the following three steps: First, we characterize the normality of the
demand through the order theoretical comparative statics, that is, the necessary and sufficient
condition for the normal demand on a utility function is shown. Second, the monotonicity of welfare
variations are characterized by the complementarity of an indirect utility function, and finally, we
show the equivelence of the necessary and sufficient condition on a direct utility function and the
complementarity of an indirect utility function. The overview of each step is as follows.

On the first step, the normality of the demand is characterized basically by the “value order”
method proposed by Antoniadou (2007), and Mirman and Ruble (2008). This theory intends to
apply the lattice theoretical comparative statics by Milgrom and Shannon (1994) and Li Calzi and
Veinott (2005) for the consumer theory. As it can be easily confirmed, even if the consumption set
is a sublattice of Rn, lattice programming cannot be directly applied for the natural vector order.
Indeed, for every two income levels, the budget sets in the utility maximization problem are not
strong set comparable with respect to the vector order. To fend off this difficulty, Antoniadou,
Mirman and Ruble define an “artificial” partial order under which the budget sets are strong set
comparable. Actually, this artificial partial order is refered to as the value order, since it is related
to the values of consumption vectors. Then, the comparative statics is performed by employing
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lattice programming, and hence, the quasisupermodularity of a utility function with respect to the
value order constitutes the necessary and sufficient condition for a specific type of normal demand.
However, if there are more than two commodities, constructing the appropriate partial order is not
an easy task. In such a case, the most natural value order, the “direct value order” is a preorder,
and hence, the standard lattice programming cannot be applied, even if the value order is defined1.
We overcome this difficulty by applying the theory of monotone comparative statics on preordered
sets by Shirai (2008, 2009). That is, in this paper, the normality of the demand is characterized by
a generalized value order method. By employing this approach, to a large extent, we can allow the
existence of indivisible commodities.

With regard to the second step, we should refer to the definitions of the welfare variations
and an indirect utility function in this study. In fact, this study focuses on the normality of the
demand for a specific commodity, say, commodity i. Thus, the welfare variations in this paper
are those for the change of the consumption level of commodity i. For instance, given a price
vector of other commodities, p−i, two consumption level of commodity i, x′

i > xi, and an income
level w̃−i, that can be used for the consumption of other commodities, the compensating variation
C̃(p−i, w̃−i, x

′
i, xi) is defined as the willingness to pay for the increase of the consumption level

of commodity i from xi to x′
i. On the other hand, we define an indirect utility function as the

value function of the utility maximization problem in which the consumption level of commodity
i is fixed. Hence, an indirect utility function takes the form of Ṽ (p−i, w̃−i; xi). As stated, Weber
(2010) shows that if Ṽ is concave in w̃−i and supermodular in (w̃−i, xi), then the welfare variations,
the compensating variation C̃(p−i, w̃−i, x

′
i, xi) and the equivalent variation are nondecreasing in

w̃−i. While the Weber’s condition is the joint assumption of two cardinal conditions (concavity and
supermodularity), by extracting the ordinal implication of it, we present the necessary and sufficient
condition for the monotonicity of the welfare variations.

In fact, our necessary and sufficient condition on an indirect utility function, to which we refer as
the “ordinal complementarity,” is equivalent with the “Ci-quasisupermodularity,” which is proposed
by Quah (2007). Quah shows that if a direct utility function satisfies the Ci-quasisupermodularity,
then the demand for commodity i is normal. That is, this notion is initially introduced as the con-
dition for a direct utility function, which is an alternative to the value order methods. Interestingly,
it is shown that the necessary and sufficient condition on a utility function derived from the value
order method is equivalent with the Ci-quasisupermodularity of an indirect utility function. Thus,
the equivalence of the normality of the demand and the monotonicity of the welfare variations is
ensured.

The rest of this study is constructed as follows. In section 2, we prepare some mathematical
resutls, in particular, the theories of comparative statics by Shirai (2008, 2009) and Quah (2007).
The main results of this paper are stated in section 3. In section 3.1, the normality of the demand
is characterized, and, in section 3.2, the equivalence relations are shown. In section 4, we show that
the essentially same equivalency holds even in a nonlinear price model. The construction of section
4 is similar to section 3.

1Although Mirman and Ruble (2008) define a (partial) value order that can be used for n-commodity model, it derives
the quite strong sufficient condition for the normality, which is not suitable in this paper, since we seek to characterize the
normality.
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2 Mathematical Preliminary

In this section, we introduce some mathematical concepts and results that are emplyed in the
subsequent parts of this study. First, we state the generalized comparative statics by Shirai (2008,
2009), and then, a few mathematical concepts defined by Quah (2007) is explained. The former is
employed to characterize the normality of the demand, while the latter is related to the property of
an indirect utility function.

In light of the mathematical structure of the comparative statics of consumer’s problem, it seems
natural to focus on comparative statics of the solution set of the maximization problem with respect
to the changes of feasible sets. Formally, the problem that we address can be written as follows.
Let X be the domain of the objective function f : X → R, that is, the whole set of alternatives,
and let S ⊂ X be a feasible set. Now, consider the maximization problem

max
x∈S⊂X

f(x).

Let M(S) denote the solution set of the above problem when the feasible set is S. We intend to
analyze the effects of the change of the feasible set from S to S′ on M(·). Specifically, in this study,
monotone comparative statics forms the core of the analysis in this paper. Throughout this paper,
we assume the nonemptyness of the solution set of every optimization problem.

To perform the comparative statics, we employ the theory of Shirai (2008, 2009), which can
be regarded as the generalization of the lattice theoretical comparative statics by Milgrom and
Shannon (1994) and Li Calzi and Veinott (2005) in that it is equivalent to the conventional results
when lattice programming can be applied. More concretely, it is the theory of comparative statics
on preordered sets with “lattice-like” properties, which is called a “preordered lattice structure.”

Definition 1: Let (X, 4X) be a preordered set2. We say that X is a preordered lattice structure if
Tx,y ̸= ∅ and Ax,y ̸= ∅, where

Tx,y = sup{z | z 4X x & z 4X y},

and
Ax,y = inf{z | x 4X z & y 4X z}.

