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Abstract

This paper shows that, on lattices in the nonnegative integer lattices, if an weakly increasing, and quasisub-
modular binary relation has a representation, then it also has a submodular representation. This contrasts
with the known result that every weakly increasing and quasisupermodular binary relation admits a super-
modular representation on finite lattices, as long as it has a representation. In addition, we show that, if the
binary relation is increasing then not only submodularity, but the discrete version of the law of diminishing
marginal utility is also non-refutable. By applying this result, we can show the discrete version of Afriat’s
theorem: the decreasing increment of a utility function cannot be refuted from the finite price-consumption
data.
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1 Introduction

Since the notion of quasisupermodularity (quasisubmodularity) was introduced by Milgrom and Shannon
(1994), the condition for supermodularizability (submodularizability) of such functions has been considered.
Although quasisupermodularity is the ordinal property that is satisfied by every supermodular function, there
exist quasisupermodular functions that can not be supermodularized by any strictly increasing transforma-
tion. That is, in general, supermodularity contains ordinal implications more than quasisupermodularity.
Nevertheless, by the recent study by Chambers and Echenique (2009), it is shown that if an weakly increas-
ing and quasisupermodular binary relation has a representation, it must have a supermodular representation.
The affinity of supermodularity for monotonicity is also supported by Li Calzi (1990), who shows that a
twice continuously differentiable function defined a compact rectangle in Rn is supermodular if every par-
tial derivative of it is positive. These results imply that, under weak monotonicity and some additional
conditions, supermodularity has no ordinal implication except quasisupermodularity. Equivalently, it can

∗I would like to thank Christopher Chambers, Federico Echenique, Takashi Oginuma, and Hisatoshi Tanaka for their helpful
comments.
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be said that, under weak monotone decreasingness, submodularity has no ordinal implication other than
quasisubmodularity.

From these observations, one may wonder what if weak increasingness is combined with submodularity.
The aim of this note is to answer this question. Our answer is negative since it asserts that, for every
binary relations on lattices in ZL

+, the representability and the submodular representability is equivalent if
it is weakly increasing and quasisubmodular1. That is, under monotonicity, submodularity has no ordinal
implication more than quasisubmodularity. Note that this implies that every increasing binary relation on
a finite lattice has both a supermodular representation and a submodular representation as long as it has a
representation. Moreover, under increasingness, there exists a submodular representation that satisfies the
additional property—the discrete version of the law of diminishing marginal utility. From the mathematical
perspective, this property is the dual of the “ultramodularity” defined by Marinacci and Montrucchio (2005),
to which we refer as “dual ultramodularity.” These results are derived by employing the well-known functional
form that is used in the classical existence theorem for a utility function by Rader (1963).

We apply the dual ultramodular, and hence, submodular representability for the same topic with Chambers
and Echenique (2009): the rationalizability of finite price-consumption data by a utility function. They prove
that, as long as the consumption set is a finite lattice, the supermodularity of a utility function cannot
be refuted from finite data sets. On the other hand, we can conclude that, on a lattice in ZL

+, the dual
ultramodular representability, in particular, the submodular representability cannot be refuted. Although
both are the counterparts of Afriat’s theorem, which shows the non-refutability of the concave representability
on RL

+, ours seems more natural discretization in the sense that it ensures the discrete version of the law of
diminishing marginal utility.

2 Results

Consider a lattice in the nonnegative integer lattice X ⊂ ZL
+ and a binary relation R on it. Suppose

that R is weakly increasing, and quasisubmodular. Formally, the weak increasingness of R requires that
x ≥ y implies xRy. Quasisubmodularity requires that (x ∧ y)R(P)x implies yR(P)(x ∨ y), where P denotes
the irreflexible part of R. Note that, under weak increasingness, quasisubmodularity is equivalent with the
property that (x ∧ y)Ix implies yI(x ∨ y), where I is the symmetric part of R. It should also be noted that
if R satisfies increasingness, then it is weakly increasing and quasisubmodular.

