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Abstract

This study deals with comparative statics of the consumer’s demand. According to Lan-
caster [1966, Journal of Political Economy ], a utility function should be defined on the set of
all characteristics that affect well-being of the consumer and these characteristics should be
derived by consuming commodities. We show the sufficient condition for monotone compara-
tive statics of the demand for characteristics and investigate the properties of the demand for
commodities by considering the relationship between characteristics and commodities. We do
not restrict the domain of a utility function and price systems, that is, the set of characteristics,
to the Euclidean space. In particular, we allow discrete choice and nonlinear price systems.
This theory enables us to predict the properties of the demand for the commodities that are
not present in the market, such as new commodities. Our sufficient condition on a direct utility
function can be characterized by the properties of the welfare variations for the change in the
level of characteristics, which are more transparent and easier to verify. Further, the results of
this study are derived by employing a new mathematical technique, which can be regarded as
the generalization of the lattice theoretical comparative statics.
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1 Introduction

In the standard consumer theory, the consumer has the preference on the set of commodities

and he/she maximizes his/her preference subject to the linear budget constraint. Numerous

studies along these lines have been conducted, and at least theoretically, various robust and

sophisticated results have been revealed. However, as Lancaster (1966) points out, the standard

theory has the only one answer to the following questions, “It is because of the tastes of the

consumer.”

“Why does the consumer choose to consume a particular good?”

“Why is some profile of goods prefered to the other ?”

“Why (or why not) is a good a close substitute for the other?”.

That is because the conventional theory omits the intrinsic properties of goods and those of

the consumer’s preference.

Lancaster (1966) proposes an alternative approach to construct the consumer theory that

includes these properties. Here, each profile of commodities is regarded as a profile of the char-

acteristics that affect the well-being of the consumer, and preference is defined on the set of

these characteristics. The characteristics are derived by consuming commodities, and hence, ex-

isting variations of commodities constitute the “physical constraint” for the consumer’s choice.

The price system of characteristics, which constitutes the “budget constraint” is derived from

the relationship between the characteristics and commodities, and the price system of existing

commodities. Therefore, in this theory, the consumer chooses the profile of characteristics that

maximizes his/her preference subject to the budget constraint and the physical constraint. The

solution set of the consumer’s problem can be regarded as the “demand for characteristics,”

which can be translated into the demand for commodities by considering the relationship be-

tween commodities and characteristics. By employing this theory, we may answer the preceding
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questions along the lines of the following examples:

“A meal is consumed because it possesses nutritional characteristics that are essential for the

consumer’s life.”

“Chocolates packed in an ornamental box are prefered to those packed in a plain cardboard

box because the former provides the consumer with higher quality in appearance, while both

possess the same level of taste and nutrition.”

“A glass of Japanese whisky is a close substitute for a glass of Scotch whisky because these

two goods share many characteristics.”

However, it should be emphasized that this theory serves not only for providing the consumer

theory with the heuristic basis but also for extending a more practical aspect of demand anal-

yses. Specifically, as Lancaster states, it enables us to investigate or predict the consumer’s

demand for the goods or quality variations that have not yet emerged. Evidently, introducing

new commodities is equal to altering the budget constraint and the physical constraint, and

hence, the preference need not be modified. On the other hand, it is obvious that the standard

theory cannot address such an analysis because the preference itself must be defined on the set

of existing goods.

The idea of regarding a profile of commodities as a profile of characteristics has been suc-

cessfully employed in the literature of the hedonic price studies initiated by Rosen (1974) and

in its application in studies such as Palmquist (1984), which analyzes the housing demand

by regarding a dwelling as a profile of relevant characterisitics. From the theoretical perspec-

tive, comparative statics analysis through this approach has been interested. Needless to say,

comparative statics is an important topic in consumer theory since most of the empirical pre-

dictions of the consumer’s behavior in response to the changes of some exogeneous parameters

are derived from it. In addition, according to the statements in the previous paragraph, com-
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parative statics of characteristic demand enables us to predict the properties of the demand

for new commodities, which is beyond the scope of standard consumer theory. The possible

mathematical reasons behind the difficulty in constructing the theory on comparative statics

for characteristic demand are presented as follows. First, if we defines the budget constraint on

the set of characteristics, we must deal with the nonlinear constraint explicitly. Second, when

considering the set of characteristics, we cannot expect that it is the Euclidean space, although

most of researchers, including Lancaster and Rosen, implicitly regard it as the Euclidean space.

This makes it difficult to justify the assumption of the smoothness and convexity of the prefer-

ences. With regard to the first aspect, in spite of Rosen’s pessimistic prediction (Rosen (1974,

p.59)), Edlefsen (1981) proposes a theory of comparative statics under nonlinear constraints.

However, his theory depends on monotonicity and quasiconcavity of a utility function, twice

continuous differentiablity of a utility function and constraints, and existence of an interior

solution. Hence, the second aspect remains an open issue.

In this paper, we overcome the above difficulities by employing order theoretical compar-

ative statics, which is often applied in recent economic theory, and investigate the condition

for monotone comparative statics of characteristic demand, particularly, the monotonicity of

income effects. The basis for constructing comparative statics is the “value order” method

developed by Antoniadou (2007), Mirman and Ruble (2008), and Antoniadou et al. (2009).

These studies discuss the monotone comparative statics of the consumer’s demand along the

lines of the standard consumer theory12. A brief description of the value order approach is as

follows. First, some partial order that is suitable for comparative statics, the “value order,” is

defined on the consumption set (in this paper, the set of characteristics). Then, using this par-

1Nevertheless, Antoniadou et al. (2009) deal with the demand for lottery and provide the sufficient condition
for the monotonicity of lottery demand in terms of the “quality” or the “characteristic” of the lottery like the first
(second) order stochastic domination. In this sense, theoretically, our study can be regarded as an extension of their
study.

2Quah (2007) presents another approach for order theoretical comparative statics of the consumer’s demand. He
dexterously shows the sufficient condition for monotone comparative statics by employing concavity and supermod-
ularity of a utility function in the Euclidean space; which can be regarded as the generalization of Chipman (1977).
However, in his approach, it is essential that the consumption set is a convex sublattice of Rn.
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tial order, lattice theoretical comparative statics by Milgrom and Shannon (1994), and LiCalzi

and Veinott (2005) is applied. Hence, the property called “quasisupermodularity” of a utility

function with respect to the value order constitutes one of the sufficient conditions for mono-

tone comparative statics. However, in this study, we do not employ lattice programming itself

but generalized monotone comparative statics developed by Shirai (2008)3. Although both the

theories have fairly similar structures, the latter can be applied as long as some appropriate

preorder is defined on the consumption set, while the former requires the consumption set to

be a partially ordered set, more specifically, a lattice. In our general setting, it is difficult

to construct an appropriate partial order. In particular, antisymmetry is quite difficult to be

satisfied. Therefore, we employ new mathematical technique in this paper. As a result, we

extend the value order method to the preordered sets and provide the sufficient condition for

monotone comparative statics of the characteristic demand. Our requirement for the set of

characteristics is that it should be written as the direct product of the set of each characteris-

tic. Hence, we can allow the existence of characteristics that have only finite alternatives and

those that cannot be expressed in terms of quantitative measure. Although we assume that the

preference can be represented by a utility function, with regard to the minimum requirements

for the domain of a utility function, differentiability, quasiconcavity, and similar regularity

conditions in the standard consumer theory are not assumed. In addition, we do not impose

concavity (convexity) assumptions on the price systems, although monotonicity and a weak

form of continuity in the level of (at least) one characteristic is required.

While our sufficient condition on a utility function possesses high generality, it is inevitable

that the more general the domain of a utility function is, the more opaque is the economic

implication of the condition for a utility function. In this case, we must pay attention to

the verifiablity of the sufficient condition. We can characterize the sufficient condition for a

utility function in terms of the welfare variations for the change in a characteristic; this can

3See also Shirai (2009), which is a correction of Shirai (2008).
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be checked easily, as compared to the conditions on a direct utility function. In the literature

of environmental economics, it is well known that the compensating variation, that is, the

willingness to pay (WTP) for the change in an environmental quality can be estimated through

the contingent valuation method, and that the monotonicity of WTP in income levels implies

the necessary and sufficient condition for the normal demand, under the assumption of a unique

solution and some regularity conditions (See McConnell (1990) and Whitehead (1995).). By

applying our sufficient condition for a utility function we can extend this result to the context

of characteristic demand without imposing regularity conditions such as differentiablity and

strict quasiconcavity of a utility function, that are assumed in conventional WTP studies.

Since the differentiability of a utility function in environmental qualities seems to be a rather

technical assumption, in this sense, our results play a role of checking the robustness of the

conventional WTP analysis. More precisely, we can interpret the above argument as a special

case of the relationship between the sufficient condition based on the value order approach

and the properties of welfare variations; this indicates the advantage of using the value order

method.