That is, Tx,y and Ax,y is the set of the greatest lower bounds and that of the least upper bounds in
X respectively.

Note that if (X, 4X) is a partially ordered set, then a preordered lattice structure is a lattice.
In this sense, it is an extension of the concept of a lattice. Similar to the above case, we extend the
notions of the strong set order and quasisupermodularity to preordered lattice structures. If 4X is
a partial order, then each of the extended notions is equivalent with the corresponding notion in
the standard lattice programming: the strong set order and quasisupermodularity.

2A binary relation is a preorder, if it is reflexive and transitive. If a preorder satisfies antisymmetry, then it is called a
partial order.
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Definition 2: Let (X, 4X) be a preordered lattice structure and S, S′ ⊂ X. We say that S is lower
than S′ in terms of the w-strong set order if Tx,y ∩ S ̸= ∅ and Ax,y ∩ S′ ̸= ∅ for every x ∈ S and
y ∈ S′. We denote this as S ≤wa S′. We say that S is lower than S′ in terms of the s-strong set
order if Tx,y ⊂ S and Ax,y ⊂ S′ for every x ∈ S and y ∈ S′.

Definition 3: Let (X, 4X) be a preordered lattice structure and f : X → R. We say that f is
w-quasisupermodular if

∀t ∈ Tx,y; f(x) ≥ (>)f(t) ⇒ ∃a ∈ Ax,y; f(a) ≥ (>)f(y)

for every x, y ∈ X.

Then, we can extend Milgrom and Shannon (1994) as follows: if X is partially ordered, the
theorem below is equal to the monotone comparative statics through lattice programming.

Theorem 4: Let (X, 4) be a preordered lattice structure and f : X → R. Let M(S) be the solution
set of the maximization problem

max
x∈S⊂X

f(x).

For every S ≤sa S′, M(S) ≤wa M(S′) if and only if f is w-quasisupermodular.

Proof First, we demonstrate the sufficiency. Let x ∈ M(S) and y ∈ M(S′). Since S ≤sa S′, Tx,y ⊂ S
and Ax,y ⊂ S′. By definition, f(x) ≥ f(t) for all t ∈ Tx,y. Hence, by the w-quasisupermodularity
of f , there exists a ∈ Ax,y such that f(a) ≥ f(y); this implies that Ax,y ∩ M(S′) ̸= ∅. Similarly,
Tx,y ∩ M(S) ̸= ∅. Otherwise, by the w-quasisupermodularity of f , there exists a ∈ Ax,y such that
f(a) > f(y); this contradicts y ∈ M(S′).

Then, we show the necessity. Fix x, y ∈ X and let S = {x} ∪ Tx,y and S′ = {y} ∪ Ax,y for
x, y ∈ X. Obviously, S ≤sa S′. Suppose that f(x) ≥ f(t) for all t ∈ Tx,y. Then, x ∈ M(S).
Since M(S) ≤wa M(S′), there exists a ∈ Ax,y such that a ∈ M(S′); this implies that f(a) ≥ f(y).
Suppose that f(x) > f(t) for every Tx,y and y ∈ M(S′). Then, there exists t ∈ Tx,y such that
t ∈ M(S); this contradicts the assumption. Hence, there exists a ∈ Ax,y such that f(a) > f(y).
[Q.E.D.]

Then, we turn to the “C-flexible” method by Quah (2007). Although, by using the following
concepts, Quah provides the theory of monotone comparative statics which is tractable and easy to
interpret, in this study, it suffices to refer to some fundamental definitions and those implications.
In the rest of this section, we assume that X is a convex sublattice of Rn. For every i = 1, 2, ..., n
and λ ∈ [0, 1], we define the two operations ∆λ

i and ∇λ
i on X such that

x∆λ
i y = x if xi ≤ yi

= λy + (1 − λ)(x ∧E y) if xi > yi

x∇λ
i y = y if xi ≤ yi

= λx + (1 − λ)(x ∨E y) if xi > yi,
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where ∧E and ∨E denote the supremum and infimum with respect to the vector order, respectively.

Definition 5: A function f : X → R is Cλ
i -quasisupermodular, if for every x, y ∈ X,

f(x) ≥ (>)f(x∆λ
i y) ⇒ f(x∇λ

i y) ≥ (>)U(y).

A function f is Cλ
i -supermodular, if for every x, y ∈ X,

f(x) + f(y) ≤ f(x∆λ
i y) + f(x∇λ

i y).

If f is Cλ
i -quasisupermodular (Cλ

i -supermodular) for every λ ∈ [0, 1], it is Ci-quasisupermodular (Ci-
supermodular). In addition, if f is Ci-quasisupermodular (Ci-supermodular) for every i = 1, 2, ..., n,
it is C-quasisupermodular (C-supermodular).

Note that Ci-quasisupermodularity (Ci-supermodularity) is stronger than quasisupermodularity
(supermodularity), and hence, it can be regarded as a kind of complementarity between variables.
Figure 1 below, which is borrowed from Quah (2007), provides us with the intuition for these proper-
ties. In addition, it is known that Ci-quasisupermodularity, more specifically, Ci-supermodularity is

�

�
�������
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� �

���
� �

Figure 1: Ci-quasisupermodularity

ensured, if a function f is supermodular with respect to the vector order and i-concave. A function
f is i-concave, if the function φv : s 7→ f(x + sv) is concave for every x ∈ X and v ∈ Rn

+ such that
vi = 0, where the domain of φv is the set of nonnegative reals s such that x+ sv ∈ X. In particular,
if f is concave in x−i = (x1, ..., xi−1, xi+1, ..., xn), it is i-concave. It is also worth noting that the
definition of Ci-quasisupermodularity is valid, as long as the set X−i(xi) = {x−i | (x−i, xi) ∈ X} is
convex for every xi. In case of n = 2, we can characterize the Ci-quasisupermodularity as follows.

Proposition 6: Suppose that X is a convex sublattice of R2. Then, a function f : X → R is
Ci-quasisupermodular, if and only if

f(x−i − c; x′
i) ≥ (>)f(x−i; xi) ⇒ f(x′

−i − c; x′
i) ≥ (>)f(x′

−i; xi)

for every x′
−i > x−i, x′

i > xi, and c ≥ 0.

