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Abstract

In this paper, we extend the results of Sato [Sato, N., 2009. Nonsatiation
and existence of competitive equilibrium, G-COE GLOPE II Working Paper
Series No.15] to economies with unbounded-from-below choice sets: we prove
the existence of a competitive equilibrium (to be exact, a quasi-equilibrium)
by assuming the “boundary satiation” condition introduced in Sato (2009)
and the “strong compactness of individually rational utility set” introduced
in Martins-da-Rocha and Monteiro [Martins-da-Rocha, V. F., Monteiro, C.
K., 2009. Unbounded exchange economies with satiation: how far can we
go? Journal of Mathematical Economics 45, 465–478]. As a result, we obtain
a new equilibrium existence theorem that can be applied to the case in which
choice sets are unbounded from below and satiation occurs only inside the
set of individually rational feasible choices.
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1. Introduction

This paper is a sequel to Sato (2009), 1 in which we introduced a new con-
dition concerning the satiation property of preferences and established the
existence of a competitive equilibrium under it. The new condition, which
we here call boundary satiation (BS), asserts that if satiation occurs inside
the individually rational feasible consumption set, then satiation should also
occur on a “boundary” of the set. The condition BS generalizes the standard
nonsatiation assumption and Allouch and Le Van’s (2008, 2009) weak nonsa-
tiation. 2 In particular, of these conditions, only BS allows the set of satiation
points to be a subset of the individually rational feasible consumption set.

Unfortunately, Sato’s (2009) existence results under BS depend on the
boundedness of consumption sets (or that of individually rational feasible
allocation set), and therefore, cannot be applied to securities markets with
short-selling, in which choice sets are unbounded from below.

For the case of standard nonsatiation, Dana et al. (1999) show that the
compactness of the individually rational utility set (CU) is sufficient for the
existence of a competitive equilibrium. This condition CU allows choice
sets (and the individually rational feasible allocation set) to be unbounded.
Moreover, CU is implied by various types of no-arbitrage conditions, which
are intended to bound the economies with unbounded-from-below choice sets
endogenously by limiting arbitrage opportunities. 3

On the other hand, Martins-da-Rocha and Monteiro (2009) show that un-
der Allouch and Le Van’s (2008, 2009) weak nonsatiation, CU is not sufficient
for the existence of a competitive equilibrium. However, they establish the
existence of a competitive equilibrium under weak nonsatiation by introduc-
ing the notion of a strong compactness of the individually rational utility set
(SCU). The condition SCU is stronger than CU in general, but it allows the
individually rational feasible allocation set to be unbounded. Moreover, CU
is equivalent to SCU under standard nonsatiation, and therefore Martins-
da-Rocha and Monteiro’s (2009) results unify the existence results of Dana

1A revised version is attached to this paper.
2Weak nonsatiation allows satiation inside the individually rational feasible consump-

tion set, provided that satiation also occurs outside the set.
3For details about the no-arbitrage conditions, in addition to Dana et al. (1999), see

Hart (1974), Hammond (1983), Werner (1987), Page (1987), Nielsen (1989), Page and
Wooders (1996), Allouch et al. (2002) and Allouch et al. (2006).
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et al. (1999) and Allouch and Le Van (2009). 4

The purpose of this paper is, based on the results of Martins-da-Rocha
and Monteiro (2009), to extend the results of Sato (2009) to economies with
unbounded-from-below choice sets. Since BS contains weak nonsatiation as a
special case, CU is not sufficient for the existence of a competitive equilibrium
under BS. Therefore, we prove the existence of a competitive equilibrium (to
be exact, a quasi-equilibrium) under BS and SCU. In the proof, we require
no additional conditions other than the standard assumptions, as a result
of which, we also generalize the results of Martins-da-Rocha and Monteiro
(2009).

Nielsen (1990), Allingham (1991) and Won et al. (2008) investigate the
existence of a competitive equilibrium in the context of the CAPM without
a riskless asset. 5 In a more general setting, Won and Yannelis (2006)
provide existence results that contain these results as a special case. In fact,
the results of Won and Yannelis (2006) can be applied to the case in which
neither BS nor SCU holds. 6 However, as shown in this paper, there are
cases in which our existence result can be applied, while those of Won and
Yannelis (2006) cannot. Therefore, this paper provides one of the weakest sets
of conditions in the literature for the existence of a competitive equilibrium.

This paper is organized as follows: In Section 2, we describe the model and
list the assumptions. In Section 3, we first provide a preliminary existence
result (Section 3.1), and then prove our main existence theorem (Section 3.2).
Finally, in Section 4, we provide an example of an economy in which both
BS and SCU hold, while Won and Yannelis’s (2006) condition concerning
satiation does not hold.

4Martins-da-Rocha and Monteiro’s (2009) results also generalize several existence re-
sults based on the no-arbitrage conditions, including the results of Hart (1974), Werner
(1987), Allouch et al. (2006).

5In the CAPM without a riskless asset, satiation is rather a rule than an exception.
See, for example, Nielsen (1987) and Won et al. (2008).

6See also, Won and Yannelis (2008).
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2. Model and Assumptions

2.1. Model

We consider a pure exchange economy E with ℓ commodities and n agents
(ℓ, n ∈ N). 7 For convenience, let I be the set of all agents, that is, I =
{1, · · · , n}. Each agent i ∈ I is characterized by a choice set Xi ⊂ Rℓ,
a utility function ui : Xi → R, and an initial endowment ei ∈ Rℓ. Let
X =

∏
i∈I Xi with a generic element x = (xi)i∈I , and put e = (ei)i∈I ∈ Rℓn.

The pure exchange economy E is thus summarized by the list

E =
(
Rℓ, (Xi, ui, ei)i∈I

)
.

An allocation x ∈ X is feasible if
∑

i∈I xi =
∑

i∈I ei. Note that we do not
allow free disposal. We denote the set of all feasible allocations by F .

An allocation x ∈ X is individually rational feasible if x ∈ F and ui(xi) ≥
ui(ei) for all i ∈ I. We denote the set of all individually rational feasible
allocations by A. Let Ai be the projection of A onto Xi, and refer to it as
the individually rational feasible choice set of agent i ∈ I. In addition, let
Ri = {xi ∈ Xi : ui(xi) ≥ ui(ei)} for each i ∈ I.

We define the individually rational utility set U as follows:

U = {(ti) ∈ Rn : ∃x ∈ A s.t. ui(ei) ≤ ti ≤ ui(xi) ∀i ∈ I}.

The utility function ui is satiated at si ∈ Xi if si maximizes ui over Xi,
and si is called a satiation point of ui. Let Si denote the set of all satiation
points of ui, that is,

Si = {si ∈ Xi : ui(si) ≥ ui(xi) for all xi ∈ Xi}.

Put S =
∏

i∈I Si.
We adopt the following standard definitions of competitive equilibrium

and quasi-equilibrium.

7We use the following mathematical notations. The symbols N, Rℓ, and Rℓ
+ denote

the set of natural numbers, ℓ-dimensional Euclidean space, and the nonnegative orthant
of Rℓ, respectively. For x, y ∈ Rℓ, we denote by x · y =

∑ℓ
j=1 xjyj the inner product, and

by ∥x∥ =
√

x · x the Euclidean norm. Let B(x0, r) = {x ∈ Rℓ : ∥x − x0∥ < r} denote the
open ball centered at x0 with radius r. For a ∈ R = R1, we denote by |a| the absolute
value of a. For a, b ∈ R with a ≤ b, we denote by (a, b) and [a, b], the open interval and
closed interval between a and b, respectively. For a set A ⊂ Rℓ, we denote by intA, cl A,
and bdA, the interior, closure, and boundary of A in Rℓ, respectively.
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Definition 1. An element (x, p) ∈ X ×Rℓ \ {0} is a competitive equilibrium
of the economy E if

(a) for all i ∈ I,

(a-1) p · xi ≤ p · ei,

(a-2) if ui(xi) > ui(xi), then p · xi > p · ei,

(b)
∑

i∈I xi =
∑

i∈I ei.

Definition 2. An element (x, p) ∈ X ×Rℓ \{0} is a quasi-equilibrium of the
economy E if

(a) for all i ∈ I,

(a-1) p · xi ≤ p · ei,

(a-2) if ui(xi) > ui(xi), then p · xi ≥ p · ei,

(b)
∑

i∈I xi =
∑

i∈I ei.

We can divide the existence proof of a competitive equilibrium of E into
two parts: (i) proving that there exists a quasi-equilibrium of E , and (ii)
proving that the quasi-equilibrium is also a competitive equilibrium. Since
the analysis concerning part (ii) is well established (or can be done indepen-
dent of (i)), 8 in this paper we focus on the existence of a quasi-equilibrium
of E .

2.2. Assumptions

In this subsection, we present the assumptions used in this paper.
The following two sets of assumptions are quite standard in the literature.

Assumption 1. For each i ∈ I,

(a) Xi is closed, (b) Xi is convex, (c) ei ∈ Xi.

Assumption 2. For each i ∈ I,

(a) ui is upper semicontinuous on Xi,
9

8There are several known sets of assumptions under which every quasi-equilibrium is
also a competitive equilibrium. The following is the simplest: (a) ei ∈ intXi and (b) ui is
continuous on Xi for each i ∈ I. For further details, see Geistdoerfer-Florenzano (1982).

9A function f : X → R is upper semicontinuous on X ⊂ Rℓ if and only if for all α ∈ R,
the set {x ∈ X : f(x) ≥ α} is closed in X.
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(b) ui is strictly quasi-concave. 10

For each i ∈ I, let intRi
Ai denote the interior of Ai in the relative topology

on Ri ⊂ Rℓ, that is, for xi ∈ Ri, we have xi ∈ intRi
Ai if and only if there exists

an open ball B(xi, r) centered at xi with radius r, such that B(xi, r)∩Ri ⊂ Ai.
Let Ac

i and (intRi
Ai)

c denote the complements of Ai and intRi
Ai in Xi, that

is, Ac
i = Xi \ Ai and (intRi

Ai)
c = Xi \ intRi

Ai.
Concerning the satiation property of preferences, we use the following

assumption introduced in Sato (2009).

Assumption 3 (BS). For each i ∈ I, if Si ̸= ∅, we have Si ∩ (intRi
Ai)

c ̸=
∅.

Assumption 3 is a generalization of the standard nonsatiation assumption
(that is, Si ∩ Ai = ∅ for all i ∈ I) and weak nonsatiation introduced in
Allouch and Le Van (2008, 2009). 11 We refer to Assumption 3 as boundary
satiation (BS) based on the fact that if Si ⊂ Ai, then Assumption 3 implies
that Si ∩ (Ai \ intRi

Ai) ̸= ∅, and the set Ai \ intRi
Ai coincides with the

boundary of Ai in the relative topology on Ri under Assumptions 1 and 2.
We also use the following assumption that is stronger than BS.