We say that f : X ⊂ ZL
+ → R is a representation of R when f(x) ≥ f(y) ⇐⇒ xRy. A representation f

is submodular (supermodular) if f(x) + f(y) ≥ (≤)f(x∧ y) + f(x∨ y). Suppose that R has a representation,
say, U . The set U(X) ⊂ R is an well-ordered set with respect to the standard order2. This can be shown
as follows. Let V ⊂ U(X). Obviously, this is a totally ordered set. We show the existence of the minimum
element. Consider U−1(V ) ⊂ X ⊂ ZV

+. Let L ⊂ U−1(V ) be the set of minimal elements of U−1(V ),
that is, L = {x ∈ U−1(V ) | @y ∈ U−1(V ); y < x}. Since this is a finite set, the set of minimizer on L
is nonempty. In addition, the monotonicity of U ensures that every minimizer on L is the minimizer on
U−1(V ). Thus, we can represent U(X) = {u1, u2, ..., uk, ...} such that uk < uk+1 for every k ∈ N. Define the
set Ak = U−1(uk) ⊂ X ⊂ ZL

+. By analogy of Rader (1963), we can construct a representation as follows.

1The ordinal implication of submodularity is also studied by Chambers and Echenique (2008) from the different standpoint.
2On this point, I’m grateful to Christopher Chambers and Federico Echenique, who pointed out the inaccuracy in the first version.
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Proposition 1: Given a representation U : X ⊂ ZL
+ → R, define a function UR : X ⊂ ZL

+ → R such that

UR(x) =
∑

i∈N(x)

1
2i

where N(x) = {i ∈ N | xRai, ai ∈ Ai}. Then, this UR is also a representation of R.

Proof We show that xPy implies UR(x) > UR(y). It suffices to prove that N(x) ) N(y). Since X = ∪kAk,
there exist i(x) and i(y) such that x ∈ Ai(x) and y ∈ Ai(y). Our assumption implies that i(x) > i(y). Since
N(z) = {i ∈ N | i ≤ i(z)}, our claim follows. [Q.E.D.]

Based on its functional form, we refer to UR as Rader’s utility function. According to the preceding
proposition, the existence of a submodular representation follows if Rader’s utility function satisfies submod-
ularity. We can prove it as follows.

Theorem 2: Suppose that a binary relation R on a lattice X ⊂ ZL
+ satisfies weak increasingness and qua-

sisubmodularity. Then it has a submodular representation as long as it has a representation.

Proof We show that Rader’s utility function satisfies submodularity. Let x, y ∈ X. Without loss of generality,
we can assume that x ∥ y. By the weak increasingness of the binary relation, it follows that UR(x∧y) ≤ UR(y)
and UR(x) ≤ UR(x∨y). We can restrict our interest to the cases with strict inequalities. Indeed, if the former
follows by equality, then the quasisubmodularity of the binary relation implies that UR(x) = UR(x ∨ y) and
it follows that UR(x) + UR(y) = UR(x ∧ y) + UR(x ∨ y). If the latter follows by equality, it is trivial that
UR(x)+UR(y) ≥ UR(x∧y)+UR(x∨y). In the following, we assume that UR(y) ≤ UR(x), UR(x∧y) < UR(y)
and that UR(x) < UR(x ∨ y). Since i(x ∧ y) < i(y) ≤ i(x) < i(x ∨ y), it follows that

UR(y) − UR(x ∧ y) =
i(y)∑

i=i(x∧y)+1

1
2i

≥ 1
2i(x∧y)+1

>

i(x∨y)∑
i=i(x)+1

1
2i

= UR(x ∨ y) − UR(x)

This implies that UR(·) satisfies submodularity. [Q.E.D.]

Intuitively, the submodularity of a utility function implies that the marginal utility of every commodity
is nonincreasing in the consumption level of other commodities—the monotonicity of cross effect. In fact, if
R satisfies increasingness, Rader’s utility function also satisfies the discrete version of the law of diminishing
marginal utility, that is, the marginal utility of every commodity is nonincreasing in the consumption level of
it—the monotonicity of own effect. This is the dual of ultramodularity defined by Marinacci and Montrucchio
(2005). Formally, a function f : A ⊂ Rn → R is ultramodular if f(y + h) − f(y) ≤ f(x + h) − f(x) for
every x ≥ y and h ≥ 0. If A is a lattice, then every ultramodular function satisfies supermodularity by
definition. We say that f : A ⊂ Rn → R is dual ultramodular if −f is an ultramodular function. Similar
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to submodularity (supermodularity) and quasisubmodularity (quasisupermodularity), we can consider the
ordinal version of this property. We say that a function f : A ⊂ Rn → R is quasiultramodular if f(y + h) ≥
(>)f(y) ⇒ f(x + h) ≥ (>)f(x) for every x ≥ y and h ≥ 0. If −f is quasiultramodular, the function f is said
to be dual quasiultramodular. Every dual quasiultramodular function also satisfies quasisubmodularity. Note
that under the weak monotonicity, a binary relation R satisfies dual quasiultramodular if y + hIy implies
x + hIx for every x ≥ y and h ≥ 0.