6



Proof Fix c ≥ 0 and assume that f is Ci-quasisupermodular. Let a = (x−i, x
′
i) and b = (x′

−i, xi).
We show that there exists λ∗ ∈ [0, 1] such that a∆λ∗

i b = (x−i, xi) and a∇λ∗
i b = (x′

−i − c, x′
i). Since,

for every λ ∈ [0, 1], a∆λ
i b = (λx′

−i + (1 − λ)(x−i − c), xi) and x−i ∈ [x−i − c, x′
−i], there exists a

desirable λ∗. It is straightforward that, for this λ∗, a∇λ∗
i b = (x′

−i−c, x′
i). Thus, the latter condition

follows.
Conversely, assume that f satisfies the latter condition, and that a ∥ b and ai > bi. We can

write a = (x−i, x
′
i) and b = (x′

−i, xi). Then, for every λ ∈ [0, 1], a∆λ
i b = ((1 − λ)a−i + λb−i, bi),

and hence, we have a = (x−i − c, x′
i), where c = λ(b−i − a−i). Similarly, for this c, it follows that

a∇λ
i b = ((1−λ)b−i +λa−i, ai) = (x′

−i−c, x′
i). Then, the Ci-quasisupermodularity follows. [Q.E.D.]

3 Comparative Statics and Welfare Variations

3.1 Characterization of Normality

In this subsection, the formal definition and characterization of the normality of demand is
provided. Our idea of monotone comparative statics is based on the “value-order” method developed
by Antoniadou (2007) and Mirman and Ruble (2008)3. In the standard linear price and divisible
commodities model, our condition is satisfied by every concave and supermodular utility function
(See also Chipman (1977) and Quah (2007)). In addition, our comparative statics is still valid, even
if the existence of the indivisible commodities is allowed.

Let X ⊂ Rn
+ be a consumption set, which is a sublattice of Rn

+ with respect to the vector order
on Rn

+. In general, we do not assume the convexity of X. In particular, we allow the existence of
indivisible commodities. Let U : X → R be a utility function. Given a price vector p ∈ Rn

+ and
income level w > 0, define the budget set of the consumer as B(p, w) = {x ∈ X | p · x ≤ w}. Then,
the utility maximization problem of the consumer is,

max
x∈B(p,w)

U(x).

Let D(p, w) be the solution set of this problem. In this paper, we are interested in the condition
under which the demand for i-th commodity is normal in the following sense.

Definition 7: The demand D(p, w) is strongly i-normal for w < w′, if for every x ∈ D(p, w) and y ∈
D(p, w′), there exist t ∈ D(p, w) and a ∈ D(p, w′) such that ti = min{xi, yi} and ai = max{xi, yi}.

Although, by definition, the consumption set X is a lattice under the standard vector order, it
can be easily verified that for every w < w′, the budget set B(p, w) and B(p, w′) are not strong
set comparable. Hence, in general, the vector order cannot be directly applied for this comparative
statics4. To employ the lattice theoretical comparative statics, Antoniadou (2007), and Mirman and
Ruble (2008) develop the “value order” method. The main idea of their approach is to construct

3For further applications of the value order method, see Antoniadou et.al (2009).
4Milgrom and Shannon (1994) address this problem in the two commodity framework, by reducing the maximization

problem to the univariate maximization problem. However, this does not work in the higher dimension.
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Figure 2: (a), (b): Strongly i-normal. (c), (d): Not strongly i-normal

the binary relation such that the budget sets are strong set comparable with respect to that “ar-
tifitial” order, and the strong set comparability of the demand sets implies the strong i-normality.
Concretely, the value-order in this model is defined as follows.

Definition 8: Given a price vector p, define the binary relation 4dv(p,i) on X, such that x 4dv(p,i) y
if xi ≤ yi and p · x ≤ p · y. We refer to this binary relation as the direct (p, i)-value order.

As shown by Antoniadou (2007), the direct (p, i)-value order 4dv(p,i) is a preorder. In particular,
if n = 2, it is a partial order. By its definition, the set of the greatest lower bounds with respect to
this order is Tx,y = {z ∈ X | zi = min{xi, yi}, p · z = min{p · x, p · y}}. Similarly, the set of the least
upper bounds with repect to this order is Ax,y = {z ∈ X | zi = max{xi, yi}, p ·z = max{p ·x, p ·y}}.
If there exists at least one divisible commodity other than i, both sets are nonempty. The proofs
of this fact and propositions in this subsection are provided in Section 4.1, by using more general
setting.

Lemma 9: If there exists at least one divisible commodity other than i, the consumption set X is
a preordered lattice structure with respect to the direct (p, i)-value order 4dv(p,i).

Note that, in the two commodities model, the direct (p, i)-value order 4dv(p,i) is a partial order,
and X is a lattice with respect to this order. Antoniadou (2007), and Mirman and Ruble (2008)
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mainly deal with the two commodities models, since they employ the standard lattice programming5.
The following two lemmas imply the plausibility of employing this order to perform the comparative
statics of the consumers demand. The proofs are provided in Section 4.1 using more general model.

Lemma 10: Suppose that there exists at least one divisible commodity other than commodity i.
Given a price vector p, the budget sets are s-strong set comparable with respect to 4dv(p,i). That is,
B(p, w) ≤sa B(p, w′) for every w < w′.

Lemma 11: Suppose that there exists at least one divisible commodity other than commodity i.
Given a price vector p, the demand D(p, w) is strongly i-normal, if and only if D(p, w) ≤wa D(p, w′)
with respect to 4dv(p,i) for every w < w′.

Thus, by recalling Theorem 4 in the previous section, the necessary and sufficient condition for
strong i-normality is as follows.

Proposition 12: Suppose that there exists at least one divisible commodity other than commodity
i. Given a price vector p, D(p, w) is strongly i-normal, if and only if a utility function U is w-
quasisupermodular with respect to 4dv(p,i).