Assumption 4 (INS). For each i ∈ I, (a) Si ∩ intRi
Ai = ∅, and (b) if

Si ∩ (Ai \ intRi
Ai) ̸= ∅, the set is a singleton.

Under Assumption 4, every ui must be nonsatiated on intRi
Ai, the in-

terior of Ai (in the relative topology of Ri), and therefore, we refer to the
assumption as interior nonsatiation (INS). Note that INS is weaker than the
standard nonsatiation assumption by (b).

Dana et al. (1999) show that under Assumptions 1 and 2 and the standard
nonsatiation, the following condition is sufficient for the existence of a quasi-
equilibrium.

Assumption 5 (CU). The individually rational utility set U is compact.

The compactness of U is a weaker property than the compactness of A. In
particular, it allows A to be unbounded.

10A function f : X → R is strictly quasi-concave if and only if for all x, y ∈ X with
f(x) > f(y), and for all λ ∈ (0, 1), we have f(λx + (1 − λ)y) > f(y).

11Weak nonsatiation asserts that Si ∩ Ac
i ̸= ∅ for all i ∈ I.
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On the other hand, Martins-da-Rocha and Monteiro (2009) show that CU
is not sufficient for the existence of a quasi-equilibrium under weak nonsatia-
tion. 12 Instead, the authors establish the existence of a quasi-equilibrium
under weak nonsatiation by introducing the notion of the strong compactness
of U .

Definition 3. The individually rational utility set U is strongly compact if
for every sequence (xν)ν∈N in A, there exist a feasible allocation y ∈ F and
a subsequence (xνk)k∈N satisfying

ui(yi) ≥ lim
k→∞

ui(x
νk
i ) for all i ∈ I,

together with

lim
k→∞

1Si
(xνk

i )

1 + ∥xνk
i ∥2

(yi − xνk
i ) = 0 for all i ∈ I.13 (1)

The strong compactness of U is stronger than the compactness of U in
general, but weaker than the compactness of A. In addition, it is readily
verified that both the compactness and the strong compactness of the indi-
vidually rational utility set are preserved under any upper semicontinuous
and strictly increasing transformation of the utility functions.

Since BS contains weak nonsatiation as a special case, CU is not sufficient
for the existence of a quasi-equilibrium under BS. Therefore, we assume
the strong compactness of U , instead of CU, when investigating equilibrium
existence under BS.

Assumption 6 (SCU). The individually rational utility set U is strongly
compact.

3. Results

3.1. Existence under interior nonsatiation

The main purpose of this paper is to prove the existence of a quasi-
equilibrium under Assumptions 1, 2, BS, and SCU (Theorem 1 in Section

12See Martins-da-Rocha and Monteiro (2009, Section 5).
13We denote by 1Si

: Xi → {0, 1} the indicator function of Si: 1Si
(xi) = 1 if xi ∈ Si,

and 1Si(xi) = 0 otherwise. In Martins-da-Rocha and Monteiro (2009), the space Rℓ is
endowed with the L1 norm, that is, ∥x∥ =

∑ℓ
j=1 |xj | for all x ∈ Rℓ, while we consider Rℓ

with the Euclidean norm. Obviously, this difference does not affect the definition of the
strong compactness of U .
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3.2). To this end, we first prove the existence of a quasi-equilibrium by
assuming INS instead of BS.

The following proposition extends the result of Dana et al. (1999, The-
orem 3) and is used to prove our main existence theorem. Although in the
proposition we impose not SCU but CU, as we will see later (Remark 1 in
Section 3.2), CU implies SCU under INS. Proposition 1 is therefore a special
case of Theorem 1.

Proposition 1. Under Assumptions 1, 2, INS, and CU, there exists a quasi-
equilibrium (x, p) ∈ A × Rℓ \ {0} of E.

Proof. First by CU, it is readily verified that there exists ξi ∈ argmax{ui(xi) :
xi ∈ Ai} for each i ∈ I. Then, INS implies that there exists ζi ∈ (intRi

Ai)
c

with ui(ζi) ≥ ui(ξi).
For ν ∈ N, let Eν be the truncated economy obtained by replacing Xi

with Xν
i = Xi ∩ cl B(0, ν) for each i ∈ I. Let ν ∈ N be such that ei ∈ Xν

i

and ζi ∈ Xi ∩ B(0, ν) ⊂ Xν
i for all ν ≥ ν and i ∈ I.

Let Rν
i = {xi ∈ Xν

i : ui(xi) ≥ ui(ei)}, and let Aν
i denote the individually

rational feasible choice set of i ∈ I in Eν . Note that Rν
i = Ri ∩ cl B(0, ν) and

ζi ∈ Rν
i .

For each ν ≥ ν, the economy Eν satisfies all the assumptions of the
existence theorem in Sato (2009, Theorem 2). In particular, Eν satisfies BS.
To observe this we first prove the following claim.

Claim 1. ζi ∈ (intRν
i
Aν

i )
c.

Proof of Claim 1. Suppose that ζi ∈ intRν
i
Aν

i .
By the definition of intRν

i
Aν

i , there exists r1 > 0 such that

B(ζi, r1) ∩ Rν
i ⊂ Aν

i .

On the other hand, since ζi ∈ B(0, ν), there exists r2 > 0 such that B(ζi, r2) ⊂
B(0, ν).

Let r = min{r1, r2}. Then,

B(ζi, r) ∩ Ri ⊂ B(ζi, r1) ∩
(
B(ζi, r2) ∩ Ri

)
⊂ B(ζi, r1) ∩ Rν

i ⊂ Aν
i ⊂ Ai.

Therefore, ζi ∈ intRi
Ai, which contradicts our choice of ζi. ¤
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Let Sν
i denote the set of all satiation points of agent i ∈ I on Xν

i , that
is, Sν

i = {si ∈ Xν
i : ui(si) ≥ ui(xi) for all xi ∈ Xν

i }. Note that Sν
i ̸= ∅ by

the compactness of Xν
i and upper semicontinuity of ui. We now prove that

Eν satisfies BS.

Claim 2. Sν
i ∩ (intRν

i
Aν

i )
c ̸= ∅.

Proof of Claim 2. If ζi ∈ Sν
i , we have ζi ∈ Sν

i ∩ (intRν
i
Aν

i )
c by Claim 1.

Suppose that ζi /∈ Sν
i , then, for any element si of Sν

i ̸= ∅, we have ui(si) >
ui(ζi). Moreover, by the definition of ζi, we have ui(si) > ui(ζi) ≥ ui(xi)
for all xi ∈ Aν

i ⊂ Ai, which implies that si /∈ Aν
i . Therefore, we have

si ∈ Sν
i ∩ (intRν

i
Aν

i )
c. ¤

For each ν ≥ ν, applying the existence theorem of Sato (2009), 14 we
obtain a quasi-equilibrium (xν , pν) ∈ Xν ×Rℓ \{0} of Eν with ui(x

ν
i ) ≥ ui(ei)

for all i ∈ I. In view of the definition of the quasi-equilibrium, we may
assume that pν ∈ S = {p ∈ Rℓ : ∥p∥ = 1}. Put uν

i = ui(x
ν
i ) for each i ∈ I

and uν = (uν
i )i∈I ∈ Rn. Clearly, uν ∈ U .

Consider the sequence ((uν , pν))ν≥ν ⊂ U ×S. Since U ×S is compact, we
may assume that the sequence has a limit point (u, p) ∈ U × S. Then, by
the definition of U , there exists x ∈ A such that

ui(xi) ≥ ui for all i ∈ I.

We prove that the element (x, p) ∈ A×Rℓ \ {0} is a quasi-equilibrium of the
original economy E . Since x ∈ A, it suffices to show that (x, p) satisfies (i)
and (ii) of Definition 2.

We first prove that p · xi ≥ p · ei for each i ∈ I.

Claim 3. p · xi ≥ p · ei for each i ∈ I

Proof of Claim 3. Fix i ∈ I. We divide the proof into two cases.

Case 1. xi /∈ Si.

In this case, there exists yi ∈ Xi such that ui(yi) > ui(xi).

14See also Remark 2 of the revised version of Sato (2009) which is attached to this paper.
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For a fixed λ ∈ (0, 1), let yi(λ) = λyi+(1−λ)xi. By Assumption 2 (b), we
have ui(yi(λ)) > ui(xi). Since ui(x

ν
i ) → ui ≤ ui(xi) < ui(yi(λ)), there exists

ν ′ ∈ N such that ui(yi(λ)) > ui(x
ν
i ) for all ν ≥ ν ′. In view of the definition of

Xν
i , we may assume without loss of generality that yi(λ) ∈ Xν for all ν ≥ ν ′.

Then, for each ν ≥ ν ′, since (xν , pν) ∈ Xν × S is a quasi-equilibrium of Eν ,
we have

pν · yi(λ) ≥ pν · ei.

Taking the limit as ν → ∞, we obtain

p · yi(λ) ≥ p · ei.

The above inequality holds for an arbitrary λ ∈ (0, 1). Therefore, taking
the limit as λ → 0, we finally obtain

p · xi ≥ p · ei.

Case 2. xi ∈ Si.

Then, by INS, xi is the unique element of Si∩Ai. Let ν ′′ ≥ ν be a natural
number such that xi ∈ Xν

i for all ν ≥ ν ′′. We first prove that pν · xi ≥ pν · ei

for all ν ≥ ν ′′.
For each ν ≥ ν ′′, since xi ∈ Si, either of the following two cases holds:

(a) ui(x
ν
i ) = ui(xi).

(b) ui(x
ν
i ) < ui(xi).

In case (a), we have xν
i = xi because xν

i ∈ Si∩Ai = {xi}. Since (xν , pν) ∈
Xν × S is a quasi-equilibrium of Eν , we have pν · xi = pν · xν

i = pν · ei.
In case (b), since xi ∈ Xν

i with ui(xi) > ui(x
ν
i ), we must have pν · xi ≥

pν · ei.
Since pν · xi ≥ pν · ei for all ν ≥ ν ′′ by the above argument, we obtain by

taking the limit as ν → ∞,

p · xi ≥ p · ei,

which completes the proof of Claim 3. ¤

Since x ∈ F , Claim 3 implies that p · xi = p · ei for all i ∈ I. Therefore,
(x, p) satisfies (i) of Definition 2.
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We next prove that (ii) of Definition 2 holds. Suppose that for some
i ∈ I, there exists yi ∈ Xi such that ui(yi) > ui(xi) and p · yi < p · ei.
Since ui(yi) > ui(xi) ≥ ui and ui(x

ν
i ) → ui, we have ui(yi) > ui(x

ν
i ) for

sufficiently large ν. Moreover, we may assume without loss of generality that
yi ∈ Xν

i and pν ·yi < pν · ei for this ν. However, this contradicts the fact that
(xν , pν) ∈ Xν × S is a quasi-equilibrium of Eν . ¤

3.2. Existence under boundary nonsatiation

We now state and prove the existence of a quasi-equilibrium under BS
and SCU:

Theorem 1. Under Assumptions 1, 2, BS, and SCU, there exists a quasi-
equilibrium (x, p) ∈ A × Rℓ \ {0} of E.