The rest of this paper is organized as follows. In Section 2, our mathematical technique,

that is, generalized monotone comparative statics based on Shirai (2008) is presented. Then,

in Section 3.1, the formal definition of the consumer’s problem in this study is defined. In

Section 3.2, by applying the mathematics used in Section 2, the sufficient condition for mono-

tone comparative statics is shown. The examples indicate that our formulation of the utility

maximization problem, and hence our theory of comparative statics can encompass a wide

range of consumer problems in economics, including the standard consumer theory. In Section

4, the sufficient condition for monotone comparative statics is characterized in terms of welfare

variations. In Section 4.1, the general relationship between our sufficient condition and the

properties of the welfare variations is investigated. In Section 4.2, by restricting the form of

the price system, the relationship between our results and those of McConnell and Whitehead
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is explored.

2 Mathematical Backgrounds

In this section, we present our main mathematical technique to perform comparative statics

analysis, as shown by Shirai (2008). It can be regarded as the generalization of the lattice

theoretical comparative statics by Milgrom and Shannon (1994) and LiCalzi and Veinott (2005)

in that it is equivalent to the conventional results when those can be applied. In the light of

the mathematical structure of the comparative statics of consumer’s problem, it seems natural

to focus on comparative statics of the solution set of the maximization problem with respect to

the changes of feasible sets4. Formally, the problem that we address can be written as follows.

Let X be the domain of the objective function f : X → R, that is, the whole set of alternatives,

and let S ⊂ X be a feasible set. Now, consider the maximization problem

max
x∈S⊂X

f(x).

Let M(S) denote the solution set of the above problem when the feasible set is S. We intend

to analyze the effects of the change of the feasible set from S to S′ on M(·). Specifically, in

this study, monotone comparative statics forms the core of the analysis in this paper.

To facilitate the understanding of our technique, we first review the essence of the standard

lattice theoretical comparative statics. The most fundamental requirement to employ the

theory is that the domain of the objective function X is a partially ordered set with special

properties; which is refered to as a “lattice.”

Definition 1: Let ≤X be a partial order on X. (X,≤X) is a lattice if the infimum and the

4Milgrom and Shannon (1994) also consider the comparative statics with respect to the changes of objective
functions.
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supremum of every two elements in X exist. That is, (X,≤X) is a lattice if both x∧y = sup{z |

z ≤X x & z ≤X y} and x ∨ y = inf{z | x ≤X z & y ≤X z} exist in X.

As can be presumed from what we are addressing, the partial order ≤X is the basis for

the comparative criterion. That is, the comparative criterion that gauges the “changes,” more

specifically, the “monotonic changes,” of feasible sets and the solution sets of maximization

problems, is constructed from ≤X .

Definition 2: Let (X,≤X) be a lattice and S, S′ ⊂ X. We say that S is lower than S′ with

respect to the strong set order, if x ∧ y ∈ S and x ∨ y ∈ S′ for every x ∈ S and y ∈ S′. We

denote this as S ≤a S′.

Note that, in general, ≤a is not reflexible. To derive reflexibility, a restriction should be

imposed on S, which is stated as follows.

Definition 3: Let (X,≤X) be a lattice. S ⊂ X is said to be a sublattice of X if (S,≤X) is a

lattice.

Milgrom and Shannon (1994) and LiCalzi and Veinott (2005) demonstrate that monotone

comparative statics in terms of the strong set order is ensured if and only if the objective

function f : X → R satisfies the following condition.

Definition 4: Let (X,≤X) be a lattice and f : X → R. We say that f is quasisupermodular5

5LiCalzi and Veinott use the term lattice super extremum to refer to the same property. It should be noted that
they also provide the necessary and sufficient condition for monotone comparative statics with respect to comparative
criteria that are different from the strong set order.
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if

f(x) ≥ (>)f(x ∧ y) ⇒ f(x ∨ y) ≥ (>)f(y).

Theorem 5 (Milgrom and Shannon, LiCalzi and Veinott): Let X be a lattice and S, S′ ⊂ X.

M(S) ≤a M(S′) for every S ≤a S′ if and only if the objective function f satisfies quasisuper-

modularity. In addition, if S is a sublattice of X, then M(S) is also a sublattice.

Proof See Milgrom and Shannon (1994), Theorem 4.

The construction of the preceding definitions and theorem clearly shows that to employ

lattice theoretical comparative statics, it is essential that the domain of the objective function

is a lattice, specifically, a partially ordered set. However, as stated in the previous section, under

our general settings, it is difficult to define an appropriate partial order on the consumption

set; Moreover, even if it was possible, the sufficient condition derived through Theorem 5 tends

to be so restrictive that it has few economic implications. Hence, in this study, we employ

generalized monotone comparative statics, which can be applied as long as an appropriate

preorder is defined on the domain of the objective function. The following definitions imply

that the concept of this theory is similar to the conventional lattice programming. The rest of

this subsection is based on Shirai (2008). First, we define a preordered set with “lattice-like”

properties, which is called a “preordered lattice structure.”

Definition 6: Let (X, 4X) be a preordered set. We say that X is a preordered lattice structure

if Tx,y ̸= ∅ and Ax,y ̸= ∅, where Tx,y and Ax,y is the set of the greatest lower bounds and that

of the least upper bounds in X respectively.

9



Note that if (X, 4X) is a partially ordered set, then a preordered lattice structure is a

lattice. In this sense, it is an extension of the concept of a lattice. An important aspect to be

noted is that both the greatest lower bounds and the least upper bounds with respect to the

order on X exist. Similar to the above case, we extend the notions of the strong set order and

quasisupermodularity to the preordered lattice structure. If 4X is a partial order, then each

of the extended notions is equivalent with the corresponding notion in the standard lattice

programming.

Definition 7: Let (X, 4X) be a preordered lattice structure and S, S′ ⊂ X. We say that S

is lower than S′ in terms of the w-strong set order if Tx,y ∩ S ̸= ∅ and Ax,y ∩ S′ ̸= ∅ for every

x ∈ S and y ∈ S′. We denote this as S ≤wa S′. We say that S is lower than S′ in terms of the

s-strong set order if Tx,y ⊂ S and Ax,y ⊂ S′ for every x ∈ S and y ∈ S′.

Definition 8: Let (X, 4X) be a preordered lattice structure and f : X → R. We say that f

is w-quasisupermodular if

∀t ∈ Tx,y; f(x) ≥ (>)f(t) ⇒ ∃a ∈ Ax,y; f(a) ≥ (>)f(y)

for every x, y ∈ X.

Note that both the w-strong set order and the s-strong set order do not satisfy reflexibility;

this is similar to the case with the strong set order. To derive reflexibility, we define the

counterparts of the concept of a sublattice.

Definition 9: Let (X, 4X) be a preordered lattice structure. S ⊂ X is said to be a w-sublattice

of X if Tx,y ∩ S ̸= ∅ and Ax,y ∩ S ̸= ∅ for every x, y ∈ S. S ⊂ X is said to be an s-sublattice if

Tx,y ⊂ S and Ax,y ⊂ S for every x, y ∈ S.
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Note that both Tx,y and Ax,y are taken with respect to 4X . S ≤wa S if and only if S is

a w-sublattice. The case with an s-sublattice is similar. Thus, we can extend Theorem 5 as

follows.

Theorem 10: Let (X, 4) be a preordered lattice structure and f : X → R. Let M(S) be the

solution set of the maximization problem

max
x∈S⊂X

f(x).

For every S ≤sa S′, M(S) ≤wa M(S′) if and only if f is w-quasisupermodular. In addition, if

S is an s-sublattice, then M(S) is a w-sublattice.

Proof First, we demonstrate the sufficiency. Let x ∈ M(S) and y ∈ M(S′). Since S ≤sa S′,

Tx,y ⊂ S and Ax,y ⊂ S′. By definition, f(x) ≥ f(t) for all t ∈ Tx,y. Hence, by the w-

quasisupermodularity of f , there exists a ∈ Ax,y such that f(a) ≥ f(y); this implies that

Ax,y ∩ M(S′) ̸= ∅. Similarly, Tx,y ∩ M(S) ̸= ∅. Otherwise, by the w-quasisupermodularity of

f , there exists a ∈ Ax,y such that f(a) > f(y); this contradicts y ∈ M(S′).

Then, we show the necessity. Fix x, y ∈ X and let S = {x} ∪ Tx,y and S′ = {y} ∪ Ax,y

for x, y ∈ X. Obviously, S ≤sa S′. Suppose that f(x) ≥ f(t) for all t ∈ Tx,y. Then,

x ∈ M(S). Since M(S) ≤wa M(S′), there exists a ∈ Ax,y such that a ∈ M(S′); this implies

that f(a) ≥ f(y). Suppose that f(x) > f(t) for every Tx,y and y ∈ M(S′). Then, there exists

t ∈ Tx,y such that t ∈ M(S); this contradicts the assumption. Hence, there exists a ∈ Ax,y

such that f(a) > f(y).

Suppose that S is an s-sublattice. Let x, y ∈ M(S). Since S ≤sa S, by the result of the

first paragraph of this proof, M(S) ≤wa M(S). [Q.E.D.]

11



3 Canonical Results

In this section, we define the problem that we address in this paper and show the sufficent

condition for monotone comparative statics of the consumer’s demand. The formal definition

of the consumer’s problem is provided in the first subsection. In accordance with Lancaster

(1966), a utility function of the consumer is defined on the set of characteristics or attributes

that affect the well-being of the consumer. These characteristics are supposed to be derived by

consuming the commodities, and hence, we consider the relationship between characteristics

and commodities. In the second subsection, we proceed to comparative statics analysis by

employing the mathematics that was used in the previous section. Our idea of monotone

comparative statics is based on the “value-order” method developed by Antoniadou (2007)

and Mirman and Ruble (2008). Further, we show that this approach can address a wide range

of consumer’s problems.