Remark: The strong i-normality is, in fact, stronger than the most standard concept of normality
in this literature, which is introduced by Antoniadou (2007) and Quah (2007): the demand D(p, w)
is i-normal for w < w′, if for every x ∈ D(p, w), there exists y ∈ D(p, w′) such that xi ≤ yi, and
for every y ∈ D(p, w′), there exists x ∈ D(p, w) such that xi ≤ yi. If D(p, w) is i-normal for every
w < w′, we say that the demand D(p, w) is i-normal.

It is obvious that if the demand is strongly i-normal, then it is i-normal. However, in general,
the converse does not follows, which is depicted in Figure 2(c), where the demand is i-normal, but
not strongly i-normal. Hence, the w-quasisupermodularity of a utility function with respect to the
direct (p, i)-value order is sufficient condition for the i-normality, but not necessary. Nevertheless,
when we assume the convexity of X, and the local non-satiation and quasiconcavity of a utility
function, this condition is also the necessary condition, which is depicted in Figure 2(a).

As the closely related results, under the convexity of X, Quah (2007) shows the sufficient condi-
tion for the strong i-normality by employing the Ci-flexible approach, which is stated in the second
half of the last section. Although Quah refers to only the i-normality, as shown below, his sufficient
condition ensures the strong i-normality.

5In Mirman and Ruble (2008), as the generalization of the direct value order, the iterated value order is defined as
follows. Let X = Rn

+ and p(x) = p1x1 + p2x2 + ... + pnxn, where every pk ≥ 0. The iterated value order ≤(p,iv) is defined
such that for every x, x′ ∈ X, x ≤(p,iv) x′ if p1x1 ≤ p1x

′
1, p1x1 +p2x2 ≤ p1x

′
1 +p2x

′
2,..., and

∑n
k=1 pkxk ≤

∑n
k=1 pkx′

k. It is
shown that (X,≤(p,iv)) is a lattice and if a utility function U satisfies quasisupermodularity with respect to this order, the
demand for x1 is pathwisely normal. However, this sufficient condition depends on the numbering of coordinates and more
restrictive than w-quasisupermodularity with respect to 4(p,≤1). Indeed, it can be confirmed from the fact that for every
x, y ∈ X, the infimum and the supremum with respect to ≤(p,iv) are elements of Tx,y and Ax,y with respect to 4(p,≤1)

respectively.
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Proposition 13: Suppose that X is convex. If a utility function U satisfies the Ci-quasisupermodularity,
then it satisfies the w-quasisupermodularity with respect to 4dv(p,i) for every p ∈ Rn

+.

Proof Fix a price vector p ∈ Rn
+. Let x, y ∈ Rn

+. Without loss of generality, we can assume that
xi > yi and p · x < p · y. Note that there exists λ∗ ∈ [0, 1] such that (x∆λ∗

i y)i = yi, and for this λ∗,
it follows that p · (x∆λ∗

i y), that is, (x∆λ∗
i y) ∈ Tx,y. Thus, if U(x) ≥ (>)U(t) for all t ∈ Tx,y, then

U(x) ≥ (>)U(x∆λ∗
i y). By Ci-quasisupermodularity, U(x∇λ∗

i y) ≥ (>)U(y). Since (x∇λ∗
i y)i = xi

and p · (x∇λ∗
i y) = p · y, it follows that (x∇λ∗

i y) ∈ Ax,y. Hence, U is w-quasisupermodular with
respect to the direct (p, i)-value order. Since p is arbitrary, our claim follows. [Q.E.D.]

Corollary 14: Suppose that X is convex. If a utility function U satisfies the Ci-quasisupermodularity,
then the demand D(p, w) is strongly i-normal for every p ∈ Rn

+.

Corollary 15: Suppose that X is convex. If a utility function U is i-concave and supermodular
with respect to the vector order, then the demand D(p, i) is strongly i-normal for every p. If a utility
function U is concave and supermodular with respect to the vector order, then the demand D(p, w)
is strongly i-normal for every i = 1, 2, ..., n.

If n = 2, the Ci-quasisupermodularity and the w-quasisupermodularity with respect to 4dv(p,i)

for every p is equivalent. Since the direct (p, i)-value order is a partial order, for every p ∈ Rn
+,

each of Tx,y and Ax,y is singleton, that is, the former is equal to (x∆λ∗
i y) and the latter is equal to

(x∇λ∗
i y). Hence, the Ci-quasisupermodularity implies the w-quasisupermodularity with respect to

4dv(p,i) for every p.
As the preceding corollary indicates, under the convexity of the consumption set, Quah’s ap-

proach provides us with the tractable sufficient condition for the normality of demand. In particular,
both the concavity and supermodularity are familiar concepts in economic theory. On the other
hand, our order theoretical approach has advantages when we deal with the models with indivisible
commodities. In addition, as shown in Section 4, the latter can also deal with the model with
nonlinear prices. However, most important aspect of the order theoretical approach is that, the
necessary and sufficient condition for the normal demand is equivalent with the monotonicity of the
welfare variations, which is addressed in the next subsection.

3.2 Welfare Variations, Indirect Utility, and Normality

Here, our main results in this paper is shown: the equivalence of the w-quasisupermodularity
of a direct utility function, the monotonicity of the welfare variations, and the complementarity
of an indirect utility function. As a result, three characterizations of the strong i-normality of
the demand are provided. Here, the “complementarity” of an indirect utility function is defined
as the Ci-quasisupermodularity of it. That is, as the property of an indirect utility function, Ci-
quasisupermodularity is the necessary and sufficient condition for the normality of the demand.
Thus, there is another link between our order theoretical comparative statics and Quah’s C-flexible
approach. Note that, in this subsection, we allow the existence of indivisible commodities, since the
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normality of the demand here is characterized by the w-quasisupermodularity of a utility function,
which does not depend on the convexity of the consumption set.