Note that Theorem 1 generalizes the results of Martins-da-Rocha and
Monteiro (2009, Theorem 6.1) and Sato (2009, Theorem 2).

Proof of Theorem 1. In this proof, we assume that ei /∈ Si for all i ∈ I.
This assumption is not a real restriction as far as the existence of a quasi-
equilibrium is concerned. To observe this, let Is = {i ∈ I : ei ∈ Si}, and
consider the economy obtained by removing agents who belong to Is.

15 If we
can prove the existence of a quasi-equilibrium (x, p) ∈ ∏

i∈I\Is
Xi × Rℓ \ {0}

in the modified economy, then together with p, the allocation x′ ∈ ∏
i∈I Xi,

defined by x′
i = xi for i ∈ I \ Is and xi = ei for i ∈ Is, clearly constitutes a

quasi-equilibrium of the original economy.
Let ξi ∈ argmax{ui(xi) : xi ∈ Ai} for each i ∈ I, as in the proof of

Theorem 1. Then, BS implies that there there exists ζi ∈ (intRi
Ai)

c such that
ui(ζi) ≥ ui(ξi). In particular, if Si ̸= ∅, we can find such ζi in Si∩(intRi

Ai)
c.

Following Martins-da-Rocha and Monteiro (2009), for each i ∈ I, we
define a function vi : Xi → R by

vi(xi) = ui(xi) + 1Si
(xi) exp(−∥xi − ζi∥),

where 1Si
: Xi → {0, 1} is the indicator function of Si. Note that vi(xi) =

ui(xi) for xi /∈ Si, especially vi(ei) = ui(ei).

15If Is = I, for an arbitrary p ∈ Rℓ, the element (e, p) ∈ X × Rℓ clearly constitutes a
quasi-equilibrium of E .

11



We consider the auxiliary economy E(v) obtained by replacing ui with

vi for all i ∈ I in E , that is, E(v) =
(
Rℓ, (Xi, vi, ei)i∈I

)
. Note that since

vi(ei) = ui(ei) for all i ∈ I, we have Ri(v) = Ri and Ai(v) = Ai, where
Ri(v) = {xi ∈ Xi : vi(xi) ≥ v(ei)}, and Ai(v) denotes the individually
rational feasible choice set of i ∈ I in E(v).

We prove that E(v) satisfies all the assumptions of Proposition 1.
The following claim can be shown in the same way as in the proofs of

Martins-da-Rocha and Monteiro (2009, Claims 6.1–6.3).

Claim 4. The economy E(v) satisfies Assumptions 1, 2, and CU.

Proof of Claim 4. See Martins-da-Rocha and Monteiro (2009, Claims 6.1–
6.3). ¤

Let Si(v) be the set of all satiation points of i ∈ I in E(v). Note that if
Si(v) ̸= ∅, then Si(v) = {ζi}. We now prove that E(v) satisfies INS.

Claim 5. For each i ∈ I, we have (a) Si(v) ∩ intRi(v) Ai(v) = ∅, and (b) if
Si(v) ∩ Ai(v) ̸= ∅, the set is a singleton.

Proof of Claim 5. Suppose that Si(v) ∩ intRi(v) Ai(v) ̸= ∅ for some i ∈ I.
Since Si(v) = {ζi}, we have ζi ∈ intRi(v) Ai(v). However, since Ri(v) = Ri

and Ai(v) = Ai, we have ζi ∈ intRi(v) Ai(v) = intRi
Ai, which contradicts our

choice of ζi. Therefore, we have Si(v) ∩ intRi(v) Ai(v) = ∅ for all i ∈ I.
The second part of the claim immediately follows from the fact that

Si(v) = {ζi} if Si(v) ̸= ∅. ¤

Applying Proposition 1, we obtain a quasi-equilibrium (x, p) ∈ X × Rℓ \
{0} of E(v). In fact, (x, p) is a quasi-equilibrium of the original economy E .
To observe this, it suffices to show that (ii) of Definition 2 holds.

For i ∈ I, let yi ∈ Xi with ui(yi) > ui(xi). Then, xi /∈ Si, and thus
vi(xi) = ui(xi). Since vi(yi) ≥ ui(yi) > vi(xi) and (x, p) is a quasi-equilibrium
of E(v), we have p · yi ≥ p · ei, which is the desired conclusion. ¤

Remark 1. As noted before, under INS, the assumption CU implies SCU.
To observe this, suppose that CU and INS hold. Let (xν)ν∈N be a sequence

in A. Then, CU implies that there exist a feasible allocation y ∈ A, and a
subsequence (xνk)k∈N satisfying

ui(yi) ≥ lim
k→∞

ui(x
νk
i ) for all i ∈ I. (2)
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Let
Ins = {i ∈ I : ∃k(i) ∈ N s.t. xνk

i /∈ Si ∀ k ≥ k(i)}.
Then, equation (1) clearly holds for all i ∈ Ins.

Suppose that I \ Ins ̸= ∅. Passing to a subsequence if necessary, we may
assume that xνk

i ∈ Si for all k and i ∈ I \ Ins. Then, (2) implies that yi ∈ Si

for all i ∈ I \ Ins. Since Si ∩Ai is a singleton by INS, we must have yi = xνk
i

for all k and i ∈ I \ Ins. It is now clear that (1) holds for all i ∈ I.

4. Example

In this section, we provide an example of an economy in which both BS
and SCU hold. In the economy, the individually rational feasible allocation
set is unbounded, and neither standard nonsatiation nor weak nonsatiation
holds. Moreover, the economy does not satisfy Won and Yannelis’s (2006)
condition concerning satiation.

Let E be an exchange economy with two commodities and two agents
defined as follows. Agents’ choice sets are

X1 = {x1 ∈ R2 : x12 ≤ x11 + 3}.
X2 = R × [0,∞),

where xij denotes the quantity of j-th commodity chosen by agent i = {1, 2}.
Agents’ utility functions are

u1(x1) = −|x11 − 1| + 1,

u2(x2) = x21.

Note that S1 = {x1 ∈ X1 : x11 = 1} and S2 = ∅. Finally, the initial
endowments are e1 = e2 = (2, 2).

It is then easy to check that E satisfies Assumptions 1 and 2. We next
prove that E satisfies CU.

First, we prove that U is bounded. Let λ ∈ U , then there exists x ∈ A
such that

ui(ei) ≤ λi ≤ ui(xi) for all i ∈ I.

Clearly, 0 ≤ λ1 ≤ 1. We also have (2 ≤)λ2 ≤ 4. To observe this, suppose
that λ2 > 4. Then, x21 = u2(x2) ≥ λ2 > 4 and x11 < 0. However, this
implies that u1(x1) < 0 = u1(e1), which is a contradiction. Therefore,

U ⊂ [0, 1] × [2, 4],

13



in other words, U is bounded.
We next prove that U is closed. Let (λν)ν∈N be a sequence on U converging

to some λ ∈ R2. Then, for each ν ∈ N, there exists xν ∈ A such that

λν
i ≤ ui(x

ν
i ) for all i ∈ I.

Suppose first that λ2 ≤ 3, and let x = (x1, x2) be the allocation with
x1 = (1, 1) and x2 = (3, 1). Clearly, x ∈ A. Since x1 ∈ S1, we have
λν

1 ≤ u1(x
ν
1) ≤ u1(x1) for all ν ∈ N, which implies that λ1 ≤ ui(x1). Since

λ2 ≤ 3, we also have λ2 ≤ u2(x2). Therefore, λ ∈ U .
Suppose then that λ2 > 3. For all ν ∈ N, since u1(x

ν
1) ≥ u1(e1), we have

xν
11 ∈ [0, 2]. Moreover, since xν

21 = 4 − xν
11 ∈ [2, 4] for all ν, the sequence

(xν
11, x

ν
21)ν∈N is bounded. Therefore, passing to a subsequence if necessary, we

may suppose that the sequence converges to a vector (x11, x21) in R2, which
satisfies x11 + x21 = 4.

Since λ2 > 3, we have λν
2 > 3 for sufficiently large ν. Then, xν

21 =
u2(x

ν
2) ≥ λν

2 > 3. Moreover, since xν ∈ A, we must have xν
11 < 1, which

implies that u1(x
ν
1) = xν

11. Therefore, we have λν
i ≤ xν

i1 for all i ∈ I, and for
all sufficiently large ν. Taking the limit as ν → ∞ for each i ∈ I, we have

ui(ei) ≤ λi ≤ xi1.

Note that we also have x11 ≤ 1. Let yi = (xi1, 2) for each i ∈ I. Then,
y = (y1, y2) ∈ A and

ui(ei) ≤ λi ≤ xi1 = ui(yi),

which implies that λ ∈ U . Therefore, U is compact.
According to Martins-da-Rocha and Monteiro (2009, Proposition 7.1), in

an economy with at most two agents CU is equivalent to SCU. Therefore, E
satisfies SCU. Note that Ai is unbounded for each i ∈ I, which implies the
unboundedness of A.

We prove that E satisfies BS. Since S2 = ∅, it suffices to check that agent
1 satisfies BS. Let s1 = (1, 4). Then, it is clear that s1 ∈ S1 ∩ A1. We prove
that s1 ∈ (A1 \ intR1 A1). Let (xν

1)ν∈N be the sequence defined by

xν
1 = s1 +

1

ν
(1, 1) for all ν ∈ N.

Then, it is clear that xν
1 ∈ R1 ∩ Ac

1 for each ν ∈ N and xν
1 → s1 as ν → ∞.

Therefore, s1 ∈ (A1\ intR1 A1), and thus, E satisfies BS. Note that since S1 ⊂
A1, agent 1 satisfies neither standard nonsatiation nor weak nonsatiation.
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Finally, we prove that E does not satisfy Won and Yannelis’s (2006) con-
dition concerning satiation.

Let Is = {i ∈ I : Si ⊂ Ai}, and for an allocation x ∈ X, let Ins(x) = {i ∈
I : xi /∈ Si}. For each i ∈ I and xi ∈ Xi, let A(xi) = {y ∈ A : yi = xi}.
Moreover, for xi ∈ Xi, let Pi(xi) = {yi ∈ Xi : ui(yi) > ui(xi)}.

In our framework, the condition of Won and Yannelis (2006, Assumption
S5’) can be expressed as follows:

Condition 1. There exists (si)i∈Is ∈
∏

i∈Is
Si such that for each x ∈ ∪i∈IsA(si),

and for any p ∈ Rℓ \ {0} that satisfies p ·Pk(xk) > p · xk for all k ∈ Ins(x), 16

we have p · xi ≥ p · ei for all i ∈ I \ Ins(x).

Note first that Is = {1} in our economy. Let x ∈ A(s1) for an arbitrary
chosen s1 ∈ S1. Then, there exists x2 ∈ X2 such that x = (s1, x2) ∈ A. We
also have Ins(x) = {2} and I \ Ins(x) = {1}. Since s1 ∈ S1, we have s11 = 1.
Then, x21 = 3 and P2(x2) = {y2 ∈ X2 : y21 > 3}.