Theorem 3: Suppose that a binary relation R on a lattice X ⊂ ZL
+ satisfies weak increasingness and dual

quasiultramodularity. Then it has a dual ultramodular representation as long as it has a representation.

Proof We show that Rader’s utility function satisfies dual ultramodularity. Let x ≥ y and h ≥ 03. By the weak
increasingness of R, UR(x) ≤ UR(x+h) and UR(y) ≤ UR(y +h). Similar to the proof of Theorem 2, without
loss of generality, we can suppose that UR(x) < UR(x + h) and UR(y) < UR(y + h) and UR(y + h) ≤ UR(x).
Then, it follows that i(y) < i(y + h) ≤ i(x) < i(x + h). Hence,

UR(x + h) − UR(x) =
i(x+h)∑

i=i(x)+1

1
2i

≤ 1
2i(y)+1

<

i(y+h)∑
i=i(y)+1

1
2i

= UR(y + h) − UR(y),

which implies the dual ultramodularity of UR. [Q.E.D.]

Corollary 4: Suppose that R on a lattice X ⊂ ZL
+ satisfies increasingness. Then it has a dual ultramodular

representation as long as it has a representation. In particular, it is a submodular representation.

By combining our results with those in Chambers and Echenique (2009), we have the following two
corollaries. The first corollary implies that, if the domain of a preordering is a finite lattice, supermodular
representability and submodular representability are compatible.

Corollary 5: Let (X,≤) be a finite lattice. Then, every increasing binary relation on X has both a super-
modular representation and a submodular representation, as long as it has a representation. In particular,
both a supermodular representation and a submodular representaion exist.

Proof Follows from our Theorem 2 and Theorem 1 of Chambers and Echenique (2009), where it is shown
that every binary relation that has a quasisupermodular and weakly increasing representation admits a su-
permodular representation. [Q.E.D.]

On the supermodular representability, Shmaya (2010) shows the existence of an increasing, qusisupermod-
ular, and continuous function on [0, 1] × [0, 1] that admits no supermodular representation. However, this

3Here, h is an element of ZL
+ such that x + h, y + h ∈ X.
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does not mean the infiniteness of the domain solely demolishes the ordinal equivalency between quasisuper-
modularity and supermodularity under weak increasingness. Indeed, suppose that X ⊂ Z− be a lattice (may
be infinite) and consider R be an weakly increasing and quasisupermodular binary relation that has a repre-
sentation U : X → R. Note that, under weak increasingness, quasisupermodularity requires that xP(x ∧ y)
implies (x ∨ y)Py. Then, the set U(X) can be written as U(X) = {u1, u2, ..., uk, ...} such that uk > uk+1 for
every k ∈ N. Then, we can define Ak = U−1(uk) and Rader’s Utility function UR(x) =

∑∞
i=i(x)

1
2i , where

i(x) = {i ∈ N | x ∈ Ai}. This UR is also a representation and satisfies supermodularity. Similarly, if an
weakly increasing binary relation R satisfies quasiultramodularity and has a representation, then it has an
ultramodular representation. The proofs of these are similar to those of Theorems 2 and 3. For instance, if
R is weakly increasing, quasisupermodular, and U(x ∧ y) < U(y) ≤ U(x) < U(x ∨ y), then

UR(x ∨ y) − UR(x) =
i(x)−1∑
i(x∨y)

1
2i

≥ 1
2i(x∨y)

>

i(x∧y)−1∑
i(y)

1
2i

= U(y) − U(x ∧ y).