Let us start from defining an indirect utility function and the welfare variations. As known, with
regard to the welfare variations, there are two types of welfare variations: the compensating variation
and the equivalent variation. Recall that, for every fixed xi, X−i(xi) stands for the consumption
set for other commodities when the consumption level of i-th commodity is xi, that we write the
consumption vector of commodities other than i as x−i, and that the price vector of commodities
other than i is represented by p−i. The disposable income for other commodities is represented by
w̃−i > 0, to distinguish from the income level in the utility maximization problem in the previous
subsection. Then, for every fixed xi, consider the following maximization problem:

max
x−i∈B−i(p,w̃−i)

U(x−i; xi),

where B−i(p, w̃−i) = {x−i ∈ X−i(xi) | p−i · x−i ≤ w̃−i}. That is, w̃−i denotes the income that can
be used for the consumption of commodities other than i. Let Ṽ (p, w̃−i; xi) be the value function
of this maximization problem, and we refer to it as an indirect utility function. The two welfare
variations are defined as follows.

Definition 16: Let x′
i > xi. Given a price vector p−i and income level w̃−i, the compensating

variation C̃(p−i, w̃−i, x
′
i, xi) is defined such that

C̃(p−i, w̃−i, x
′
i, xi) = max{c | Ṽ (p, w̃−i − c; x′

i) = Ṽ (p, w̃−i; xi)}.

Similarly, the equivalent variation Ẽ(p−i, w̃−i, x
′
i, xi) is defined such that

Ẽ(p−i, w̃−i, x
′
i, xi) = min{e | Ṽ (p, w̃−i; x′

i) = Ṽ (p, w̃−i + e; xi)}.

In the following, we are interested in the monotonicity of the welfare variations in the income
level w̃−i. First, we state the following proposition by Weber (2010).

Proposition 17: Suppose that the preference is locally non-satiated, that is, Ṽ (p, w̃−i; xi) is in-
creasing in w̃−i. Then, the following statements are equivalent:

1. C̃(p−i, w̃−i, x
′
i, xi) is nondecreasing in w̃−i.

2. Ẽ(p−i, w̃−i, x
′
i, xi) is nondecreasing in w̃−i.

3. C̃(p−i, w̃−i, x
′
i, xi) ≤ Ẽ(p−i, w̃−i, x

′
i, xi), in particular,

C̃(p−i, w̃−i + Ẽ(p−i, w̃−i, x
′
i, xi), x′

i, xi) = Ẽ(p−i, w̃−i, x
′
i, xi).

This is closely related to the WTP < WTA problem in the literature of the valuation for non-
market good. For this issue, see Randall and Stoll (1980), Hanemann (1991), Weber (2003), and
Plott and Zeiler (2005, 2007). From the preceding proposition, as long as the comparative statics
matters, we can concentrate on the property of the compensating variation, and we do so when it
is convenient. Weber (2010) points out the close relationship between the monotonicity of welfare
variations and the comparative statics in Quah (2007). Indeed, Weber shows the following:
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Proposition 18: Suppose that the preference is locally non-satiated, that is, Ṽ (p, w̃−i; xi) is in-
creasing in w̃−i. In addition, assume that the commodity i is desireble. Then, given a price vector
p−i, the welfare variations C̃(p−i, w̃−i, x

′
i, xi) and Ẽ(p−i, w̃−i, x

′
i, xi) is nondecreasing in w̃−i, if

Ṽ (p−i, w̃−i; xi) is concave in w̃−i and supermodular in (w̃−i; xi) with respect to the vector order in
R2

+.

Weber refers to the assumption of supermodularity in w̃−i and xi as the complementarity of Ṽ .
Then, slightly abusing the terminology, we can deduce that the Ci-supermodularity of the indirect
utility function ensures the monotonicity of the welfare variations. This deduction is correct, and
moreover, we can show that Ci-quasisupermodularity of the indirect utility function is the necessary
and sufficient condition for the monotonicity of the welfare variations. Formally, an indirect utility
function Ṽ (p, w̃−i; xi) is Ci-quasisupermodular, if Ṽ (p−i, w̃−i − c; x′

i) ≥ (>)Ṽ (p−i, w̃−i; xi) implies
Ṽ (p−i, w̃

′
−i − c; x′

i) ≥ (>)Ṽ (p−i, w̃
′
−i; xi) for every w̃−i < w̃′

−i, and c ≥ 0. We refer to this property
as the ordinal complementarity of an indirect utility function.
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Figure 3: Ordinal complementarity of Ṽ

Proposition 19: Suppose that the preference is locally non-satiated, that is, Ṽ (p−i, w̃−i; xi) is
increasing in w̃−i. In addition, assume that the i-th commodity is desireble. Then, the welfare vari-
ations are nondecreasing in w̃−i, if and only if Ṽ (p−i, w̃−i; xi) satisfies the ordinal complementarity.

Proof First, we show the monotonicity of the compensating variation. Suppose that V satisfies
the Ci-quasisupermodularity. Then, Ṽ (p−i, w̃

′′
−i − C̃(p−i, w̃−i, x

′
i, xi);x′

i) = Ṽ (p−i, w̃−i; xi), and
hence, Ṽ (p−i, w̃

′
−i − C̃(p−i, w̃−i, x

′
i, xi);x′

i) ≥ Ṽ (p−i, w̃
′
−i; xi). This implies that C̃(p−i, w̃−i, x

′
i, xi) ≤

C̃(p−i, w̃
′
−i, x

′
i, xi).

To show the converse, suppose that Ṽ does not satisfy the condition in the statement. Then,
there exist some w̃−i < w̃′

−i and xi < x′
i such that Ṽ (p−i, w̃−i − c; x′

i) ≥ (>)Ṽ (p−i, w̃−i; xi) and
Ṽ (p−i, w̃−i− c;x′

i) < (≤)Ṽ (p−i, w̃−i; xi) for some c ≥ 0. This implies that C̃(p−i, w̃−i, x
′
i, xi) ≥ (>)c

and C̃(p−i, w̃
′
−i, x

′
i, xi) < (≤)c, and hence, we have C̃(p−i, w̃−i, x

′
i, xi) > C̃(p−i, w̃

′
−i, x

′
i, xi). [Q.E.D.]

Thus, we have proved the equivalence between the monotocity of the welfare variations and the
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ordinal complementarity of the indirect utility function. Finally, we add the third equivalent state-
ment: the strong i-normality of the demand. Since, by Proposition 12, we know the equivalence
between the strong i-normality of the demand and the w-quasisupermodularity with respect to the
direct (p, i)-value order, the following proposition suffices. The proof is provided in the next section
by proving more general claim.