3.1 Model

In this subsection, we define the problem faced by the consumer. As stated at the start of

this section, the preference of the consumer is defined on the set of attributes or characteristics

derived through the consumption of commodities. Formally, let X = X1 × X2 × ... × Xn be

the set of characteristics, where every Xk is a set. For each profile of characteristics x =

(x1, x2, ..., xn) ∈ X, the value of it is determined by a function p : X → R ∪ {+∞}, which is

referred to as a price system in the rest of this paper. We assume that the preference of the

consumer is represented by a utility function U : X → R. Then, given a price system p(·) and

an income level w > 0, the budget set of the consumer is B(p, w) = {x ∈ X | p(x) ≤ w}, and

the utility maximization problem is

max
x∈B(p,w)

U(x).

Let D(p, w) denote the solution set of this problem. To ensure the existence of the solution, we
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may assume the compactness of B(p, w) and upper semi-continuity of U with respect to some

adequate topology. However, as far as comparative statics analysis, a topological property is

not employed, and hence, the nonemptyness of D(p, w) is directly assumed in the rest of this

paper.

The commodities are taken into the above setting as follows. Let M be the set of variations

of commodities, and let Y ⊂ RM
+ be a subset of the set of all nonnegative real-valued functions

on M. For instance, if M = {1, 2, ...,m}, then Y can be written as a subset of Rm
+ . We

regard Y as a consumption set in terms of commodities. Note that we do not impose convexity

on Y , and hence, the existence of indivisible commodities is allowed. Define the set-valued

function G : Y → 2X such that G(y) ⊂ X represents the profiles of characteristics that are

attainable from the profile of goods y ∈ Y and let G−1(x) = {y ∈ Y | x ∈ G(y)}. This is

the generalization of the formulation in Lancaster (1966), where the relationship between the

characteristics and the commodities is depicted by the linear transformation. In general, each

profile of commodities y can generate more than one profile of characteristics. This seems

plausible if one assumes the “free disposal of characteristics,” which is formally stated later.

On the set G(Y ) ⊂ X, we define the price system of characteristics p(x) as the value function

of the minimization problem

min
y∈G−1(x)

q(y),

where q : Y → R denotes the price system of commodities. If Y ⊂ Rm
+ and the price of each

commodity is separable and linear, q(y) = q1y1 + q2y2 + ... + qmym. For x /∈ G(Y ), we suppose

that p(x) = +∞, which defines the physical constraint for the choice of the profile of character-

istics. Thus, intuitively, p(x) represents the minimal cost to enjoy the profile of characteristics

x. Let Γ(q, x) denote the solution set of the preceding minimization problem. If x∗ ∈ D(p, w),

the set Γ(q, x∗) is the demand for commodities corresponding to x∗. Thus, the demand for

commodities corresponding to D(p, w) is equal to ∪x∗∈D(p,w)Γ(q, x∗) = Γ(q,D(p, w)). In the

above argument, the mapping G, and hence, p(·), could be different among consumers since

13



they would reflect each consumer’s characteristics.

Note that this model can encompass the standard consumer’s problem by letting X = Y

and G be the identical mapping. In this sense, our setting can be seen as the generalization of

the standard consumer theory. Moreover, our formulation of the utility maximization problem

enables us to analyze the consumer’s demand for the commodities that are not present in the

market, such as new commodities. The appearance of new commodities causes the change of the

feasible set of consumer. Let M′ be the altered set of variations of commodities and Y ′ ⊂ RM′
+ .

Define G′ : Y ′ → 2X as the set of profiles of characteristics that are attainable by y ∈ Y ′ and

G′−1 : X → 2Y ′
such that G′−1(x) = {y ∈ Y ′ | x ∈ G′(y)}. Define p′ : X → R ∪ {+∞} as the

value function of the minimization problem

min
y∈G′−1(x)

q′(y),

where q′(·) is a price system of commodities defined on Y ′. Then, the demand for characteris-

tics D(p′, w) is derived and, similar to the previous paragraph, it can be transformed into the

demand for commodities, ∪x∗∈D(p′,w)Γ(q′, x∗). Intuitively, one can predict the demand for new

commodities as long as their “properties” of them are known. This extension is impossible in

the standard consumer theory. Indeed, in the conventional theory, a utility function or the

preference of the consumer is defined on the set of existing commodities, say, Y , and hence, it

is impossible to predict the reaction of the consumer to the new commodities.

Example 11: Consider the simple case in which there exist only two characteristics, the air-

conditioning capacity, X1, and the composite characteristic that represents all other character-

istics in the economy, X2. Then, a utility function is U : X → R, where X = X1×X2. Suppose

that the characteristic of air-conditioning capacity is shared by only two commodities, for exam-

ple, an electric fan (EF) and an air-conditioner (AC) and that the level of composite character-

istic is equal to the consumption level of the numéraire composite good yc ∈ R+ (= X2). Then,
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the set of variations of commodities is M = {EF,AC,COM}, where COM denotes the com-

posite good. For simplicity, we assume that the possible choice for the consumer with regard to

the air-conditioning equipments is “to buy or not to buy” each commodity. That is, the set of

possible profiles of commodities can be written as Y = {0, 1}×{0, 1}×R+. On the other hand, in

terms of the characteristic of air-conditioning, the consumer can choose (1) no air-conditioning

equipment (∅), (2) one unit of the electric fan (EF ), (3) one unit of the air-conditioner (AC),

and (4) one unit of the electric fan and the air-conditioner each (EF ∪AC). Hence, the set of

possible profiles of characteristics can be written as G(Y ) = {∅, EF,AC,EF ∪AC}×R+ ⊂ X.

Define the linear order6 ≤1 on X1, which represents the level of the air-conditioning capacity.

Assume that ∅ <1 EF <1 AC <1 EF ∪ AC and free disposal of this characteristic is possible,

that is, the level EF can be achieved by AC and EF ∪AC. The price system of characteristics

p : X → R can be constructed as follows. Let qe and qa be the unit price of EF and AC

respectively. Suppose that qe < qa. For each yc ∈ R+, the price system can be defined such

that

p(∅, yc) = yc

p(EF, yc) = qe + yc

p(AC, yc) = qa + yc

p(EF ∪ AC, yc) = qe + qa + yc.

For x ∈ X \ G(Y ), define p(x) = +∞.

Then, we consider introducing a new commodity, in particular, a new type of air-conditioning

equipment (NAC). If we preserve the assumption of binary choice, the new set of profiles of com-

modities is Y ′ = {0, 1}×{0, 1}×{0, 1}×R+. The new set of possible profiles of characteristics

is G′(Y ′) = {∅, EF,AC,NAC,EF ∪AC,EF ∪NAC,AC∪NAC,EF ∪AC∪NAC}×R+ ⊂ X.

6A binary relation is said to be a linear order or total order if it satisfies reflexibility, anti-symmetry, transitivity,
and completeness.
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Let qn denote the unit price of NAC, and suppose that qe + qa < qn. Assume that

∅ <1 EF <1 AC <1 (EF ∪ AC) <1 NAC <1

(EF ∪ NAC) <1 (AC ∪ NAC) <1 (EF ∪ AC ∪ NAC).

Then, the new price system p′ can be defined such that, for each yc ∈ R+,

p′(∅, yc) = yc

p′(EF, yc) = qe + yc

p′(AC, yc) = qa + yc

p′(EF ∪ AC, yc) = qe + qa + yc

p′(NAC, yc) = qn + yc

p′(EF ∪ NAC, yc) = qe + qn + yc

p′(AC ∪ NAC, yc) = qa + qn + yc

p′(EF ∪ AC ∪ NAC, yc) = qe + qa + qn + yc.

Similar to the case with p, define p′(x) = +∞ for x ∈ X \ G(Y ′). Thus, even when a new

commodity is introduced, the same utility function that was employed ealier can be used. In

this case, the new price system p′(·) is defined such that p′(x) = p(x), if p(x) < +∞, although

it need not be satisfied in general.

3.2 Comparative Statics

Now, we proceed to comparative statics of the demand for characteristics in our setting.
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In particular, we are interested in the sufficient condition under which the demand for char-

acteristic j is monotone “nondecreasing” in income levels. Monotone comparative statics of

the demand for commodities is investigated by using the results on the characteristic demand.

Since the set of characteristic j, Xj is not necessarily a priori ordered, to make the notion

of “nondecreasing” be well-defined, we must define some criterion ≤j that gauges the level of

characteristic j. This is the generalization of ≤1 in Example 11. In this study, we assume that

the comparative criterion ≤j on Xj is a linear order on Xj and that it satisfies the following

assumption.

Assumption 12: The comparative criterion ≤j is “value-increasing,” that is, if p(x−j , xj) <

+∞, p(x−j , xj) < p(x−j , x
′
j) for every x−j ∈ ×k ̸=jXk and xj <j x′

j . If p(x−j , xj) = +∞, then

p(x−j , x
′
j) = +∞ for xj <j x′

j .