Let p = (1, 0). Then, for agent 2 we have

p · P2(x2) > 3 = p · x2.

However, for agent 1 we have

p · s1 = 1 < 2 = p · e1.

Therefore, Condition 1 does not hold in E .
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Abstract

In this paper, we introduce a new assumption concerning the (non)satiation
property of preferences and establish the existence of a competitive equilib-
rium under it. The assumption is weaker than the standard nonsatiation
assumption and “weak nonsatiation” introduced in Allouch and Le Van [Al-
louch, N., Le Van, C., 2008. Walras and dividends equilibrium with possibly
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particular, the new assumption allows, under certain conditions, preferences
to be satiated only inside the set of individually rational feasible consump-
tions. Moreover, just like the two nonsatiation assumptions, our assumption
depends solely on the characteristics of consumers.
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1. Introduction

In classical general equilibrium theory (Arrow and Debreu 1954, Debreu
1959, among others), consumers’ preferences are assumed to be “nonsa-
tiated,” that is, assumed to have no consumption bundle that is preferred
to all other. However, in some cases, we observe that consumption sets are
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naturally compact (see Mas-Colell 1992) and every continuous preference has
therefore at least one satiation point. As is well known in the literature, a
simple way to avoid this inconsistency without affecting the existence of a
competitive equilibrium is to assume that when a preference has satiation
points, they are always outside the set of individually rational feasible con-
sumptions. 1 This modified nonsatiation assumption allows preferences to
be satiated, but excludes the case in which satiation occurs inside the indi-
vidually rational feasible consumption sets.

It is well known that a competitive equilibrium may fail to exist when
satiation occurs inside the individually rational feasible consumption set. Re-
cently, however, Allouch and Le Van (2008, 2009) have shown that even if
there exists a consumer whose preference reaches satiation in his or her indi-
vidually rational feasible consumption set, one can still obtain the existence
of a competitive equilibrium by assuming that satiation also occurs outside
the set. This assumption is a generalization of the standard nonsatiation
assumption (including the modified one) and called “weak nonsatiation.” 2

Won and Yannelis (2006) introduce a different assumption that allows for
satiation inside the individually rational feasible consumption sets. In fact,
their assumption applies to the case in which satiation occurs only inside
the individually rational feasible consumption sets and contains Allouch and
Le Van’s weak nonsatiation as a special case. Moreover, in their existence
proofs, consumers’ preferences are allowed to be non-ordered and individu-
ally rational feasible consumption sets do not need to be bounded. These
advantages make their results applicable to securities markets with unlimited
short-selling, in which choice sets are unbounded from below, and the capital
asset pricing model (CAPM) without a riskless asset, in which satiation is
rather a rule than an exception. However, Won and Yannelis’s assumption
contains a restriction on the price system, while weak nonsatiation, just like
standard nonsatiation, depends solely on the characteristics of consumers.

The main contribution of this paper is to establish the existence of a com-
petitive equilibrium under a new assumption that is weaker than Allouch

1A consumption bundle is said to be individually rational feasible if it can be achieved
by a trade in which every consumer involved attains at least the same utility as that gained
from his or her initial endowment. For the existence proof under this assumption, see for
example, Bergstrom (1976), Dana et al. (1999).

2Allouch and Le Van (2008, 2009) also prove that in securities markets with short-
selling, Werner’s (1987) nonsatiation assumption implies weak nonsatiation.
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and Le Van’s weak nonsatiation, and therefore, the standard nonsatiation
assumption. Our assumption allows each consumer’s preference to be sati-
ated only inside the individually rational feasible consumption set, provided
that at least one satiation point lies on a “boundary” of the set. One’s in-
dividually rational consumption bundle belongs to the “boundary” if every
neighborhood of the bundle contains at least one point that is at least as
good as his or her initial endowment but is not individually rational feasible.
Although our existence results rely on the ordered preferences and bounded
individually rational feasible consumption sets, the new assumption does not
imply Won and Yannelis’s (2006) assumption. Moreover, just like standard
nonsatiation and weak nonsatiation, our assumption depends solely on the
characteristics of consumers.

This paper is organized as follows. In Section 2, we describe the model and
introduce the new assumption. In Section 3, we provide our main existence
results. In Section 4, we consider an alternative to the new assumption
and provide some related results. As a concluding remark, in Section 5,
we compare our assumption with the assumption introduced by Won and
Yannelis (2006). Finally, the proofs of some propositions are provided in
Appendix.

2. Model and Assumptions

2.1. Model

We consider a pure exchange economy E with ℓ commodities and n con-
sumers (ℓ, n ∈ N). 3 For convenience, let I be the set of all consumers,
that is, I = {1, · · · , n}. Each consumer i ∈ I is characterized by a con-
sumption set Xi ⊂ Rℓ, an initial endowment ωi ∈ Rℓ, and a utility function
ui : Xi → R. Let X =

∏
i∈I Xi with a generic element x = (xi)i∈I , and put

ω = (ωi)i∈I ∈ Rℓn.

3We use the following mathematical notations. The symbols N, Rℓ and Rℓ
+ denote

the set of natural numbers, ℓ-dimensional Euclidean space and nonnegative orthant of
Rℓ, respectively. For x, y ∈ Rℓ, we denote by x · y =

∑ℓ
j=1 xjyj the inner product, by

∥x∥ =
√

x · x the Euclidean norm. Let B(x0, r) = {x ∈ Rℓ : ∥x − x0∥ < r} denote the
open ball centered at x0 with radius r. For a ∈ R = R1, we denote by |a| the absolute
value of a. For a, b ∈ R with a ≤ b, we denote by (a, b) and [a, b], the open interval and
closed interval between a and b, respectively. For a set A ⊂ Rℓ, we denote by intA, cl A
and bdA, the interior, closure and boundary of A in Rℓ, respectively.
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The pure exchange economy E is thus summarized by the list

E =
(
Rℓ, (Xi, ui, ωi)i∈I

)
.

An allocation x ∈ X is feasible if
∑

i∈I xi =
∑

i∈I ωi. Note that we do
not allow free disposal. We denote the set of all feasible allocations by F .
Moreover, let Fi be the individually feasible consumption set of consumer
i ∈ I that is defined as the projection of F onto Xi. In other words, for
xi ∈ Xi, we have xi ∈ Fi if and only if there exists (xj)j ̸=i ∈

∏
j ̸=i Xj such

that x = (xk)k∈I ∈ F . Then, it is easy to check that Fi = Xi ∩ (−∑
j ̸=i Xj +∑

k∈I{ωk}) for all i ∈ I.
An allocation x ∈ X is individually rational feasible if x ∈ F and

ui(xi) ≥ ui(ωi) for all i ∈ I. We denote the set of all individually ratio-
nal feasible allocations by A. Let Ai be the projection of A onto Xi, and call
it individually rational feasible consumption set of consumer i ∈ I.

Let Ri = {xi ∈ Xi : ui(xi) ≥ ui(ωi)} for each i ∈ I. Then, it is easy to
check that

Ai = Ri ∩
(
−

∑
j ̸=i

Rj +
∑
k∈I

{ωk}
)

for all i ∈ I.

For simplicity of notation, we put

Gi = −
∑
j ̸=i

Rj +
∑
k∈I

{ωk} for each i ∈ I.

Note that Ai = Ri ∩ Gi ⊂ Ri for all i ∈ I.
The utility function ui is satiated at si ∈ Xi if si maximizes ui over Xi,

and we call si a satiation point of ui. Let Si denote the set of all satiation
points of ui, that is,

Si = {si ∈ Xi : ui(si) ≥ ui(xi) for all xi ∈ Xi}.

Put S =
∏

i∈I Si.
We adopt the following standard definitions of competitive equilibrium

and quasi-equilibrium.

Definition 1. An element (x, p) ∈ X ×Rℓ \ {0} is a competitive equilibrium
of the economy E if

(a) for all i ∈ I,
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(a-1) p · xi ≤ p · ωi,

(a-2) if ui(xi) > ui(xi), then, p · xi > p · ωi,

(b)
∑

i∈I xi =
∑

i∈I ωi.

Definition 2. An element (x, p) ∈ X ×Rℓ \{0} is a quasi-equilibrium of the
economy E if

(a) for all i ∈ I,

(a-1) p · xi ≤ p · ωi,

(a-2) if ui(xi) > ui(xi), then, p · xi ≥ p · ωi,

(b)
∑

i∈I xi =
∑

i∈I ωi.

2.2. Assumptions

We first make the following two sets of assumptions on the economy E .

Assumption 1. For each i ∈ I,

(a) Xi is closed and convex, (b) Xi is bounded, (c) ωi ∈ Xi.

Assumption 2. For each i ∈ I,

(a) ui is upper semicontinuous on Xi,
4

(b) ui is strictly quasi-concave. 5

As shown in Section 3.1, the existence of a quasi-equilibrium is ensured
under Assumptions 1 and 2 and our new assumption on preference satia-
tion introduced below. To prove the existence of a competitive equilibrium,
however, we need some additional assumptions (see Section 3.2). It is worth
noting that in our main existence theorems (Theorems 2 and 3), Assumption
1 (b) can be weakened to the boundedness of A by the standard truncation
technique.

It is easy to check that under Assumptions 1 and 2, we have the following
facts.

4A function f : X → R is upper semicontinuous on X ⊂ Rℓ if and only if for all α ∈ R,
the set {x ∈ X : f(x) ≥ α} is closed in X.

5A function f : X → R is strictly quasi-concave if and only if for all x, y ∈ X with
f(x) > f(y) and for all λ ∈ (0, 1), we have f(λx + (1 − λ)y) > f(y).
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Fact 1. Si ̸= ∅ for each i ∈ I.

Fact 2. Ri, Gi and Ai are nonempty, compact and convex in Rℓ for each
i ∈ I.

In particular, the convexity of Ri in Fact 2 follows from the quasi-concavity
of ui,

6 which is implied by Assumption 2 (b) under Assumptions 1 (a) and
2 (a).

Before introducing our new assumption on satiation property of prefer-
ences, we first define some additional notations.

For each i ∈ I, let intRi
Ai denote the interior of Ai in the relative topology

on Ri ⊂ Rℓ, that is, for xi ∈ Ri, we have xi ∈ intRi
Ai if and only if there exists

an open ball B(xi, r) centered at xi with radius r such that B(xi, r)∩Ri ⊂ Ai.
Roughly speaking, if xi ∈ intRi

Ai, when consumer i ∈ I slightly changes
his or her consumption plan from xi in such a way that the resulting con-
sumption bundle x′

i is within Ri, the bundle x′
i will also lie on Ai. In contrast,

if xi ∈ Ai \ intRi
Ai, the resulting consumption bundle x′

i ∈ Ri may not lie
on Ai, no matter how small the change is.