Proposition 20: Suppose that the preference is locally non-satiated, and the i-th commodity is
desirable. In addition, assume that there exists at least one divisible commodity j ̸= i. Then, given
a price vector p−i, a utility function U is w-quasisupermodular with respect to the direct (p, i)-value
order for every p = (pi, p−i) ∈ Rn

+, if and only if an indirect utility function Ṽ (p−i, w̃−i; xi) satisfies
the ordinal complementarity.

Corollary 21: Suppose that the preference is locally non-satiated, and the i-th commodity is de-
sirable. In addition, assume that X−i(xi) is convex for every xi. If a utility function satisfies the
Ci-quasisupermodularity, then, for every p−i, an indirect utility function Ṽ (p−i, w̃−i;xi) satisfies the
ordinal complementarity (the Ci-quasisupermodularity).

Corollary 22: Suppose that the preference is locally non-satiated, and the i-th commodity is de-
sirable. In addition, assume that there exists at least one divisible commodity j ̸= i. Then, the
following statements are equivalent:

1. Given a price vector p−i, the demand D(p, w) is strongly i-normal for every price p = (pi, p−i).

2. The welfare variations are nondecreasing in w̃−i.

3. An indirect utility function Ṽ (p−i, w̃−i;xi) satisfies the ordinal complementarity.

4. A utility function U is w-quasisupermodular with respect to the direct (p, i)-value order for
every p = (pi, p−i).

Note that, in the above proposition and its corollary, the strong i-normality does not depend
on the price of the i-th commodity. That is, given a price vector of other commodities, p−i, the
monotonicity of the welfare variations implies the strong i-normality of the demand whatever the
price of the i-th commodity is.

4 Nonlinear Price System

4.1 The Value Order for Nonlinear Price System

In fact, even if the price system is nonlinear, the similar equivalence holds. In the next section,
we prove it. In a nonlinear price model, we need slight modifications of the definition of the welfare
variations, and an indirect utility function. The notions of monotonicity and complementarity are
also adjusted to the general model.

Similar to the previous section, we start from the characterization of the normality of the demand.
Let X be the consumption set, which is a sublattice of the vector lattice Rn

+. Suppose that the
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preference of the consumer is represented by a utility function U : X → R, and let p : X → R+ be
a continuous and increasing price system. Then, given an income level w > 0, the budget set of the
consumer is B(p, w) = {x ∈ X | p(x) ≤ w}, and the utility maximization problem is defined in a
similar fashion to the previous section. Let D(p, w) denote the demand. We are interested in the
necessary and sufficient condition for the strong i-normality of the demand. In fact, the idea of the
direct (p, i)-value order is still valid in this setting.

Definition 23: Given a price system p(·), define a binary relation 4dv(p,i) such that

x 4dv(p,i) y ⇐⇒ xi ≤ yi, and p(x) ≤ p(y).

Obviously, this is a preorder on X, and the sets of greatest lower bounds and least upper bounds
are defined as Tx,y = {z ∈ X | zi = min{xi, yi}, p(z) = min{p(x), p(y)}}, and Ax,y = {z ∈ X |
zi = max{xi, yi}, p(z) = max{p(x), p(y)}}. We show that, under the assumption below, (1) the
consumption set is a preordered lattice structure with respect to this order, and (2) the budget sets
are strong set comparable, each of which is respectively the generalization of Lemmas 9, 10, and 11.

Assumption 24: There exists at least one commodity j ̸= i, which is divisible and, for every x−j ,
limxj→+∞ p(x−j , xj) = +∞.

Proposition 25: Under Assumption 24, given a price system p(·), (X, 4dv(p,i)) is a preordered
lattice structure.

Proof Let x and y be two incomparable points in X, with xi > yi and p(x) < p(y). Then, define
xt

i such that xt
i = yi. Since p(·) is increasing, p(xt

i, x−i) < p(x). Then, by Assumption 24, there
exists xt

−i such that p(xt
i, x

t
−i) = p(x). This (xt

i, x
t
−i) is obviously an element of Tx,y. Similarly,

define xa
i such that xa

i = xi. Since p(x) = p(xa
i , x−i) < p(yi, y−i) = p(y), there exists xa

−i such that
p(xa

i , x
a
−i) = p(yi, y−i), by Assumption 24. This xa = (xa

i , x
a
−i) is an element of Ax,y. [Q.E.D.]

Proposition 26: Under Assumption 24, given a price system p(·), the budget sets are s-strong set
comparable for every w < w′. That is, B(p, w) ≤sa B(p, w′).

Proof Let x ∈ B(p, w) and y ∈ B(p, w′). Suppose that xi > yi and p(x) < p(y). However, for
every element xt ∈ Tx,y, we have p(xt) = p(x) ≤ w, which implies that Tx,y ⊂ B(p, w). Similarly,
Ax,y ⊂ B(p, w′). Let x, y ∈ B(p, w) with xi > yi and p(x) < p(y). However, for every xt ∈ Tx,y,
p(xt) = p(x) ≤ w, and for every xa ∈ Ax,y, p(xa) = p(y) ≤ w. [Q.E.D.]

Proposition 27: Under Assumption 24, given a price system p(·), the demand D(p, w) is strongly
i-normal, if and only if D(p, w) ≤wa D(p, w′) with respect to 4dv(p,i) for every w < w′.

Proof Suppose that the demand is strongly i-normal. Let x ∈ D(p, w) and y ∈ D(p, w′), where
w < w′. Then, there exist xt ∈ D(p, w) and xa ∈ D(p, w′), which satisfies xt

i = min{xi, yi},
p(xt) = min{p(x), p(y)}, xa

i = max{xi, yi}, and p(xa) = max{p(x), p(y)}. It is obvious that xt ∈ Tx,y

and xa ∈ Ax,y.
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Conversely, suppose that D(p, w) ≤wa D(p, w′). Then, there exist xt ∈ D(p, w) ∩ Tx,y and
xa ∈ D(p, w′) ∩ Ax,y. By definition, xt

i = min{xi, yi} and p(xt) = min{p(x), p(y)}. Similarly,
xa

i = max{xi, yi} and p(xa) = max{p(x), p(y)}. This implies the strong i-normality of the demand.
[Q.E.D.]