Note that Assumption 12 implicitly requires the possibility of “free disposal of character-

istic j.” Formally, free disposal of characterstic j means that if (x−j , x
′
j) can be achieved by

consuming a profile of goods y, then (x−j , xj) is also attainable by y for every xj ≤j x′
j . If the

assumption of free disposal fails to be satisfied, defining p(x) = +∞ for every x /∈ G(Y ) may

violate the preceding assumption. However, note that the assumption of free disposal does not

necessarily imply the binding budget constraint. For instance, consider the case with discrete

choice.

Since we do not assume the uniqueness of demand, the notion of “monotonicity” of the

demand must be defined explicitly. Although there exist several notions of monotonicity7, we

adopt the following.

Definition 13: Given a price system p(·), the demand for characteristic j is pathwisely normal

7As an example, see Antoniadou (2007).
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with respect to ≤j if, for every x ∈ D(p, w), there exists x′ ∈ D(p, w′) such that xj ≤j x′
j and,

for every x′ ∈ D(p, w′), there exists x ∈ D(p, w) such that xj ≤j x′
j for every w < w′.

In the rest of this section, by applying the mathematical technique stated in the previous

section, we show the sufficient condition for the demand for characteristic j to be “normal” in

the above sense. First, we impose the following assumption on the price systems of characteris-

tics. Note that the condition is satisfied, for example, if there exists at least one characteristic

k (k ̸= j) whose levels can be written as real numbers and a price system that is a continuous

function in that characteristic.

Assumption 14: For every α ∈ R, if p(x−j , xj) < α, then there exists some x−j(α) such that

p(x−j(α), xj) = α.

As already mentioned, our mathematical technique requires that some appropriate preorder

is defined on the domain of the objective function. Under Assumptions 12 and 14, we can adopt

the following.

Definition 15: Define 4(p,≤j) on X such that x 4(p,≤j) x′ if xj ≤j x′
j and p(x) ≤ p(x′). We

refer to this as the (p,≤j)-value order. If xj ≤j x′
j and both p(x) = +∞ and p(x′) = +∞, then

we define that x 4(p,≤j) x′.

This is the generalization of the notions of the “value orders” in Antoniadou (2007), Mirman

and Ruble (2008), and Antoniadou et al. (2009) that are defined as partial orders. More

precisely, our value order is the generalization of the “direct value order” in Antoniadou (2007).

She defines it as a preorder on Rn
+; however, in her analyses, she restricts the consumption set

to R2
+ so that the direct value order satisfies antisymmetry. In addition to the direct value
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order, Mirman and Ruble (2008) introduce other value orders such as the “radial value order”

and the “iterated value order”; in Antoniadou et al. (2009), the value orders that are beneficial

for analyzing the lottery demands are defined. Note that it is common for every value order

that it encompasses the comparative criterion and the value of the consumption bundles. It

should be mentioned that, in our model, defining the appropriate partial order, particularly

with regard to ensuring anti-symmetry, is quite difficult. Although, as long as X = Rn
+, the

iterated value order can be employed even when there exist more than two characteristics, the

sufficient condition for normality based on that order is more restrictive in our setting; this

is referred to later. The results in the next section also indicate the advantage of using the

(p,≤j)-value order.

To confirm that the (p,≤j)-value order is suitable for our purpose, it must be shown that

(1) the domain of a utility function, the set of characteristics, is a preordered lattice structure

with respect to the (p,≤j)-value order, (2) the budget set is s-strong set comparable, and (3)

the w-strong set comparability of the demand set implies the pathwise normality of the demand

for characteritic j with respect to ≤j . In our case, these properties are satisfied, as exlained

below.

Proposition 16: Fix a price system p(·). Then, under Assumptions 12 and 14, (X, 4(p,≤j))

is a preordered lattice structure.

Proof Let x and x′ be two incomparable points in X, with xj >j x′
j and p(x) < p(x′).

Then, define xt
j such that xt

j = x′
j . By Assumption 12, p(x−j , x

t
j) < p(x−j , xj). Then, by

Assumption 14, there exists xt
−j such that p(xt

−j , x
t
j) = p(x−j , xj). Obviously, this xt =

(xt
−j , x

t
j) is an element of Tx.x′ . Similarly, define xa

j such that xa
j = xj . If p(x′) < +∞, since

p(x) = p(x−j , x
a
j ) < p(x′

−j , x
′
j) = p(x′), there exists xa

−j such that p(xa
−j , x

a
j ) = p(x′

−j , x
′
j) by

Assumption 14. This xa = (xa
−j , x

a
j ) is an element of Ax,x′ . If p(x′) = +∞, by Assumption 12,
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xa = (x′
−j , xj) is also unattainable and it is an element of Ax,x′ . [Q.E.D.]

Proposition 17: Fix a price system p(·). Then, for every w < w′, the budget sets are s-strong

set comparable, that is, B(p, w) ≤sa B(p, w′). In addition, for every w, the budget set is an

s-sublattice of X.

Proof Let x ∈ B(p, w) and x′ ∈ B(p, w′). Suppose that xj >j x′
j and p(x) < p(x′). However,

for every element xt ∈ Tx,x′ , we have p(xt) = p(x) ≤ w, which implies that Tx,x′ ⊂ B(p, w).

Similarly, Ax,x′ ⊂ B(p, w′).

Let x, x′ ∈ B(p, w) with xj >j x′
j and p(x) < p(x′). However, for every xt ∈ Tx,x′ ,

p(xt) = p(x) ≤ w, and for every xa ∈ Ax,x′ , p(xa) = p(x′) ≤ w. [Q.E.D.]

Proposition 18: Fix a price system p(·). Then, under Assumptions 12 and 14, for every

w < w′, D(p, w) ≤wa D(p, w′) implies that the demand for characteristic j is pathwisely normal

with respect to ≤j.

Proof Let x ∈ D(p, w) and x′ ∈ D(p, w′). Without loss of generality, we can suppose that

xj >j x′
j . By w-strong set comparability, there exists xt ∈ D(p, w) ∩ Tx,x′ . By definition of

Tx,x′ , xt
j = x′

j . Similarly, there exists xa ∈ D(p, w′) ∩ Ax,x′ and xa
j = xj , which completes the

proof. [Q.E.D.]

Then, by applying Theorem 10, we have the following.

Proposition 19: Fix a price system p(·). Then, under Assumptions 12 and 14, the demand

for characteristic j is pathwisely normal if a utility function U satisfies w-quasisupermodularity

with respect to the (p,≤j)-value order. In addition, D(p, w) is a w-sublattice of the consumption
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set X for every w > 0.

Remark: In Mirman and Ruble (2008), as the generalization of the direct value order, the

iterated value order is defined as follows. Let X = Rn
+ and p(x) = p1x1 + p2x2 + ... + pnxn,

where every pk ≥ 0. The iterated value order ≤(p,iv) is defined such that for every x, x′ ∈ X,

x ≤(p,iv) x′ if p1x1 ≤ p1x
′
1, p1x1 + p2x2 ≤ p1x

′
1 + p2x

′
2,..., and

∑n
k=1 pkxk ≤

∑n
k=1 pkx

′
k. It is

shown that (X,≤(p,iv)) is a lattice and if a utility function U satisfies quasisupermodularity with

respect to this order, the demand for x1 is pathwisely normal. However, this sufficient condition

depends on the numbering of coordinates and more restrictive than w-quasisupermodularity

with respect to 4(p,≤1). Indeed, it can be confirmed from the fact that for every x, x′ ∈ X, the

infimum and the supremum with respect to ≤(p,iv) are elements of Tx,x′ and Ax,x′ with respect

to 4(p,≤1) respectively.

It should be noted that our sufficient condition does not require the regularity conditions

that are usually assumed in the standard consumer theory. This is one of the advantages of the

value order approach. The set of characteristics is not restricted to the Euclidean space; the

price system is allowed to be nonlinear; a utility function is not assumed to be differentiable; the

set valued demand is allowed; and the non-binding budget constraint is also allowed. Even in a

simple model like Example 11, at least, the differentiable utility function is impossible to justify

because of the discrete choice assumption. Although the condition “w-quasisupermodularity

with respect to the (p,≤j)-value order” might seems to be opaque, in the next section, we

show that the sufficient condition here can be characterized by the properties of the welfare

variations that have transparent economic implications.

Example 11 (continued): In light of Proposition 19, given a price system p(·), the demand

for the air-conditioning capacity is pathwisely normal if a utility function U : X → R satisfies
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w-quasisupermodularity with respect to the (p,≤1)-value order. Recall that we assume that

∅ <1 EF <1 AC <1 EF ∪ AC. If the demand for the air-conditioning capacity is normal, we

may observe that the demand for the air-conditioning commodities changes from EF to AC,

when the income level increases. Then, we can conclude that EF is an inferior good, which

is correct. However, what is the reason bihind this phenomenon? According to the standard

textbook of microeconomics, we may say that “EF is an inferior good because of the existence of

a substitute with higher quality, AC”8. However, this interpretation seems inappropriate when

we observes that a further increase in the income level leads to the shift from AC to EF ∪AC.