Thus, we can say that what is important for ordinal equivalency between quasisubmodularity (quasisuper-
modularity) and submodularity (supermodularity) is the (reversed) well-orderedness of the images of the
representations. This relationship is similar to the case with quasiultramodularity (dual quasiultramodular-
ity) and ultramodularity (dual ultramodularity). Then, the preceding corollary can be generalized as follows.

Corollary 5’: Let (X,≤) be a finite lattice. Then, every increasing binary relation on X has both an ul-
tramodular representation and a dual ultramodular representation, as long as it has a representation. In
particular, both a supermodular representation and a submodular representaion exist.

Finally, we state the second corollary, which is the counterpart of Proposition 7 of Chambers and Echenique
(2009): the non-refutability of a dual ultramodular utility function by finite price-consumption data. By
Afriat (1967), it is well-known that finite observations of pairs of price vectors and consumption choices can
be rationalized by a utility function if and only if it can be rationalized by a concave utility function. Although
Afriat works in the standard linear price setting, Matzkin (1991) and Forges and Minelli (2009) deal with
this topic without assuming the linear budget constraint. The latter proves that, under the general budget
set, the rationalizability by a utility function does not necessarily implies the rationalizability by a concave
utility function. Chambers and Echenique (2009) prove the discrete version of Afriat’s theorem by restricting
the consumption set to finite lattices. As a result, they show that the rationalizablity by a utility function
is equivalent with that by a supermodular utility function even under the general budget set. By almost the
same argument with Chambers and Echenique, we can confirm that the rationalizability by a utility function
is equivalent with that by a dual ultramodular utility function, whether the price system is linear or not.
Our result is more general in the sense that we can allow the infinite consumption set like ZL

+. In addition,
dual ultramodularity seems more natural counterpart of concavity, because it exhibits the law of diminishing
marginal utility.

Before stating our result, let us provide the formal definition of the rationalizability along the line of
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Chambers and Echenique (2009). Let X ⊂ ZL
+ be a lattice. For all k = 1, 2, ...,K, let Sk ∈ 2X \ {∅} and

let xk ∈ Sk. The former denotes the feasible set and the latter denotes the choice of the consumer when the
feasible set is Sk. Thus, the pairs {(xk, Sk)}K

k=1 constitute a data set. The following three conditions are
imposed on the data set.

1. For all k ∈ {1, 2, ...,K}, there is no yk ∈ Sk such that xk < yk.

2. For all k ∈ {1, 2, ...,K}, if x ∈ Sk and y ≤ x then y ∈ Sk.

3. For all k, k′ ∈ {1, 2, ...,K}, if xk′ ∈ Sk and xk′ ̸= xk, then xk /∈ Sk.

The first condition corresponds to a non-satiation. The second is the free disposal assumption. The last
requirement is a variant of the weak axiom of revealed preference. As usual, we can define the revealed
preference R∗ such that xR∗y if there exists k ∈ {1, 2, ...,K} such that x = xk and y ∈ Sk. The third
condition on the data set ensures the antisymmetry of R∗, that is, if xR∗y and x ̸= y then xP∗y. A function
U : X → R rationalizes the data {(xk, Sk)}K

k=1 if it represents R∗. We say that the data {(xk, Sk)}K
k=1 is

rationalizable if there exists a function U that rationalizes R∗.

Corollary 6: Assume that {(xk, Sk)}K
k=1 satisfies conditions 1, 2, and 3. Then the data is rationalizable if

and only if it is rationalized by a dual ultramodular function.

The formal proof is omitted because it is exactly the same with the proof of Proposition 7 of Chambers and
Echenique (2009), except that we apply Theorem 3 above instead of Theorem 1 of their paper. The main idea
is as follows. Define the binary relation B such that xBy if xR∗y or x ≥ y. By condition 3, it can be verified
that if x > y then xPBy. Thus, if B has a representation, it must be increasing. Chambers and Echenique
(2009) show that every representation of B also represents R∗ and that if R∗ has a representation, then B
also has a representation. As a result, by applying Theorem 3, B has a dual ultramodular representation as
long as {(xk, Sk)}K

k=1 is rationalizable. Hence, the rationalizability of the data and the rationalizability by a
dual ultramodular function is equivalent4.
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