Then, by applying Theorem 4, we have the following characterization of the strong i-normality
of the demand.

Proposition 28: Under Assumption 24, given a price system p(·), the demand D(p, w) is strongly
i-normal, if only if a utility function satisfies the w-quasisupermodularity with respect to the direct
(p, i)-value order.

4.2 Welfare Variations under Nonlinear Price System

In this subsection, we shows the equivalence of the w-quasisupermodularity of a utility function,
(and hence, the strong i-normality of the demand) the weak sense of monotonicity of the welfare
variations (the single-crossing property), and the single-crossing property of an indirect utility func-
tion (it can be seen as the ordinal complementarity) in the setting of a nonlinear price system. As
stated in the head of this section, we modify the definition of the welfare variations and an indirect
utility function. It is shown that the results in section 3.2 can be seen as the special case of those
in this subsection.

Suppose that x′
i, xi ∈ Xj and xi < x′

i. Consider the maximization problem

max
x−i∈B−i(p,w;xi)

U(x−i; xi),

where B−i(p, w; xi) = {x−i ∈ X−i | p(x−i, xi) ≤ w}. Let V (p, w; xi) denote the value function of
this problem. As before, we refer to this as an indirect utility function. Note that the domain of
V (p, ·; xi) is the set of w such that B−i(p, w; xi) ̸= ∅.

Definition 29: Let xi < x′
i and fix a price system p(·) and an income level w > 0. The compensating

variation for the change from xi to x′
i is defined as

C(p, w, x′
i, xi) = max{c | V (p, w − c; x′

i) = V (p, w; xi)}.

Similarly, the equivalent variation for the change from xi to x′
i is defined as

E(p, w, x′
i, xi) = min{e | V (p, w; x′

i) = V (p, w + e; xi)}.

Since the price system is increasing, the domains of C(p, ·, x′
i, xi) and E(p, ·, x′

i, xi) are equal to the
domain of V (p, ·; x′

i).

Note that, even if the i-th commodity is desirable, the welfare variations in Definition 28 may
be negative, since the higher consumption level of the i-th commodity straightens the budget set
B−i(p, w;xi), that is,

{x−i ∈ X−i | p(x−i, x
′
i) ≤ w} ⊂ {x−i ∈ X−i | p(x−i, xi) ≤ w}
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for every xi < x′
i. The reason we modify the definition of the welfare variations is as follows. Since

we are interested in the comparative statics of the welfare variations with respect to income levels,
the price system that affects the decision in the reduced utility maximization problem need to be
fixed. Indeed, the welfare variations in the previous section are defined for a given price vector for
other commodities, p−i. It was possible since the price system for other commodities is not affected
by the consumption level of the i-th commodity. However, if the price system takes the general form
p(xi, x−i), it is not the case. Hence, we have redefined the welfare variations in such a way that the
entire price system is fixed. As shown below, if the price of the i-th commodity is separable, then
the welfare variations in Definition 29 can be translated into those in Definition 23.

For the welfare variations and an indirect utility function in this section, we can show the
similar results with the previous section. That is, the monotonicity of the welfare variations is
equivalent with the complementarity of the indirect utility function, both of which are equivalent
with the strong i-normality of the demand. We define the weaker form of monotonicity of the
welfare variations, the single-crossing property, as follows.

Definition 30: Fix a price system p(·). The compensating variation C(p, w, x′
i, xi) satisfies the

single-crossing property in (xi; w) if

C(p, w, x′
i, xi) ≥ (>)0 ⇒ C(p, w′, x′

i, xi) ≥ (>)0

for every w < w′ and xi < x′
i satisfying B−i(p, w, x′

i) ̸= ∅. The single-crossing property of the
equivalent variation is similarly defined.

The term “single-crossing property” stems from the fact that if the welfare variation satisfies
it, then it crosses 0 at most once from below. In fact, the single-crossing property of the welfare
variations is equivalent with the single-crossing property of the indirect utility function V (p, w; xi).
Obviously, the single-crossing property is strictly weaker than the standard monotonicity, since
every monotonic function trivially satisfies the single-crossing property. In addition, if the sign of a
function is constant, then it satisfies the single-crossing property. The following proposition implies
that the weak monotonicity (the single-crossing property) of the welfare variations is equivalent
with that the indirect utility function satisfies the complementarity between income levels and the
consumption level of the i-th commodity.

Proposition 31: Fix a price system p(·). The compensating variation satisfies the single-crossing
property in (xi; w) if and only if V satisfies the single-crossing property in (xi; w), that is, for every
w < w′ and xi < x′

i satisfying B−i(p, w, x′
i) ̸= ∅,

V (p, w; x′
i) ≥ (>)V (p, w; xi) ⇒ V (p, w′;x′

i) ≥ (>)V (p, w′; xi).

Similarly, the equivalent variation satisfies the single-crossing property if and only if V satisfies the
single-crossing property in (xi; w).

Proof First, we show the case with the compensating variation. Suppose that V satisfies the single-
crossing property in (xi; w). Let w < w′ and C(p, w, x′

i, xi) ≥ (>)0. This implies that V (p, w; x′
i) ≥
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(>)V (p, w; xi). By the single-crossing property of V , we have V (p, w′; x′
i) ≥ (>)V (p, w; xi). This

implies that C(p, w′, x′
i, xi) ≥ (>)0.

To show the converse, suppose that V does not satisfy the single-crossing property. Then,
there exist some w < w′ and xi < x′

i such that V (p, w; x′
i) ≥ (>)V (p, w; xi) and V (p, w′; x′

i) < (≤
)V (p, w′; xi). The former inequation V (p, w;x′

i) ≥ (>)V (p, w; xi) implies that C(p, w, x′
i, xi) ≥ (>)0,

while the latter inequation implies that C(p, w′, x′
i, xi) < (≤)0.

The proof for the case with the equivalent variation is omitted because it is the same as that
for the above argument, except that each of C(p, w, x′

i, xi) and C(p, w′, x′
i, xi) are replaced with

E(p, w, x′
i, xi) and E(p, w′, x′

i, xi) respectively. [Q.E.D.]