In this situation, EF and AC can rather be regarded as complements. In addition, the term

“substitute” and “complement” here indicate the intrinsic properties of goods that cannot be

derived from the standard consumer theory. On the other hand, by using comparative statics

of characteristic demand, we can make a well-defined interpretation such that “the demand

shifts from EF to AC because the demand for the air-conditioning capacity is normal and AC

provides the consumer with a higher level of that characteristic than EF,” for instance.

From the above example, it is clear that comparative statics of characteristic demand also

provides a rigorous interpretation for the income effects of the demand for commodities. In-

deed, by extending the discussion in the previous example, we can show the sufficient condition

under which the income effect of the demand for a particular commodity is nonnegative. An

important point to be noted is that, by using the set-valued functions G and Γ, the demand for

characteristics can be transformed into the demand for commodities. In the following state-

ment, the normality of the demand for commodities can be defined in a similar manner that

for the normality of the demand for characteristics.

Proposition 20: For every x, x′ ∈ X, xj ≤j x′
j, and max{p(x), p(x′)} < +∞, assume the

8Such statements can be found, for example, in Kreps (1990, p.49).
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following:

For every y ∈ Γ(q, x), there exists y′ ∈ Γ(q, x′) such that y(k) ≤ y′(k), and for every y′ ∈

Γ(q, x′), there exists y ∈ Γ(q, x) such that y(k) ≤ y′(k).

Then, if the demand for characteristic j is pathwisely normal, then the demand for commodity

k is also pathwisely normal.

Proof Let w < w′ and y ∈ Γ (q,D(p, w)). Since the demand for characteristic j is path-

wisely normal, for every x ∈ D(p, w), there exists x′ ∈ D(p, w′) such that xj ≤j x′
j . By the

assumption in the statement, there exists y′ ∈ Γ(q, x′) such that y(k) ≤ y′(k). Obviously,

y′ ∈ Γ (q,D(p, w′)). Similarly, it can be shown that, for every y′ ∈ Γ (D(p, w′)), there exists

y ∈ Γ (q,D(p, w)) such that y(k) ≤ y′(k′). [Q.E.D.]

Intuitively, the condition in the preceding proposition implies that a higher number of

commodity k enables the consumer effeciently to acquire a higher level of characteristic j. In

Example 11, AC trivially satisfies this condition since AC is essential to achieve the level of

air-conditioning capacity that is higher than EF . According to our assumptions, if the new

commodity, NAC, is introduced, we can predict that it will be a normal good, while AC will not

be a normal good. The relationship between EF and AC (and NAC) in Example 11 also implies

that the “substitutes” and “complements” in terms of intrinsic properties of commodities might

be compatible. A commodity may be a close “substitute” of the other if these two goods share

various characteristics. However, it is possible that these goods are “complements” with each

other if the joint consumption leads to a high level or quality in terms of some characteristics9.

Although we do not pursue this point in this paper, it might be an interesting topic for future

9In this sense, intrinsic complementarity seems to have the close relationship with monotonicity. Chambers and
Echenique (2009) show the closeness between complementarity and monotonicity, from the mathematical viewpoint,.
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research.

Befere proceeding to the next section, we provide some examples to confirm that our expres-

sion of the utility maximization problem, and hence our comparative statics, can encompass a

wide range of models.

Example 21: Let X = Rn
+ and let the price system be linear. Then, p(x1, ..., xn) =

p1x1 + ... + pnxn, which is the model of the standard consumer theory. This can be regarded

as a special case of our setting in which it is supposed that each consumption good possesses

peculiar and independent characteristics. In this example, each element in Xj denotes the

amount of consumption good j. If one intends to perform the quantitative comparative statics

of the demand for good j, the comparative criterion ≤j is the Euclidean order. The (p,≤j)-

value order 4(p,≤j) is defined such that x 4(p,≤j) x′ if xj ≤j x′
j and p · x ≤ p · x′. The same

definition is used for the direct value order in Antoniadou (2007). By Proposition 19, if a utility

function U satisfies w-quasisupermodularity with respect to this order, the demand for good

j is pathwisely normal. Note that, if n = 2, the direct value order is the partial order and

standard lattice programming can be applied. Note that this argument can be applied even if

there exist some indivisible commodities, as long as Assumptions 12 and 14 are satisfied.

Example 22: Consider the housing demand problem in Palmquist (1984). In this case, the

consumer is supposed to purchase the numéraire composite good x0 ∈ R+ and a dwelling. A

dwelling is characterized as a profile of various characteristics (x1, ..., xn) ∈ ×n
k=1Xk. Typically,

the price of a dwelling is determined by a nonlinear function pd(x1, ..., xn), that is, a price sys-

tem is written as p(x) = x0 + pd(x1, ..., xn). The consumer’s utility is supposed to depend on

the quantity of the composite good and the characteristics of the dwelling he/she purchases.

This is similar to the setting in Example 11. However, in this case, it is supposed that a single

commodity, that is, a dwelling, possesses more than one characteristic. The applicability of our

24



sufficient condition, w-quasisupermdularity with respect to the value order, is obvious when

one intends to confirm the normality of a particular characteristic of dwellings. In this example,

the consumption set in terms of commodities is as follows. If there are m-types of dwellings,

the set of variations M = {0, 1, 2, ...,m}, where 0 ∈ M denotes the composite good. Since we

allow the consumer to choose only one dwelling, Y can be written as

Y = {y ∈ R+ × {0, 1}m | y(k) = 1 ⇒ y(k′) = 0, k, k′ ≥ 1, ∀k ̸= k′}.

Example 23: Consider the model of the consumer theory with uncertainty in Antoniadou et

al. (2009). There exist two goods; one is deterministic and the other is subject to risk. The

consumption set is defined as X = R+ × Fy, where Fy is the set of distribution functions on

R+. In general, the price of lottery is determined by a nonlinear function py : Fy → R+. Hence,

a price system is written as p(x, ỹ) = pxx + py(ỹ). According to Antoniadou et al. (2009), we

can consider the comparative criteria indicating the “quality” of lottery. In particular, consider

the “first-order stochastic dominant” order ≤FOSD on Fy. More precisely, for every ỹ, ỹ′ ∈ Fy,

ỹ ≤FOSD ỹ′ if Fy(s) ≥ Fy′(s) for every s ∈ R+, where each Fy and Fy′ denote the distribution

function corresponding to the lottery ỹ and ỹ′ respectively. However, ≤FOSD does not satisfy

the completeness. Hence, we must restrict the consumption set to X = R+ × FC
y , where

FC
y ⊂ Fy denotes a chain with respect to ≤FOSD. Then, by Proposition 19, if a utility function

satisfies w-quasisupermodularity with respect to the (p,≤FOSD)-value order, the demand for

lottery is normal with respect to the first-order stochastic dominance order. This is nothing

but the result in Antoniadou et al. (2009). Through the usage of the generalized monotone

comparative statics (Theorem 10), it is possible to extend the model such that contains multiple

lotteries without imposing any additional assumptions.
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4 Welfare Variations and Normality

In this section, we translate the sufficient condition in the previous section into more trans-

parent and economic concepts. Its key concept is the welfare variations, namely, the compensat-

ing variation, and equivalent variation for the change in the level of a particular characteristic.

In the first subsection, we explore the relationship between the sufficient condition for the nor-

mal demand and the properties of welfare variations in a general setting. Thus, we observe that

the w-quasisupermodularity of a utility function with respect to the (p,≤j)-value order is char-

acterized by the “single-crossing property” of the welfare variations. In the second subsection,

we deal with the model in which the price system of characteristics is separable. It is shown

that, in this case, one can confirm the normality of a particular characteristic only with limited

information of the price system. More precisely, if the price of characteristic j is independent

of the level of other characteristics, one can derive the sufficient condition for the demand for

characteristic j to be normal without specifying the price system of that characteristic. In

fact, our results can be regarded as the generalization of the results by McConnell (1990) and

Whitehead (1995), that show the equivalency between normal demand and monotonicity of the

willingness to pay, or the compensating variation, by employing the differentiability and strict

quasiconcavity of a utility function. It is well known that the willingness to pay (the compen-

sating variation) and the willingness to accept (the equivalent variation) can be estimated by

the contingent valuation method, which is often employed in environmental economics. Hence,

the results in this section imply that, in principle, our sufficient condition for the normality

can be verified empirically.

4.1 Welfare Variations and w-Quasisupermodularity

Let us start by defining the welfare variations for the change in the level of a particular char-

acteristic. Suppose that xj , x
′
j ∈ Xj and xj <j x′

j . The compensating (equivalent) variation
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for the change from xj to x′
j is defined as follows. First, consider the maximization problem

max
x−j∈B−j(p,w;xj)

U(x−j ; xj),

where B−j(p, w; xj) = {x−j ∈ X−j | p(x−j , xj) ≤ w}. Let V (p, w;xj) denote the value function

of this problem. For simplicity, we refer to this as an indirect utility function. Note that the

domain of V (p, ·; xj) is the set of w such that B−j(p, w; xj) ̸= ∅. Then, we define the welfare

variations as follows.

Definition 24: Let xj <j x′
j and fix a price system p(·) and an income level w > 0. The

compensating variation for the change from xj to x′
j is defined as

C(p, w, xj , x
′
j) = max{c | V (p, w − c; x′

j) = V (p, w; xj)}.

Similarly, the equivalent variation for the change from xj to x′
j is defined as

E(p, w, xj , x
′
j) = min{e | V (p, w; x′

j) = V (p, w + e; xj)}.