Let Ac
i and (intRi

Ai)
c denote the complements of Ai and intRi

Ai in Xi,
that is, Ac

i = Xi \ Ai and (intRi
Ai)

c = Xi \ intRi
Ai.

We now introduce the following assumption.

Assumption 3. For each i ∈ I, if Si ̸= ∅, we have Si ∩ (intRi
Ai)

c ̸= ∅.

Since (intRi
Ai)

c = Ac
i ∪ (Ai \ intRi

Ai), this assumption allows consumer’s
satiation area to be a subset of the individually rational feasible consumption
set, provided that it touches the complement of intRi

Ai in Ai. In other words,
under Assumption 3, we must have Si ∩ (Ai \ intRi

Ai) ̸= ∅ if Si ⊂ Ai. Note
that under Assumptions 1 and 2, the set Ai \ intRi

Ai coincides with the
boundary of Ai in the relative topology on Ri.

Assumption 3 generalizes the following two assumptions.

[Nonsatiation] For each i ∈ I, we have Si ∩ Ai = ∅.

[Weak nonsatiation] For each i ∈ I, if Si ̸= ∅, we have Si ∩ Ac
i ̸= ∅.

6A function f : X → R is quasi-concave if and only if for all x, y ∈ X and for all
λ ∈ [0, 1], we have f(λx + (1 − λ)y) ≥ min{f(x), f(y)}.
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[Nonsatiation] is a standard assumption in the classical general equilib-
rium theory. It excludes the case in which satiation occurs inside the indi-
vidually rational feasible consumption sets.

[Weak nonsatiation], introduced by Allouch and Le Van (2008, 2009),
is a generalization of [Nonsatiation]. This assumption allows consumer’s
satiation points to be inside the individually rational feasible consumption
set, provided that at least one satiation point lies outside Ai. However, unlike
Assumption 3, it does not apply to the case in which Si is a subset of Ai.

Note that [Weak nonsatiation] coincides with [Nonsatiation] when Si is a
singleton for all i ∈ I with Si ̸= ∅. Note also that Assumption 3 coincides
with [Weak nonsatiation] if Ri = Ai for all i ∈ I because we have intRi

Ai =
Ai in such a case.

In the following example, only Assumption 3 holds among the above three
assumptions concerning satiation.

Example 1. Consider an exchange economy E with two commodities and
two consumers. Let X1 = X2 = R2

+ and ω1 = ω2 = (4, 4). Consumers’ utility
functions are as follows.

u1(x1) = −∥(x11, x12) − (4, 6)∥2 and u2(x2) = x21.

Note that u1 has a unique satiation point s1 = (4, 6), while u2 is never
satiated on X2 (see Figure 1).

Let y2 = (4, 2) ∈ X2. Then, the allocation (s1, y2) ∈ X1 × X2 is feasible.
Moreover, since

u2(y2) = 4 = u2(ω2),

we have s1 ∈ A1. Therefore, neither [Nonsatiation] nor [Weak nonsatiation]
holds.

We prove that Assumption 3 holds. Let ε1 = (1, 0) ∈ R2, and for each
t ∈ (0, 1], let

z1(t) = s1 + tε1 = (4 + t, 6) ∈ X1,

z2(t) = y2 − tε1 = (4 − t, 2) ∈ X2.

We claim that z1(t) ∈ R1 \ A1 for all t ∈ (0, 1]. To see this, note first
that we have z1(t) + z2(t) =

∑
i∈I ωi for all t ∈ (0, 1]. Next, since u1(z1(t)) =

−t2 > −4 = u1(ω1), we have z1(t) ∈ R1 for all t ∈ (0, 1]. Moreover, for all
t ∈ (0, 1], since

u2(z2(t)) = 4 − t < 4 = u2(ω2),
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Figure 1: Example in which Assumption 3 holds but [Nonsatiation] and [Weak nonsatia-
tion] do not.

we have z2(t) /∈ R2. Therefore, z1(t) /∈ A1 for all t ∈ (0, 1].
Since z1(t) ∈ R1 \ A1 for all t ∈ (0, 1] and z1(t) → s1 as t → 0, we obtain

s1 ∈ A1 \ intR1 A1. Therefore, Assumption 3 holds.
It is easy to check that the allocation x = (s1, y2) together with the price

p = (1, 0) ∈ R2 is a competitive equilibrium of E .

Note that this example also shows that Assumption 3 does not coincide
with [Nonsatiation] even if Si is a singleton for all i ∈ I with Si ̸= ∅.

3. Main Results

3.1. Existence of quasi-equilibrium

The purpose of this section is to demonstrate the existence of a quasi-
equilibrium of E under Assumptions 1 – 3 (Theorem 2). In the proof, we use
the following existence result by Allouch and Le Van (2009).

Theorem 1. (Allouch and Le Van, 2009)
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Under Assumptions 1, 2 and [Weak nonsatiation], there exists a quasi-
equilibrium (x, p) ∈ X × Rℓ of E. 7

Remark 1. A careful reading of the original proof of Theorem 1 by Allouch
and Le Van (2009), which is based on the result of Dana et al. (1999, Theorem
1), shows that the stated quasi-equilibrium allocation x is, in fact, an element
of A, that is, ui(xi) ≥ ui(ωi) for all i ∈ I.

The strategy of our existence proof is as follows.
First, under our assumptions, we can choose s = (si)i∈I ∈ S so that

si ∈ (intRi
Ai)

c for all i ∈ I. (1)

Next, for this s, we construct a sequence {ων}ν∈N = {(ων
i )i∈I}ν∈N ⊂ Rℓn

that satisfies the following properties:

(a) ων → ω as ν → ∞,

(b) there exists ν ∈ N such that for all ν ≥ ν,

(b-1) ων
i ∈ Xi for all i ∈ I, and

(b-2) si /∈ Rν
i ∩ (−∑

j ̸=i R
ν
j +

∑
k∈I{ων

k}) for all i ∈ I, where

Rν
k = {xk ∈ Xk : uk(xk) ≥ uk(ω

ν
k)} for each k ∈ I.8

We then define an auxiliary economy Eν for each ν ≥ ν by Eν =
(Rℓ, (Xi, ui, ω

ν
i )i∈I) (the economy Eν differs from the initial economy only

in its initial endowments). By the definition, each Eν satisfies all the as-
sumptions in Theorem 1. In particular, [Weak nonsatiation] holds by the
property (b-2) of {ων}ν∈N.

Therefore, by Theorem 1, we obtain a sequence {(xν , pν)}ν≥ν ⊂ X × Rℓ

in which each term is a quasi-equilibrium of Eν . Under our assumptions, we
may assume that the sequence has a limit point, and we can prove that the

7In the original version of Theorem 1 (Allouch and Le Van 2009, Theorem 2), the
boundedness of A is assumed instead of Assumption 1 (b).

8To be precise, we cannot always find a sequence {ων}ν∈N ⊂ Rℓn that satisfies all the
properties stated above. However, as will be shown later, we may assume without loss of
generality that there exists a sequence that satisfies the properties (a) and (b) as far as
the existence of a quasi-equilibrium matters.
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point is a quasi-equilibrium of the original economy.

The next lemma shows that for a fixed s ∈ S that satisfies (1), we can
find a sequence {εν}ν∈N ⊂ Rℓ with certain properties. It will be used in our
main existence theorem to construct the sequence {ων}ν∈N ⊂ Rℓn described
above.

Lemma 1. Suppose that Assumptions 1 and 2 hold, and suppose that there
exists s = (si)i∈I ∈ S that satisfies

si ∈ (intRi
Ai)

c for all i ∈ I.

Then, there exist {εν}ν∈N ⊂ Rℓ and ν ∈ N such that νεν → 0 as ν → ∞,
and for every ν ≥ ν and i ∈ I,

si /∈ Ri ∩ (Gi − {εν}).

Proof. Let s = (si)i∈I ∈ S be the element that satisfies si ∈ (intRi
Ai)

c for
all i ∈ I. Put Ibd = {i ∈ I : si ∈ Ai \ intRi

Ai} and Iout = I \ Ibd = {i ∈ I :
si /∈ Ai}.

In the following, we divide the proof into several cases, in each of which
we construct a sequence {εν}ν∈N ⊂ Rℓ that satisfies the properties in the
statement of the lemma.

Case 1. Ibd = ∅ (equivalently, Iout = I).

It is clear that the sequence {εν}ν∈N ⊂ Rℓ defined by εν = 0 for all ν ∈ N
satisfies the desired properties.

Case 2. Ibd ̸= ∅.

We first consider the sequence {εν
out}ν∈N ⊂ Rℓ defined by

εν
out =

1

ν2

∑
h∈Ibd

(sh − ωh) for each ν ∈ N.

It is clear that εν
out → 0 and νεν

out → 0 as ν → ∞.
Then, for i ∈ Iout, we have the following claim.

10



Claim 1. For each i ∈ Iout, there exists νi ∈ N such that

si /∈ Ri ∩ (Gi − {εν
out}) for all ν ≥ νi.

Proof of Claim 1. First, for each i ∈ Iout, since si /∈ Ai = Ri ∩ Gi and
si ∈ Ri, we must have si /∈ Gi. Then, since Gi is closed in Rℓ (by Fact 2),
there exists a positive real number ri > 0 such that B(si, ri)∩Gi = ∅. Since
εν

out → 0 as ν → ∞, there exists νi such that si + εν
out ∈ B(si, ri) for all

ν ≥ νi, which implies that si /∈ Gi − {εν
out} for all ν ≥ νi. ¤

With respect to i ∈ Ibd, we have the following claim.

Claim 2. For each i ∈ Ibd, either (a) there exists νi ∈ N such that

si /∈ Ri ∩ (Gi − {εν
out}) for all ν ≥ νi

or (b) there exists ν ′
i ∈ N such that

si ∈ Ri ∩ (Gi − {εν
out}) for all ν ≥ ν ′

i.

The proof of Claim 2 is provided in Appendix.

Let Iin be the subset of Ibd such that i ∈ Iin if and only if there exists
νi ∈ N that satisfies

si ∈ Ri ∩ (Gi − {εν
out}) for all ν ≥ νi.

Note that if I \ Iin ̸= ∅, by the definition of Iin and Claims 1 and 2, there
exists νout such that for every ν ≥ νout and i ∈ I \ Iin,

si /∈ Ri ∩ (Gi − {εν
out}).

Let νout = 1 if I \ Iin = ∅.
Then, we have two cases.

Case 2-A. Iin = ∅.

It is clear that the sequence {εν}ν∈N ⊂ Rℓ defined by εν = εν
out for each

ν ∈ N satisfies all the properties in the statement of the lemma.
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Case 2-B. Iin ̸= ∅.

For simplicity of notation, we assume without loss of generality that Iin =
{1, 2, · · · ,M}, where M = |Iin| ≤ n.

In view of the definition of Iin, there exists νin such that for all i ∈ Iin

and ν ≥ νin,
si ∈ Ri ∩ (Gi − {εν

out}).