Under the local non-satiation of the preference, we can characterize the w-quasisupermodularity
of a utility function with respect to the direct (p, i)-value order by the single-crossing property of
the welfare variations. That is, the equivalent relation in the preceding proposition is characterized
by the strong i-normality of the demand.

Proposition 32: Suppose that the preference is locally non-satiated. Then, under Assumption 24,
given a price system p(·) a utility function U satisfies w-quasisupermodularity with respect to the
direct (p, i)-value order if and only if V (p, w; xi) satisfies the single-crossing property in (xi; w).

Proof First, we show the “if” part. Let x, x′ ∈ X. Suppose that x′
i > xi and p(x) < p(x′). Define

xt∗ and xa∗
such that

xt∗
−i ∈ argmax

z−i∈B−i(p,p(x);x′
i)

U(z−i; x′
i),

xa∗
−i ∈ argmax

z−i∈B−i(p,p(x′);xi)
U(z−i; xi),

with xt∗
i = x′

i and xa∗
i = xi. Since the preference is locally non-satiated, p(xt∗) = p(x) and

p(xa∗
) = p(x′). It is obvious that xt∗ ∈ Tx,x′ and xa∗ ∈ Ax,x′ . In the following, we prove that

U(x) ≥ (>)U(xt∗) ⇒ U(xa∗
) ≥ (>)U(x′).

By the analogy of xt∗ and xa∗
, we define x∗ and x

′∗ such that

x∗
−i ∈ argmax

z−i∈B−i(p,p(x);xi)
U(z−i; xi),

x
′∗
−i ∈ argmax

z−i∈B−i(p,p(x′);x′
i)

U(z−i; x′
i),

with x∗
i = xi and x

′∗
i = x′

i. Since U(xt∗) = V (p, p(x);x′
i), U(xa∗

) = V (p, p(x′);xi), U(x∗) =
V (p, p(x);xi), and U(x

′∗) = V (p, p(x′);x′
i), by the single-crossing property, we have

U(x∗) ≥ (>)U(xt∗) ⇐⇒ V (p, p(x);xi) ≥ (>)V (p, p(x);x′
i)

⇒ V (p, p(x′);xi) ≥ (>)V (p, p(x′);x′
i)

⇐⇒ U(xa∗
) ≥ (>)U(x

′∗).
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By definition, if U(x) ≥ (>)U(t) for all t ∈ Tx,x′ , then U(x∗) ≥ (>)U(xt∗). The above inequations
imply that U(xa∗

) ≥ (>)U(x′) in such cases.
To show the converse, suppose that V does not satisfy the single-crossing property. Without

loss of generality, we can assume V (p, w; x′
i) ≥ (>)V (p, w; xi) and V (p, w′; x′

i) < (≤)V (p, w′; xi).
Then, the inequations at the end of the previous paragraph imply that U(x∗) ≥ (>)U(xt∗) and
U(xa∗

) < (≤)U(x
′∗). This implies that U does not satisfy w-quasisupermodularity. [Q.E.D.]

Corollary 33: Fix a price system p(·). Then, under the local non-satiation of the preference, and
Assumption 24, the following statements are equivalent.

1. An indirect utility function V satisfies the single-crossing property in (xi; w).
2. The welfare variations satisfies the single-crossing property in (xi; w).
3. A utility function satisfies w-quasisupermodularity with respect to the direct (p, i)-value order.
4. The demand D(p, w) is strongly i-normal.

Finally, we relate the above results with the propositions in the previous section. In fact, if
the price system p(x−i, xi) is separable with respect to the i-th commodity, that is, p(x−i, xi) =
p−i(x−i) + pi(xi), the results in this section can be translated into those of the previous section.
Note that, for a given price system p(x) and the consumption level of commodity i, xi, the income
that can be used for the consumption of other commodities is equal to w̃−i = w − pi(xi). Hence,
Ṽ (p−i, w̃−i, xi) = V (p, w, xi), if and only if w̃−i = w − pi(xi). From this observation, it is easily
confirmed that C̃(p−i, w̃−i, xi, x

′
i) = C(p, w, xi, x

′
i)+pi(x′

i)−pi(xi). Then, we can prove the following.
Combining it with Propositions 31 and 32, the proof of Proposition 20 is straightforward.

Proposition 34: Fix a price system p(·), which is separable with respect to commodity i. Suppose
that a utility function is locally non-satiated and increasing in xi. Then, under Assumption 24, the
compensating (equivalent) variation in the previous section, C̃(p−i, w̃−i, xi, x

′
i) (Ẽ(p−i, w̃−i, xi, x

′
i)),

is nondecreasing in w̃−i, if and only if C(p′, w, xi, x
′
i) (E(p′, w, xi, x

′
i)) satisfies the single-crossing

property in (xi; w) for every p′−i(x−i) = p−i(x−i).

Proof The “if” part is shown as follows. Suppose that C̃(p, w̃−i, xi, x
′
i) > C̃(p, w̃′

−i, xi, x
′
i) for some

w−i < w′
−i. Since a utility function is increasing in xi, C̃(p−i, w̃−i, xi, x

′
i) > 0. Define p′i(·) such that

C̃(p−i, w̃−i, xi, x
′
i) > p′i(x

′
i) − p′i(xi)

C̃(p−i, w̃
′
−i, xi, x

′
i) < p′i(x

′
i) − p′i(xi).

Then, by letting w = w̃−i+p′i(xi) and w′ = w̃′
−i+p′i(xi), C(p′, w, xi, x

′
i) > 0 and C(p′, w′, xi, x

′
i) < 0;

this violates the single-crossing property in (xi; w).
The “only if” part can be shown by defining the above p′i(·) as pi(·) and following the preceding

conversely. That is, if C(p′, w, xi, x
′
i) > 0 and C(p′, w′, xi, x

′
i) < 0, then,

C̃(p−i, w̃
′
−i, xi, x

′
i) < pi(x′

i) − pi(xi)

< C̃(p−i, w̃−i, xi, x
′
i)

for w̃−i = w − pi(xi) and w̃′
−i = w′ − p(xi). [Q.E.D.]
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