Under Assumption 12, the domains of C(p, ·, xj , x
′
j) and E(p, ·, xj , x

′
j) are equal to the domain

of V (p, ·; x′
j).

Although the definitions of the welfare variations above appear to be similar to that in

McConnell (1990) and Whitehead (1995), they slightly differ from the conventional definitions,

as discussed in the next subsection. Note that the welfare variations in the above definition may

be negative even if a utility function is increasing in xj , since the higher level of characteristic

j straightens the budget set B−j , that is,

{x−j ∈ X−j | p(x−j , xj) ≤ w} ⊂ {x−j ∈ X−j | p(x−j , x
′
j) ≤ w}
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for every xj <j x′
j . Then, we intend to explore the two properties of the welfare variations

with respect to income levels: nondecreasingness and the “single-crossing property”. Both of

these properties can be characterized in terms of the properties of an indirect utility function.

Proposition 25: Fix a price system p(·). Suppose that w < w′ and xj <j x′
j satisfy

B−j(p, w, x′
j) ̸= ∅. Under Assumption 12, the compensating variation is nondecreasing in

w, that is, C(p, w, xj , x
′
j) ≤ C(p, w′, xj , x

′
j), if and only if V satisfies

V (p, w − c; x′
j) ≥ (>)V (p, w; xj) ⇒ V (p, w′ − c; x′

j) ≥ (>)V (p, w′; xj)

for every c ∈ R. Similarly, the equivalent variation is nondecreasing in income levels if and

only if the above condition is satisfied.

Proof First, we show the monotonicity of the compensating variation. Suppose that V satisfies

the condition in the statement. Then, V (p, w − C(p, w, xj , x
′
j);x

′
j) = V (p, w; xj), and hence,

V (p, w′ −C(p, w, xj , x
′
j);x

′
j) ≥ V (p, w′;xj). This implies that C(p, w, xj , x

′
j) ≤ C(p, w′, xj , x

′
j).

To show the converse, suppose that V does not satisfy the condition in the statement.

Then, there exist some w < w′ and xj <j x′
j such that V (p, w − c;x′

j) ≥ (>)V (p, w; xj) and

V (p, w − c; x′
j) < (≤)V (p, w; xj) for some c ∈ R. This implies that C(p, w, xj , x

′
j) ≥ (>)c and

C(p, w′, xj , x
′
j) < (≤)c, and hence, we have C(p, w, xj , x

′
j) > C(p, w′, xj , x

′
j).

The nondecreasingness of the equivalent variation can be shown as follows. Let w̄ =

w−C(p, w, xj , x
′
j) and w̄′ = w′−C(p, w′, xj , x

′
j). Then, w = w̄ +C(p, w, xj , x

′
j) and w′ = w̄′ +

C(p, w′, xj , x
′
j). Note that C(p, w, xj , x

′
j) = E(p, w̄, xj , x

′
j) and C(p, w′, xj , x

′
j) = E(p, w̄′, xj , x

′
j).

Since C(p, w, xj , x
′
j) is nondecreasing in income levels if and only if V satisfies the condition in

the statement, the monotonicity of E also follows. [Q.E.D.]

Corollary 26: Suppose that an indirect utility function V is increasing in w. Then, for given
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xj <j x′
j, the absolute value of the equivalent variation is not smaller than the absolute value

of the compensating variation if and only if both the compensating variation C(p, w, xj , x
′
j) and

the equivalent variation E(p, w, xj , x
′
j) are nondecreasing in income levels.

Proof Under the assumption in the statement, the sign of the compensating variation and the

welfare variation is the same with each other. Without loss of generality, we can suppose that

C(p, w, xj , x
′
j) > 0. Assume that both the welfare variations are nondecreasing in w. For every

w > 0, define ŵ = w + E(p, w, xj , x
′
j). Similar to the proof of the preceding proposition, we

have

C(p, ŵ, xj , x
′
j) = E(p, w, xj , x

′
j).

By assumption, w < ŵ, and hence,

C(p, w, xj , x
′
j) ≤ C(p, ŵ, xj , x

′
j) = E(p, w, xj , x

′
j).

To show the converse, suppose that C(p, w, xj , x
′
j) > E(p, w, xj , x

′
j) for some w > 0 and

xj <j x′
j . This implies that

C(p, w, xj , x
′
j) > C(p, ŵ, xj , x

′
j) = E(p, w, xj , x

′
j).

This violates the nondecreasingness of C(p, w, xj , x
′
j). [Q.E.D.]

Then, we introduce the second property of welfare variations, namely, the single-crossing

property, which is defined as follows.

Definition 27: Fix a price system p(·). The compensating variation C(p, w, xj , x
′
j) satisfies
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the single-crossing property in (xj ; w) if

C(p, w, xj , x
′
j) ≥ (>)0 ⇒ C(p, w′, xj , x

′
j) ≥ (>)0

for every w < w′ and xj <j x′
j satisfying B−j(p, w, x′

j) ̸= ∅. The single-crossing property of

the equivalent variation is similarly defined.

The term “single-crossing property” stems from the fact that if the welfare variation satis-

fies it, then it crosses 0 at most once from below. In fact, the single-crossing property of the

welfare variations is equivalent with the single-crossing property of the indirect utility func-

tion V (p, w; xj). Obviously, the single-crossing property is strictly weaker than the standard

monotonicity, since every monotonic function trivially satisfies the single-crossing property. In

addition, if the sign of a function is constant, then it satisfies the single-crossing property.

Proposition 28: Fix a price system p(·). The compensating variation satisfies the single-

crossing property in (xj ; w) if and only if V satisfies the single-crossing property in (xj ; w),

that is, for every w < w′ and xj <j x′
j satisfying B−j(p, w, x′

j) ̸= ∅,

V (p, w; x′
j) ≥ (>)V (p, w; xj) ⇒ V (p, w′; x′

j) ≥ (>)V (p, w′; xj).

Similarly, the equivalent variation satisfies the single-crossing property if and only if V satisfies

the single-crossing property in (xj ; w).

Proof First, we show the case with the compensating variation. Suppose that V satisfies the

single-crossing property in (xj ; w). Let w < w′ and C(p, w, xj , x
′
j) ≥ (>)0. This implies that

V (p, w; x′
j) ≥ (>)V (p, w; xj). By the single-crossing property of V , we have V (p, w′; x′

j) ≥ (>

)V (p, w′; xj). This implies that C(p, w, xj , x
′
j) ≥ (>)0.
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To show the converse, suppose that V does not satisfy the single-crossing property. Then,

there exist some w < w′ and xj <j x′
j such that V (p, w; x′

j) ≥ (>)V (p, w; xj) and V (p, w′; x′
j) <

(≤)V (p, w′;xj). The former inequation V (p, w; x′
j) ≥ (>)V (p, w; xj) implies that C(p, w, xj , x

′
j) ≥

(>)0, while the latter inequation implies that C(p, w, xj , x
′
j) < (≤)0.

The proof for the case with the equivalent variation is omitted because it is the same as

that for the above argument, except that each of C(p, w, xj , x
′
j) and C(p, w′, xj , x

′
j) are replaced

with E(p, w, xj , x
′
j) and E(p, w′, xj , x

′
j) respectively. [Q.E.D.]

With one additional assumption, we can characterize the w-quasisupermodularity of a utility

function with respect to the (p,≤j)-value order by the single-crossing property of the welfare

variations.

Assumption 29: For every xj ∈ Xj , the maximization problem maxB−j(p,w,xj) U(x−j , xj) has

at least one solution x∗
−j such that p(x∗

−j , xj) = w.

Theorem 30: Fix a price system p(·). Then, under Assumptions 12, 14, and 29, a utility

function U satisfies w-quasisupermodularity with respect to (p,≤j)-value order if and only if

V (p, w; xj) satisfies the single-crossing property in (xj ; w).

Proof First, we show the “if” part. Let x, x′ ∈ X. Suppose that xj > x′
j and p(x) < p(x′).

Since ≤j is a price increasing criterion, xj <j x′
j . Define xt∗ and xa∗

such that

xt∗
−j ∈ argmax

z−j∈B−j(p,p(x);x′
j)

U(z−j ;x′
j),

xa∗
−j ∈ argmax

z−j∈B−j(p,p(x′);xj)
U(z−j ; xj),

with xt∗
j = x′

j and xa∗
j = xj . By Assumption 29, we can assume that p(xt∗) = p(x) and
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p(xa∗
) = p(x′). It is obvious that xt∗ ∈ Tx,x′ and xa∗ ∈ Ax,x′ . In the following, we prove that

U(x) ≥ (>)U(xt∗) ⇒ U(xa∗
) ≥ (>)U(x′).

By the analogy of xt∗ and xa∗
, we define x∗ and x

′∗ such that

x∗
−j ∈ argmax

z−j∈B−j(p,p(x);xj)
U(z−j ;xj),

x
′∗
−j ∈ argmax

z−j∈B−j(p,p(x′);x′
j)

U(z−j ; x′
j),

with x∗
j = xj and x

′∗
j = x′

j . Since U(xt∗) = V (p, p(x);x′
j), U(xa∗

) = V (p, p(x′);xj), U(x∗) =

V (p, p(x);xj), and U(x
′∗) = V (p, p(x′);x′

j), by the single-crossing property, we have

U(x∗) ≥ (>)U(xt∗) ⇐⇒ V (p, p(x);xj) ≥ (>)V (p, p(x);x′
j)

⇒ V (p, p(x′);xj) ≥ (>)V (p, p(x′);x′
j)

⇐⇒ U(xa∗
) ≥ (>)U(x

′∗).