Put ν = max{νout, νin}.
We construct the sequence {εν}ν∈N in several steps.
First, for each fixed ν ≥ ν, we successively define M vectors εν

1, · · · , εν
M ∈

Rℓ that satisfy the following two properties for each m ∈ Iin:

(i) sm + εν
m ∈ Rm \ Am and ∥εν

m∥ < 1/2mν2m+2, and

(ii) for all i ∈ (I \ Iin) ∪ {1, · · · ,m},

si /∈ Ri ∩
(
Gi − {εν

out} −
m∑

q=1

2qν2q{εν
q}

)
.

We first define εν
1 as follows.

Suppose first that I\Iin ̸= ∅. Since ν ≥ ν (≥ νout) and the set Gi−{εν
out}

is closed in Rℓ for each i ∈ I \ Iin, there exists a positive real number rν
1 such

that
B(si, r

ν
1) ∩ (Gi − {εν

out}) = ∅ for all i ∈ I \ Iin.

Then, since s1 ∈ A1 \ intR1 A1, there exists εν
1 ∈ Rℓ \ {0} such that

s1 + εν
1 ∈ R1 \ A1 and ∥εν

1∥ < min

{
rν
1

2ν2
,

1

2ν4

}
.9

Since 2ν2∥εν
1∥ < rν

1 , we have

si /∈ Ri ∩ (Gi − {εν
out} − 2ν2{εν

1}) for all i ∈ I \ Iin. (2)

We need to show that (2) also holds for i = m = 1.

9Recall that for xi ∈ Ai, we have xi ∈ Ai \ intRi Ai if and only if B(xi, r)∩Ri ̸⊂ Ai for
any positive real number r.
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Claim 3.
s1 /∈ R1 ∩ (G1 − {εν

out} − 2ν2{εν
1}).

The proof of Claim 3 is provided in Appendix.
If I \ Iin = ∅, we may define εν

1 as the vector that satisfies

s1 + εν
1 ∈ R1 \ A1 and ∥εν

1∥ <
1

2ν4
.

The proof of Claim 3 is not affected by this change.

Let m ∈ Iin with m ≥ 2, and suppose that εν
1, · · · , εν

m−1 are the vectors
that satisfy properties (i) and (ii) for each q ∈ {1, · · · ,m− 1}. We define εν

m

as follows.
First, by property (ii) with respect to m − 1, we have, for all i ∈ (I \

Iin) ∪ {1, · · · ,m − 1},

si /∈ Ri ∩
(
Gi − {εν

out} −
m−1∑
q=1

2qν2q{εν
q}

)
. (3)

Note that for all q ∈ {1, · · · ,m− 1}, by the first part of property (i) and the
convexity of Rq, we have sq + λεν

q ∈ Rq for all λ ∈ [0, 1].
By (3), there exists a positive real number rν

m such that for all i ∈ (I \
Iin) ∪ {1, · · · ,m − 1},

B(si, r
ν
m) ∩

(
Gi − {εν

out} −
m−1∑
q=1

2qν2q{εν
q}

)
= ∅.

Since sm ∈ Am \ intRm Am, we can choose εν
m ∈ Rℓ so that

sm + εν
m ∈ Rm \ Am and ∥εν

m∥ < min

{
rν
m

2mν2m
,

1

2mν2m+2

}
.

Since 2mν2m∥εν
m∥ < rν

m, we have, for all i ∈ (I \ Iin) ∪ {1, · · · ,m − 1},

si /∈ Ri ∩
(
Gi − {εν

out} −
m∑

q=1

2qν2q{εν
q}

)
. (4)

We claim that (4) also holds for i = m.
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Claim 4.

sm /∈ Rm ∩
(
Gm − {εν

out} −
m∑

q=1

2qν2q{εν
q}

)
.

The proof of Claim 4 is provided in Appendix.

Therefore, we conclude that for each ν ≥ ν, there exist M vectors
εν
1, · · · , εν

M ∈ Rℓ that satisfy properties (i) and (ii) for each m ∈ Iin. Note
that by property (ii) with respect to m = M ,

si /∈ Ri ∩
(
Gi − {εν

out} −
∑

m∈Iin

2mν2m{εν
m}

)
for all i ∈ I. (5)

We now define a sequence {εν
in}ν∈N ⊂ Rℓ by

εν
in =

1 for ν < ν∑
m∈Iin

2mν2mεν
m for ν ≥ ν.

Since

∥εν
in∥ ≤

∑
m∈Iin

2mν2m∥εν
m∥ <

M

ν2
for all ν ≥ ν,

we have νεν
in → 0 as ν → ∞ (recall that for all ν ≥ ν and m ∈ Iin, by the

second part of property (i), we have 2mν2m∥εν
m∥ < 1/ν2).

Finally, define a sequence {εν}ν∈N ⊂ Rℓ by

εν = εν
out + εν

in.

Then, from the definition, we have νεν → 0 as ν → ∞. Moreover, by (5), we
have, for every ν ≥ ν and i ∈ I,

si /∈ Ri ∩ (Gi − {εν}),

which completes the proof. ¤

Let {εν}ν∈N be the sequence that satisfies the properties stated in Lemma
1. The next Lemma shows that we may assume that

∑
i∈I ωi −νεν ∈ ∑

i∈I Ri

for all sufficiently large ν ∈ N as far as the existence of a quasi-equilibrium
matters.
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Lemma 2. Suppose Assumptions 1 and 2 hold. Suppose that there exists a
sequence {δν}ν∈N ⊂ Rℓ such that δν → 0 as ν → ∞, and∑

i∈I

ωi − δν /∈
∑
i∈I

Ri for all ν ∈ N.

Then, there exists a ℓ-dimensional vector p ̸= 0 such that

p · Ri ≥ p · ωi for all i ∈ I.10

Therefore, (ω, p) ∈ X × Rℓ is a quasi-equilibrium of E.

Proof. Since
∑

i∈I ωi ∈ ∑
i∈I Ri by Assumption 1 (c), if there exists a se-

quence {δν}ν∈N ⊂ Rℓ that satisfies the properties in the statement of the
lemma, we must have

∑
i∈I ωi ∈ bd(

∑
i∈I Ri). Since

∑
i∈I Ri is convex, by

applying the support theorem (see Florenzano and Le Van 2001, Corollary
2.1.1), we obtain p ̸= 0 such that

p · z ≥ p ·
∑
i∈I

ωi for all z ∈
∑
i∈I

Ri.

Take arbitrary i ∈ I and xi ∈ Ri. Since xi +
∑

j ̸=i ωj ∈
∑

k∈I Rk, we have

p · xi + p ·
∑
j ̸=i

ωj ≥ p · ωi + p ·
∑
j ̸=i

ωj,

and thus,
p · xi ≥ p · ωi.

Therefore, we obtain

p · Ri ≥ p · ωi for all i ∈ I,

which completes the proof. ¤

We now state and prove the existence of a quasi-equilibrium of E .

Theorem 2. Under Assumptions 1 – 3, there exists a quasi-equilibrium
(x, p) ∈ X × Rℓ \ {0} of E.

10By “p · Ri ≥ p · ωi,” we mean p · xi ≥ p · ωi for all xi ∈ Ri.
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Proof. By Assumptions 1 (a), 1 (b), 2 (a) and 3, there exists s = (si)i∈I ∈ S
such that si ∈ (intRi

Ai)
c for all i ∈ I.

Then, by Lemma 1, there exist a sequence {εν}ν∈N ⊂ Rℓ and a natural
number ν1 ∈ N such that νεν → 0 as ν → ∞, and for every ν ≥ ν1 and
i ∈ I,

si /∈ Ri ∩ (Gi − {εν}). (6)

Suppose that the sequence {νεν}ν∈N contains a subsequence {νµε
νµ}µ∈N

that satisfies ∑
i∈I

ωi − νµε
νµ /∈

∑
i∈I

Ri for all µ ∈ N.

Then, by Lemma 2, there exists p ∈ Rℓ \ {0} such that the element (ω, p) ∈
X × Rℓ \ {0} constitutes a quasi-equilibrium of E .

Therefore, we may suppose without loss of generality that there exists
ν2 ∈ N such that for all ν ≥ ν2,∑

i∈I

ωi − νεν ∈
∑
i∈I

Ri.

By this relation, for each ν ≥ ν = max{ν1, ν2}, there exists xν = (xν
i )i∈I ∈∏

i∈I Ri such that
∑

i∈I xν
i =

∑
i∈I ωi − νεν . Note that since Ri is compact,

the sequence {xν
i }ν≥ν ⊂ Ri is bounded for each i ∈ I.

For each ν ≥ ν and i ∈ I, let

ων
i =

(
1 − 1

ν

)
ωi +

1

ν
xν

i .

Then, we have ων
i ∈ Ri ⊂ Xi by the convexity of Ri, and

∑
i∈I

ων
i =

(
1 − 1

ν

) ∑
i∈I

ωi +
1

ν

∑
i∈I

xν
i =

∑
i∈I

ωi − εν . (7)

Moreover, ων
i → ωi as ν → ∞ for each i ∈ I. Indeed, since {xν

i }ν≥ν is
bounded,

∥ωi − ων
i ∥ ≤ 1

ν
∥ωi∥ +

1

ν
∥xν

i ∥ → 0 as ν → ∞.

We now define, for each ν ≥ ν, an auxiliary economy Eν by

Eν = (Rℓ, (Xi, ui, ω
ν
i )i∈I).

Note that Eν differs from E only in its initial endowments.
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By the definition, each Eν satisfies all the assumptions in Theorem 1. In
particular, each Eν satisfies [Weak nonsatiation]. To see this, note first that
for each i ∈ I, by (6) and (7),

si /∈ Gi − {εν}
= −

∑
j ̸=i

Rj +
∑
k∈I

{ωk} − {εν}

= −
∑
j ̸=i

Rj +
∑
k∈I

{ων
k}. (8)

For each i ∈ I, let

Rν
i = {xi ∈ Xi : ui(xi) ≥ ui(ω

ν
i )}.

Then, since ων
i ∈ Ri, we have Rν

i ⊂ Ri. Therefore, for each i ∈ I,

−
∑
j ̸=i

Rν
j +

∑
k∈I

{ων
k} ⊂ −

∑
j ̸=i

Rj +
∑
k∈I

{ων
k}.

Finally, by this relation and (8),

si /∈ Rν
i ∩

(
−

∑
j ̸=i

Rν
j +

∑
k∈I

{ων
k}

)
= Aν

i ,

where Aν
i denotes the individually rational feasible consumption set of con-

sumer i ∈ I in Eν .
Therefore, by Theorem 1, each Eν (ν ≥ ν) admits a quasi-equilibrium

(xν , pν) ∈ X ×Rℓ \ {0}. In view of Definition 2, we may assume without loss
of generality that pν ∈ S(0, 1) = {p ∈ Rℓ : ∥p∥ = 1} for all ν ≥ ν.

We now obtain a sequence {(xν , pν)}ν≥ν ⊂ X × S(0, 1) in which each
term (xν , pν) is a quasi-equilibrium of Eν . Since X × S(0, 1) is compact, we
may assume without loss of generality that the sequence has a limit point
(x, p) ∈ X×S(0, 1). We prove that (x, p) is a quasi-equilibrium of the original
economy.

We first show that (a-2) of Definition 2 holds. Suppose that for some
i ∈ I, there exists xi ∈ Xi with

ui(xi) > ui(xi) and p · xi < p · ωi.

Then, since (xν , pν) → (x, p) and ων
i → ωi as ν → ∞, and ui is upper

semicontinuous, we have

ui(xi) > ui(x
ν
i ) and pν · xi < pν · ων

i
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for sufficiently large ν. However, this contradicts the fact that (xν , pν) is a
quasi-equilibrium of Eν . Thus, (a-2) of Definition 2 holds. It is easy to check
that (x, p) satisfies (a-1) and (b) of Definition 2.

Therefore, we conclude that (x, p) ∈ X ×S(0, 1) is a quasi-equilibrium of
the original economy E . ¤

Remark 2. In fact, in the proof of Theorem 2, we can find a quasi-
equilibrium allocation x in the individually rational feasible allocation set
A. To see this, let {(xν , pν)}ν≥ν ⊂ X × S(0, 1) be the sequence obtained in
the proof. In view of Remark 1, we may assume that xν ∈ Aν for each ν ≥ ν,
where Aν denotes the set of all individually rational feasible allocations in
Eν . Note that ui(x

ν
i ) ≥ ui(ω

ν
i ) ≥ ui(ωi) for each ν ≥ ν and i ∈ I. Then,

since xν
i → xi and ui is upper semicontinuous, we have ui(xi) ≥ ui(ωi) for all

i ∈ I, which implies that x ∈ A.

3.2. Existence of competitive equilibrium

There are several known sets of assumptions under which a quasi equilib-
rium is a competitive equilibrium (see, for example, Geistdoerfer-Florenzano
1982). In this paper, we employ the simplest one:

Assumption 4. For all i ∈ I,

(a) ωi ∈ int Xi, and

(b) ui is continuous on Xi.

We now establish the existence of a competitive equilibrium under As-
sumption 3.

Theorem 3. Under Assumptions 1 – 4, there exists a competitive equilib-
rium (x, p) ∈ X × Rℓ \ {0} of E.

Proof. By Theorem 2, there exists a quasi-equilibrium (x, p) ∈ X ×Rℓ \{0}
of E . We prove that (x, p) is a competitive equilibrium of E .

It is clear that (x, p) satisfies (a-1) and (b) of Definition 1. Suppose that
(a-2) of Definition 1 does not hold for some i ∈ I. Then, there exists xi ∈ Xi

such that
ui(xi) > ui(xi) and p · xi = p · ωi.
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Since p ̸= 0 and ωi ∈ int Xi, there exists yi ∈ Xi such that p · yi < p · ωi. Let
xi(t) = txi + (1 − t)yi for each t ∈ (0, 1). It is clear that for all t ∈ (0, 1),

xi(t) ∈ Xi and p · xi(t) < p · ωi.

Moreover, since ui(xi) > ui(xi) and ui is continuous on Xi, we have
ui(xi(t)) > ui(xi) for t sufficiently close to 1. However, this contradicts
the fact that (x, p) is a quasi-equilibrium of E .

Therefore, we conclude that (x, p) ∈ X × Rℓ \ {0} is a competitive equi-
librium of E . ¤

4. Alternative assumption

In this section, we introduce an alternative to Assumption 3 and provide
some related results.

Consider the following assumption.

Assumption 5. For each i ∈ I, if Si ̸= ∅, we have Si ∩ (intXi
Fi)

c ̸= ∅.

The symbol intXi
Fi denotes the interior of Fi in the relative topology

on Xi that is, for xi ∈ Xi, we have xi ∈ intXi
Fi if and only if there exists

a positive real number r > 0 such that B(xi, r) ∩ Xi ⊂ Fi. Assumption
5 allows Si to be a subset of the individually feasible consumption set Fi,
provided that Si touches the complement of intXi

Fi in Xi. This assumption
is a generalization of Sato’s (2008) nonsatiation assumption, which asserts
that Si ∩ intXi

Fi = ∅ for each i ∈ I.
By replacing Ai by Fi and Ri by Xi for all i ∈ I in the statements

and proofs of all the propositions provided in 3.1 (including Theorem 1), we
obtain the existence of a quasi-equilibrium under Assumption 5.

Corollary 1. Under Assumptions 1, 2 and 5, there exists a quasi-
equilibrium (x, p) ∈ X × Rℓ \ {0} of E. 11

Assumptions 3 and 5 do not imply each other in general. Indeed, As-
sumption 5 does not hold in Example 1 in 2.2 (in which s1 lies on intX1 F1).
In contrast, in Example 2 below, we observe that only Assumption 5 holds.

11In this corollary, Assumption 1 (b) can be weakened to the boundedness of F by the
standard truncation technique.
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Example 2. Consider an exchange economy E with two commodities and
two consumers. Let X1 = {x1 ∈ R2 : 0 ≤ x11 ≤ 10 and x12 ≥ 0} and
X2 = R2

+. Let ω1 = (0, 10) and ω2 = (10, 0). Consumers’ utility functions
are as follows.

u1(x1) =

−|10 − x12| if x12 ̸= 10

−|5 − x11| + 5 if x12 = 10,

u2(x2) = x22.

Note that u1 is satiated at s1 = (5, 10), while u2 is never satiated on X2 (see
Figure 2).

By the above definitions, it is easy to check that

A1 = {x1 ∈ X1 : 0 ≤ x11 ≤ 10 and x12 = 10} = R1

and s1 ∈ A1. Since Ai \ intRi
Ai = ∅ when Ai = Ri, Assumption 3 does

not hold. However, since s1 ∈ F1 \ intX1 F1 (note that s1 requires the total
amount of the second good in the economy while consumer i ∈ I can consume
more of it), Assumption 5 holds.

However, Assumption 5 implies Assumption 3 if consumers’ utility func-
tions are continuous and not satiated at the initial endowment.

Proposition 1. Suppose that ui is continuous on Xi and ωi /∈ Si for all
i ∈ I, then Assumption 5 implies Assumption 3. 12

Proof. It suffices to show that for all i ∈ I, if Si ∩ (intXi
Fi)

c ̸= ∅, then,
Si∩(intRi

Ai)
c ̸= ∅. Suppose that Si∩(intXi

Fi)
c ̸= ∅ and Si∩(intRi

Ai)
c = ∅

for some i ∈ I. Let si ∈ Si ∩ (intXi
Fi)

c. Then, by the supposition, we have
si ∈ intRi

Ai.
Since si ∈ intRi

Ai, there exists a positive real number r1 such that

B(si, r1) ∩ Ri ⊂ Ai.

Moreover, since ui is continuous on Xi and ui(si) > ui(ωi), there exists a
positive real number r2 such that

B(si, r2) ∩ Xi ⊂ Ri.

12Example 1 in 2.2 shows that the converse of the statement is not true.
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Figure 2: Example in which Assumption 5 holds but Assumption 3 does not.

Let r = min{r1, r2}. Then, from the above two relations,

B(si, r) ∩ Xi ⊂ B(si, r1) ∩ Ri ⊂ Ai ⊂ Fi.

Therefore, si ∈ intXi
Fi, which is a contradiction. ¤

5. Concluding Remark

As a concluding remark, we compare Assumption 3 with the assumption
introduced by Won and Yannelis (2006).

Won and Yannelis (2006) establish the existence of a competitive equilib-
rium with satiation in more general settings than ours. For example, in their
analysis, consumers’ preferences are allowed to be non-ordered and individu-
ally rational feasible consumption sets do not need to be bounded. Moreover,
their assumption concerning satiation allows each consumer’s satiation area
Si to be a subset of intRi

Ai, and therefore, does not imply Assumption 3.
These advantages make their results applicable to securities markets with
unlimited short-selling, in which the set A may be unbounded, and to the
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capital asset pricing model (CAPM) without a riskless asset, in which satia-
tion inside intRi

Ai is likely to occur. 13

Nevertheless, as shown below, our assumption does not imply Won and
Yannelis’s assumption either.

To simplify the arguments, we consider the case in which if Si ̸= ∅ for
some i ∈ I, it consists of a unique element si ∈ Xi.

For an allocation x ∈ X, let Is(x) = {i ∈ I : xi ∈ Si} and Ins(x) =
I \ Is(x). For a consumption bundle xi ∈ Xi, let Pi(xi) = {yi ∈ Xi :
ui(yi) > ui(xi)}. Then, Won and Yannelis’s (2006) assumption reduces to
the following form:

Let x = (xi)i∈I ∈ A with Is(x) ̸= ∅ and Ins(x) ̸= ∅. Then, for
each p ∈ Rℓ \{0} that satisfies p ·Pj(xj) > p ·xj for all j ∈ Ins(x),
we have p · si ≥ p · ωi for all i ∈ Is(x). 14

Note that since si is a unique element of Si if the set is nonempty, we have
xi = si for i ∈ Is(x).

We now provide the following example.

Example 3. Consider an exchange economy E with two commodities and
three consumers. Let Xi = R2

+ for all i ∈ I = {1, 2, 3}. Let ω1 = ω2 = (2, 2)
and ω3 = (4, 4). Consumers’ utility functions are as follows.

u1(x1) = −∥(x11, x12) − (8, 0)∥2,

u2(x2) = −∥(x21, x22) − (0, 8)∥2,

u3(x3) = x32 − x31.

Note that s1 = (8, 0) (̸= ω1) and s2 = (0, 8) (̸= ω2) are the unique satiation
points of consumers 1 and 2, while u3 is never satiated on X3 (see Figure 3).
Note also that ui is continuous on Xi for each i ∈ I.

Consider an allocation x = (s1, s2, y3) ∈ X, where y3 = (0, 0) ∈ X3. It
is clear that x is individually rational feasible. Note that Is(x) = {1, 2} and
Ins = {3}.

13For satiation in CAPM without a riskless asset, see, for example, Nielsen (1987, 1990)
and Won et al. (2008).

14Won and Yannelis 2006, Assumption S5.
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Figure 3: Example in which Assumption 3 holds but Won and Yannelis’s (2006) assump-
tion does not.

By the definition of u3, we have P3(y3) = {x3 ∈ X3 : x32 > x31}. There-
fore, for a price p = (−1, 1) ∈ R2, we have

p · P3(y3) > 0 = p · y3.

However, since p · s1 = −8 < 0 = p · ω1 for consumer 1, Won and Yannelis’s
assumption does not hold.

To prove that Assumption 3 holds, we first observe that Assumption 5
holds. Indeed, we have s1 ∈ F1\intX1 F1 because s1 requires the total amount
of the first good in the economy while consumer 1 can consume more of
it. Likewise, we have s2 ∈ F2 \ intX2 F2. Therefore, this economy satisfies
Assumption 5. Then, by Proposition 1, we conclude that Assumption 3
holds.