By definition, if U(x) ≥ (>)U(t) for all t ∈ Tx,x′ , then U(x∗) ≥ (>)U(xt∗). The above

inequations imply that U(xa∗
) ≥ (>)U(x′) in such cases.

To show the converse, suppose that V does not satisfy the single-crossing property. With-

out loss of generality, we can assume V (p, w; x′
j) ≥ (>)V (p, w; xj) and V (p, w′; x′

j) < (≤

)V (p, w′; xj). Then, the inequations at the end of the previous paragraph imply that U(x∗) ≥

(>)U(xt∗) and U(xa∗
) < (≤)U(x

′∗). This implies that U does not satisfy w-quasisupermodularity.

[Q.E.D.]

Corollary 31: Fix a price system p(·). Then, under Assumptions 12, 14, and 29, the following
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statements are equivalent.

1. An indirect utility function V satisfies the single-crossing property in (xj ;w).

2. The welfare variations satisfies the single-crossing property in (xj ; w).

3. A utility function satisfies w-quasisupermodularity with respect to the (p,≤j)-value order.

Each of these statements implies that the demand for characteristic j is pathwisely normal. In

addition, if the demand for characteristic j is unique, the converse also follows.

Corollary 32: Fix a price system p(·). Then, under Assumptions 12, 14, and 29, the following

statements are equivalent.

1. An indirect utility function V satisfies the condition

V (p, w − c;x′
j) ≥ (>)V (p, w; xj) ⇒ V (p, w′ − c; x′

j) ≥ (>)V (p, w′; xj)

for every w < w′, xj <j x′
j satisfying B−j(p, w, x′

j) ̸= ∅.

2. For every xj <j x′
j, the welfare variations are nondecreasing in w as long as they are

defined.

3. Suppose that V is increasing in w. For every xj <j x′
j, the absolute value of the equivalent

variation is not smaller than the absolute value of the compensating variation (as long as

they are defined).

Each of these statements implies the statements in the previous corollary, and hence, implies

the normality of the demand for characteristic j.

The preceding corollaries imply that one can ensure the normality of the demand for a

particular characteristic by investigating the properties of the welfare variations. It seems that

the single-crossing property of an indirect utility function and the welfare variations are more
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transparent than the w-quasisupermodularity of a direct utility function with respect to the

(p,≤j)-value order. However, it should be emphasized that employing the generalized monotone

comparative statics, specifically, the (p,≤j)-value order, enables us to derive the sufficient

conditions in terms of the welfare variations. The next subsection shows that our results can

be regarded as an extension of the relationship between monotone comparative statics of the

willingness to pay and monotone comparative statics of the demand; this technique is often

applied in the literature of environmental economics, particularly in relation to the contingent

valuation method. In this case the relationship between our definition of the welfare variations

and the conventional welfare variations employed in McConnell (1990) and Whitehead (1995),

plays an important role.

4.2 In the Case of Separable Price Systems

The sufficient conditions for the normality stated in the previous subsection depend on

the specification of the price system of characteristics. On the other hand, as long as additive

separability is imposed on the price systems, we can derive the sufficient condition for normality

only with limited information of the price system. In the rest of this section, we assume that

the price systems of characteristics can be written as p(x−j , xj) = p−j(x−j) + pj(xj), which

we refer to as the separability of the price of characteristic j. First, we slightly modify the

definition of the welfare variations. For every xj ∈ Xj , consider the maximization problem

max
x−j∈B̃−j(p,w−j)

U(x−j ; xj),

where B̃−j(p, w−j) = {x−j | p−j(x−j) ≤ w−j}. Let Ṽ (p, w−j , xj) be the value function of

the above problem. We refer to this as a conventional indirect utility function in order to

distinguish it from an indirect utility function V in the previous subsection. Needless to say,

the domain of Ṽ (p, ·; xj) is the set {w−j | B̃−j(p, w−j) ̸= ∅}. Then, in the followings, we define
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the welfare variations based on Ṽ (p, w−j ; xj), which is the direct generalization of the definition

of the welfare variations in McConnell (1990) and Whitehead (1995).

Definition 33: Let xj <j x′
j . The conventional compensating variation for the change from

xj to x′
j is defined as

C̃(p, w−j , xj , x
′
j) = max{c̃ | Ṽ (p, w−j − c̃; x′

j) = Ṽ (p, w−j ;xj)}.

Similarly, the conventional equivalent variation for the change from xj to x′
j is defined as

Ẽ(p, w−j , xj , x
′
j) = min{ẽ | Ṽ (p, w−j ; x′

j) = Ṽ (p, w−j + ẽ; xj)}.

Note that, by definition, the conventional welfare variations are independent of the speci-

fication of the price of characteristic j, pj(·). It should be also noted that, in contrast to the

welfare variations in the previous subsection, the conventional welfare variations are always

positive if a utility function is increasing in xj .

Example 34: Consider the simplified version of the model of Whitehead (1995), which com-

prises three goods, namely, x: the recreational use of a natural resource whose unit price is px,

q: the natural resource quality characteristic, and z: the numéraire composite good. Consider

the utility maximization problem

max
x,z

U(x, z; q)

s.t. pxx + z ≤ w−q

and define its value function as Ṽ (p, w−q; q). Then, the willingness to pay (WTP) for the

change from q0 to q1 is defined as the conventional compensating variation, which in turn is
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defined as

C̃(px, w−q, q0, q1) = max{c̃ | Ṽ (p, w−q − c̃; q1) = Ṽ (p, w−q; q0)}

for every q0 <q q1. In this example, the quality of the environment q is nonmarketed good,

and hence, one cannot observe the price system that explicitly includes q. McConnell (1990)

and Whitehead (1995) prove that the monotonicity of C̃ in w̃−j for every q0 < q1 is the

necessary and sufficient condition for the normality of q under every increasing pq > 0 with

the assumptions of an increasing, strictly quasiconcave and twice continuously differentiable

utility function.

As observed in the preceding example, if the sufficient condition for normality employing

C̃ (or Ẽ) is constructed, one can perform comparative statics analysis only with limited in-

formation of price systems. In fact, provided the separability of the price of characteristic j

holds, we can extend the results of McConnell and Whitehead to our setting. To prove this, we

clarify the relationship between comparative statics of the conventional welfare variations and a

conventional indirect utility function. The proofs of the following two statements are omitted,

since they are almost the same as those of Proposition 25 and Corollary 26 respectively.

Proposition 35: Fix a price system p(·) and suppose that the price of characteristic j is sep-

arable and that B̃−j(p, w−j) ̸= ∅. The conventional welfare variation is nondecreasing in w−j,

that is, C̃(p, w−j , xj , x
′
j) ≤ C̃(p, w′

−j , xj , x
′
j) if and only if Ṽ satisfies

Ṽ (p, w−j − c; x′
j) ≥ (>)Ṽ (p, w−j ; xj) ⇒ Ṽ (p, w′

−j − c;x′
j) ≥ (>)Ṽ (p, w′

−j ;xj)

for every xj <j x′
j, w−j < w′

−j, and c ∈ R. Similarly, the conventional equivalent variation is

nondecreasing in income levels if and only if the above condition is satisfied.
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Corollary 36: Suppose that a conventional indirect utility function Ṽ is increasing in w−j

and/or xj. Then, for given xj <j x′
j, the absolute value of the conventional equivalent variation

is not smaller than the absolute value of the conventional compensating variation for every

xj <j x′
j if and only if the conventional welfare variations are nondecreasing in w−j.

Combined with Corollary 32, the following proposition ensures that the monotonicity of

the conventional welfare variations under the price system p(x) = p−j(x−j) + pj(xj) is the

sufficient condition for the normality of characteristic j for every price system p′(·) such that

p′(x) = p−j(x−j) + p′j(xj) and satisfies Assumptions 12, 14, and 29.

Proposition 37: Fix a price system p(·) and suppose that the price of characteristic j is sepa-

rable. Then, under Assumptions 12 and 14, the conventional compensating (equivalent) varia-

tion C̃(p, w−j , xj , x
′
j) (Ẽ(p, w−j , xj , x

′
j)) is nondecreasing in w−j if and only if C(p′, w, xj , x

′
j)

(E(p′, w, xj , x
′
j)) is nondecreasing in w for every price system p′(·) such that p′−j(x−j) =

p−j(x−j).

Proof Let w = w−j + pj(xj). Then, Ṽ (p, w−j ; xj) = V (p, w, xj) and Ṽ (p, w−j ; x′
j) = V (p, w +

pj(x′
j) − pj(xj)). Hence, we have

V
(
p, w + pj(x′

j) − pj(xj) − C̃(p, w−j , xj , x
′
j);x

′
j

)
= V (p, w; xj),

implies that

C(p, w, xj , x
′
j) = C̃(p, w−j , xj , x

′
j) + pj(xj) − pj(x′

j).