Appendix

Proof of Claim 2. First, if
∑

h∈Ibd
(sh − ωh) = 0 (that is, εν

out = 0 for all
ν ∈ N), case (b) clearly holds. Thus, in the following, we suppose that∑

h∈Ibd
(sh − ωh) ̸= 0.

Suppose that the assertion of the lemma is not true. Then, for an arbi-
trarily chosen ν ∈ N, there exist ν ′, ν ′′ ≥ ν such that

si /∈ Ri ∩
(
Gi −

1

(ν ′)2

∑
h∈Ibd

{sh − ωh}
)

(9)
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and

si ∈ Ri ∩
(
Gi −

1

(ν ′′)2

∑
h∈Ibd

{sh − ωh}
)
. (10)

Without loss of generality, we may assume that ν ′ > ν ′′.
Then, by (10), there exists (xj)j ̸=i ∈

∏
j ̸=i Rj such that

si = −
∑
j ̸=i

xj +
∑
k∈I

ωk −
1

(ν ′′)2

∑
h∈Ibd

(sh − ωh). (11)

Since si ∈ Ai = Ri ∩ Gi, there exists (yj)j ̸=i ∈
∏

j ̸=i Rj such that

si = −
∑
j ̸=i

yj +
∑
k∈I

ωk. (12)

Then, (ν ′′/ν ′)2×(11)+(1 − (ν ′′/ν ′)2)×(12) yields,

si = −
∑
j ̸=i

zj +
∑
k∈I

ωk −
1

(ν ′)2

∑
h∈Ibd

(sh − ωh),

where

zj =

(
ν ′′

ν ′

)2

xj +

(
1 −

(
ν ′′

ν ′

)2)
yj ∈ Rj for each j ̸= i.

Therefore,

si ∈ Ri ∩
(
Gi −

1

(ν ′)2

∑
h∈Ibd

{sh − ωh}
)
,

which contradicts (9). ¤

Proof of Claim 3. Note first that since s1+εν
1 ∈ R1\A1 and A1 = R1∩G1,

we must have s1 + εν
1 /∈ G1.

Suppose that the assertion of the claim is not true. Then, there exists
(xj)j ̸=1 ∈

∏
j ̸=1 Rj such that

s1 = −
∑
j ̸=1

xj +
∑
k∈I

ωk −
1

ν2

∑
h∈Ibd

(sh − ωh) − 2ν2εν
1.

Since s1 ∈ R1 ∩ (G1 −{εν
out}) (recall that ν ≥ ν ≥ νin), there exists (yj)j ̸=1 ∈∏

j ̸=1 Rj such that

s1 = −
∑
j ̸=1

yj +
∑
k∈I

ωk −
1

ν2

∑
h∈Ibd

(sh − ωh).
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Therefore, we have

s1 = −
∑
j ̸=1

zj +
∑
k∈I

ωk −
1

ν2

∑
h∈Ibd

(sh − ωh) − 2εν
1, (13)

where

zj =
1

ν2
xj +

1 − 1

ν2

yj ∈ Rj for all j ̸= 1.

Moreover, since s1 ∈ A1 = R1 ∩ G1, there exists (tj)j ̸=1 ∈ ∏
j ̸=1 Rj such

that
s1 = −

∑
j ̸=1

tj +
∑
k∈I

ωk. (14)

Multiplying (14) by (1 − (1/ν)2), we have(
1 − 1

ν2

)
s1 = −

∑
j ̸=1

(
1 − 1

ν2

)
tj +

(
1 − 1

ν2

) ∑
k∈I

ωk.

By adding this equation and 0 = −(1/ν2)
∑

h∈Iout
(ωh − ωh) to (13),

s1+

(
1 − 1

ν2

)
s1

= −
∑
j ̸=1

zj +
∑
k∈I

ωk −
1

ν2

∑
h∈Ibd

(sh − ωh) − 2εν
1

−
∑
j ̸=1

(
1 − 1

ν2

)
tj +

(
1 − 1

ν2

) ∑
k∈I

ωk −
1

ν2

∑
h∈Iout

(ωh − ωh)

= −
∑
j ̸=1

zj +
∑
k∈I

ωk −
(

1

ν2
s1 + 2εν

1

)
−

∑
h∈Ibd\{1}

1

ν2
sh +

1

ν2

∑
h∈Ibd

ωh

−
∑

h∈Iout

(
1 − 1

ν2

)
th −

∑
h∈Ibd\{1}

(
1 − 1

ν2

)
th +

(
1 − 1

ν2

) ∑
k∈I

ωk

−
∑

h∈Iout

1

ν2
ωh +

1

ν2

∑
h∈Iout

ωh

= −
∑
j ̸=1

zj +
∑
k∈I

ωk −
(

1

ν2
s1 + 2εν

1

)
−

∑
h∈Iout

[
1

ν2
ωh +

(
1 − 1

ν2

)
th

]

−
∑

h∈Ibd\{1}

[
1

ν2
sj +

(
1 − 1

ν2

)
tj

]
+

1

ν2

∑
k∈I

ωk +

(
1 − 1

ν2

) ∑
k∈I

ωk.
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Rearranging the equation further, we obtain

2(s1 + εν
1) = −

∑
j ̸=1

aj + 2
∑
k∈I

ωk,

where for j ∈ Iout,

aj = zj +

[
1

ν2
ωj +

(
1 − 1

ν2

)
tj

]
∈ Rj + Rj,

and for j ∈ Ibd \ {1},

aj = zj +

[
1

ν2
sj +

(
1 − 1

ν2

)
tj

]
∈ Rj + Rj.

Therefore,

s1 + εν
1 = −

∑
j ̸=1

1

2
aj +

∑
k∈I

ωk.

Since (1/2)aj ∈ Rj for all j ̸= 1, we have s1 + εν
1 ∈ G1, which is a contradic-

tion. ¤

Proof of Claim 4. Note first that since sm + εν
m ∈ Rm \ Am and Am =

Rm ∩ Gm, we must have sm + εν
m /∈ Gm.

Suppose that there exists (xj)j ̸=m ∈ ∏
j ̸=m Rj such that

sm = −
∑
j ̸=m

xj +
∑
k∈I

ωk −
1

ν2

∑
h∈Ibd

(sh − ωh) −
m∑

q=1

2qν2qεν
q .

Since sm ∈ Rm ∩ (Gm − {εν
out}), there exists (yj)j ̸=m ∈ ∏

j ̸=m Rj such that

sm = −
∑
j ̸=m

yj +
∑
k∈I

ωk −
1

ν2

∑
h∈Ibd

(sh − ωh).

Therefore, we have

sm = −
∑
j ̸=m

zj +
∑
k∈I

ωk −
1

ν2

∑
h∈Ibd

(sh − ωh) −
m∑

q=1

2q−(m−1)ν2q−2mεν
q , (15)

where

zj =
1

2m−1ν2m
xj +

(
1 − 1

2m−1ν2m

)
yj ∈ Rj for all j ̸= m.
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Moreover, since sm ∈ Am = Rm ∩ Gm, there exists (tj)j ̸=m ∈ ∏
j ̸=m Rj

such that
sm = −

∑
j ̸=m

tj +
∑
k∈I

ωk. (16)

Multiplying (16) by (1 − (1/ν)2), we have(
1 − 1

ν2

)
sm = −

∑
j ̸=m

(
1 − 1

ν2

)
tj +

(
1 − 1

ν2

) ∑
k∈I

ωk.

By adding this equation and 0 = −(1/ν2)
∑

h∈Iout
(ωh − ωh) to (15),

sm+

(
1 − 1

ν2

)
sm

= −
∑
j ̸=m

zj +
∑
k∈I

ωk −
1

ν2

∑
h∈Ibd

(sh − ωh) −
m∑

q=1

2q−(m−1)ν2q−2mεν
q

−
∑
j ̸=m

(
1 − 1

ν2

)
tj +

(
1 − 1

ν2

) ∑
k∈I

ωk −
1

ν2

∑
h∈Iout

(ωh − ωh)

= −
∑
j ̸=m

zj +
∑
k∈I

ωk −
(

1

ν2
sm + 2εν

m

)
−

∑
h∈Ibd\{m}

1

ν2
sh +

1

ν2

∑
h∈Ibd

ωh

−
m−1∑
q=1

2q−(m−1)ν2q−2mεν
q −

∑
h∈Iout

(
1 − 1

ν2

)
th −

∑
h∈Ibd\{m}

(
1 − 1

ν2

)
th

+

(
1 − 1

ν2

) ∑
k∈I

ωk −
∑

h∈Iout

1

ν2
ωh +

1

ν2

∑
h∈Iout

ωh

= −
∑
j ̸=m

zj +
∑
k∈I

ωk −
(

1

ν2
sm + 2εν

m

)
−

∑
h∈Iout

[
1

ν2
ωh +

(
1 − 1

ν2

)
th

]

−
∑

h∈Ibd\{m}

[
1

ν2
sh +

(
1 − 1

ν2

)
th

]
−

m−1∑
q=1

2q−(m−1)ν2q−2mεν
q

+
1

ν2

∑
k∈I

ωk +

(
1 − 1

ν2

) ∑
k∈I

ωk

= −
∑
j ̸=m

zj + 2
∑
k∈I

ωk −
(

1

ν2
sm + 2εν

m

)

−
∑

h∈Iout

[
1

ν2
ωh +

(
1 − 1

ν2

)
th

]
−

∑
h∈Ibd\{1,··· ,m}

[
1

ν2
sh +

(
1 − 1

ν2

)
th

]
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−
∑

h∈{1,··· ,m−1}

[
1

ν2

(
sh + 2h−(m−1)νh−mεν

h

)
+

(
1 − 1

ν2

)
th

]
.

Rearranging the equation further, we obtain

2(sm + εν
m) = −

∑
j ̸=m

aj + 2
∑
k∈I

ωk, (17)

where for j ∈ Iout,

aj = zj +

[
1

ν2
ωj +

(
1 − 1

ν2

)
tj

]
,

for j ∈ Ibd \ {1, · · · ,m − 1},

aj = zj +

[
1

ν2
sj +

(
1 − 1

ν2

)
tj

]
,

and for j ∈ {1, · · · , m − 1},

aj = zj +

[
1

ν2

(
sj +

1

2−[j−(m−1)]ν−(j−m)
εν

j

)
+

(
1 − 1

ν2

)
tj

]
.

Note that for j ∈ {1, · · · ,m − 1}, since

0 <
1

2−[j−(m−1)]ν−(j−m)
≤ 1,

we have

sj +
1

2−[j−(m−1)]ν−(j−m)
εν

j ∈ Rj.

Then, by (17),

sm + εν
m = −

∑
j ̸=m

1

2
aj +

∑
k∈I

ωk.

Since (1/2)aj ∈ Rj for all j ̸= m, we have sm + εν
m ∈ Gm, which is a

contradiction. ¤
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