Hence, C(p, w, xj , x
′
j) is nondecreasing in w if and only if C̃(p, w−j , xj , x

′
j) in w−j . In addition,

C̃(p, w−j , xj , x
′
j) is independent of the price of characteristic j, and hence, our claim follows.

[Q.E.D.]
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Corollary 38: Fix a price system p(·) and suppose that the price of characteristic j is separable.

Then, under Assumptions 12, 14, and 29, the following statements are equivalent.

1. An indirect utility function V satisfies

V (p′, w − c; x′
j) ≥ (>)V (p′, w; xj) ⇒ V (p′, w′ − c; x′

j) ≥ (>)V (p′, w′; xj)

for every p′(·) such that p′−j(·) = p−j(·), 0 < w < w′, xj < x′
j satisfying B−j(p, w, x′

j) ̸= ∅,

and c ∈ R.

2. A conventional indirect utility function Ṽ satisfies

Ṽ (p, w−j − c;x′
j) ≥ (>)Ṽ (p, w−j ; xj) ⇒ Ṽ (p, w′

−j − c; x′
j) ≥ (>)Ṽ (p, w′

−j ; xj)

for every 0 < w−j < w′
−j, xj <j x′

j satisfying B̃−j(p, w−j) ̸= ∅ and c ∈ R.

3. The welfare variations are nondecreasing in w for every xj <j x′
j and p′(·) such that

p′−j(·) = p−j(·), as long as it is defined.

4. The conventional welfare variations are nondecreasing in w−j for every xj <j x′
j and p′(·)

such that p′−j(·) = p−j(·), as long as it is defined.

5. For every xj <j x′
j, the absolute value of the conventional equivalent variation is not

smaller than the absolute value of the conventional compensating variation under the

condition that Ṽ is increasing in w−j and/or xj.

Each of these statements implies pathwise normality of the demand for characteristic j.

Although one may question the relationship between the single-crossing property of the

conventional welfare variations and monotone comparative statics of characteristic demand,

the single-crossing property does not necessarily imply normality. Indeed, even if C̃ satisfies
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the single-crossing property in (xj ; w−j), the compensating variation C does not necessar-

ily satisfy the single-crossing property in (xj ; w). For instance, let 0 < C̃(p, w′
−j , xj , x

′
j) <

C̃(p, w−j , xj , x
′
j) for some w − pj(xj) = w−j < w′

−j = w′ − pj(xj), which does not violate

the single-crossing property. However, in this case, it is possible that C(p, w′, xj , x
′
j) < 0 <

C(p, w, xj , x
′
j), since C̃(p, w−j , xj , x

′
j) = C(p, w, xj , x

′
j)+pj(xj)−pj(x′

j) and pj(xj)−pj(x′
j) < 0.

Under a weak additional condition, the monotonicity of the welfare variations can be char-

acterized in terms of the single-crossing property. That is, the following implies that the

monotonicity of the conventional welfare variations is the necessary and sufficient condition for

monotone income effects under the uniqueness of demand.

Proposition 39: Fix a price system p(·) and suppose that the price of characteristic j is sep-

arable and that a utility function is increasing in xj. Then, under Assumptions 12 and 14, the

conventional compensating (equivalent) variation C̃(p, w−j , xj , x
′
j) (Ẽ(p, w−j , xj , x

′
j)) is non-

decreasing in w−j if and only if C(p′, w, xj , x
′
j) (E(p′, w, xj , x

′
j)) satisfies the single-crossing

property in (xj ;w) for every price system p′(·) = p−j(x−j) + p′j(xj).

Proof We show the “only if” part. Suppose that C̃(p, w−j , xj , x
′
j) > C̃(p, w′

−j , xj , x
′
j) for some

w−j < w′
−j . Since a utility function is increasing in xj , C̃(p, w−j , xj , x

′
j) > 0. Define p′j(·) such

that

C̃(p, w−j , xj , x
′
j) > p′j(x

′
j) − p′j(xj)

C̃(p, w′
−j , xj , x

′
j) < p′j(x

′
j) − p′j(xj).

Then, by letting w = w−j+p′j(xj) and w′ = w−j+p′j(xj), C(p′, w, xj , x
′
j) > 0 and C(p′, w′, xj , x

′
j) <

0; this violates the single-crossing property in (xj ; w).

The converse can be easily shown by letting p′ = p, and the case with the equivalent

variation can be denoted in a similar fashion. [Q.E.D.]
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Corollary 40: Suppose that the price of characteristic j is separable, and that a utility function

is increasing in xj. Fix a price system p(·). Then, under Assumptions 12, 14, and 29, the

following statements are equivalent.

1. An indirect utility function V satisfies the single-crossing property in (xj ;w).

2. An indirect utility function V satisfies

V (p, w − c;x′
j) ≥ (>)V (p, w; xj) ⇒ V (p, w′ − c; x′

j) ≥ (>)V (p, w′; xj)

for every 0 < w < w′, xj < x′
j satisfying B(p, w, x′

j) ̸= ∅ and c ∈ R.

3. A conventional indirect utility function Ṽ satisfies

Ṽ (p, w−j − c;x′
j) ≥ (>)Ṽ (p, w−j ; xj) ⇒ Ṽ (p, w′

−j − c; x′
j) ≥ (>)Ṽ (p, w′

−j ; xj)

for every 0 < w−j < w′
−j, xj <j x′

j satisfying B̃−j(p, w) ̸= ∅ and c ∈ R.

4. The welfare variations satisfy the single-crossing property in (xj ; w) for every p′(·) such

that p′−j(·) = p−j(·).

5. The welfare variations are nondecreasing in w for every xj <j x′
j and p′(·) such that

p′−j(·) = p−j(·).

6. The conventional welfare variations are nondecreasing in w−j for every xj <j x′
j and p′(·)

such that p′−j(·) = p−j(·), as long as it is defined.

7. For every xj <j x′
j, the absolute value of the conventional equivalent variation is not

smaller than the absolute value of the conventional compensating variation.

8. For every xj <j x′
j, the absolute value of the equivalent variation is not smaller than the

abosolute value of the compensating variation.
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9. A utility function U satisfies w-quasisupermodularity with respect to the (p′,≤j)-value

order for every p′(·) such that p′−j(·) = p−j(·).

Each of these statements implies pathwise normality of the demand for characteristic j. If the

demand for characteristic j is unique, the converse also follows.

As mentioned in Example 34, the conventional welfare variations C̃(p, w−j , xj , x
′
j) and

Ẽ(p, w−j , xj , x
′
j) are clearly the willingness to pay and the willingness to accept respectively.

In the literature of environmental economics, numerous studies have estimated these variables

by using the contingent valuation method, and hence, it is possible, at least theoretically, to

empirically verfy our sufficient condition in this subsection. Although the properties of the

welfare variations in the previous subsection might be verified in a similar fashion, it should

be noted that estimating the welfare variations C and E requires the specification of the price

system of characteristics. In particular, the change of the set B−j(p, w; ·) along with the change

in the level of characteristic j must be taken into account. Finally, we apply the results in this

section to the examples.

Example 11 (continued): In this example, the price system can be written as p(x1, yc) =

p1(x1) + yc, where x1 denotes the level of air-conditioning capacity. Hence, the results in this

subsection can be applied by our assumption on the price system of air-conditioning commodi-

ties. If the conventional welfare variations are nondecreasing in w−1 for every x1 < x′
1, the

demand for air-conditioning capacity is pathwisely normal. Monotone comparative statics of

the demand for commodities can be checked by applying Proposition 20. By our assumption,

when EF and AC are the commodities that generate the air-conditining capacity, the latter

satisfies the condition in Proposition 20, and hence, it is a normal good. If NAC is introduced

in the economy, the demand for NAC is pathwisely normal, while the demand for AC is not
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normal in this case.

Example 21 (continued): Fix the unit prices pk (k ̸= j). If the conventional welfare vari-

ations are nondecreasing in w−j for every xj <j x′
j , then the demand for commodity j is

pathwisely normal for every pj > 0. If the demand for commodity j is always unique, then the

converse follows.

Example 22 (continued): Let xj be a qualitative characteristic of a dwelling. Since, in this

example, the price system is not necessarily separable, we must employ the results of Section

4.1. If the welfare variations satisfy the single-crossing property in (xj ; w), then the demand

for characteristic j is pathwisely normal, and hence, the dwellings satisfying the condition of

Proposition 20 are normal goods.

Example 23 (continued): Recall that, in this example, the price systems can be written

as p(x, ỹ) = pxx + py(ỹ). Suppose that py(ỹ) < py(ỹ′) if ỹ <FOSD ỹ′. By definition of the

first-order stochastic dominance, a utility function is increasing with respect to ≤FOSD. Thus,

Corollary 40 can be applied. The demand for lottery is pathwisely normal for every increasing

lottery price system p′y(·) if the conventional welfare variations for the improvements of the

lottery in the sense of the first-order stochastic dominance is nondecreasing in w−y. If the

lottery demand is always unique, then the converse also follows. This result implies that the

sufficient condition in Antoniadou et al. (2009), namely “the quasisupermodularity of a utility

function with respect to the (p,≤FOSD)-value order,” can be applied for every price system

p′(·) such that p′x = px and satisfies Assumptions 12, 14, and 29.
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