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Yoshio Kamijo∗and Takumi Kongo†
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Abstract

This paper presents axiomatizations of the Shapley and egalitarian values. The
balanced cycle contributions property is the key axiom in this paper. It requires
that, for any order of all the players, the sum of the claims from each player against
his predecessor is balanced with the sum of the claims from each player against
his successor. This property is satisfied not only by the Shapley value but also by
some other values for TU games. Hence, it is a less restrictive requirement than
the balanced contributions property introduced by Myerson (1980; International
Journal of Game Theory 9, 169–182).

JEL classification: C71
Keywords: axiomatization; balanced cycle contributions property; Shapley value;
egalitarian value

1 Introduction

An important criterion in allocation problems is fairness. The balanced contributions
property introduced by Myerson (1980) is a widely-used fairness criterion in the co-
operative game theory. This property requires that, for any pairs of players, the claim
from one player against another is balanced with a counter claim from another against
the player. Thus, if a solution satisfies this property, the outcome supported by the so-
lution is fair in that no one has a higher number of claims against another. However, the
property is rather restrictive because, along with efficiency, which is also an important
criterion in allocation problems, the only solution satisfying the property is the Shapley
value.

In this paper, we present a less restrictive property than the balanced contributions
property. Considering a less restrictive and minimal requirement of one described by
the balanced contributions property is relevant for the following two reasons. The first
reason is that the balanced contributions property could be a very demanding property
with regard to considering an application of the spirit of the condition to the real soci-
ety. Since the population of the modern society is very large, balanced claims forall
pairs of two individuals in the society are rarely expected. The other reason is related
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to a solution theory in cooperative game. Except for the Shapley value, there is no effi-
cient solution satisfying the balanced contributions property. Thus, exploring a weaker
condition than the balanced contributions property enriches the solution theory.

In our new less restrictive property, claims between two players cannot be balanced;
however, claims among all players are balanced in a cyclical manner, i.e., for any order
of players, the sum of the claims from each player against his predecessor is balanced
with the sum of the claims from each player against his successor. This weaker bal-
anced contributions property is satisfied by several values for TU games, such as the
Shapley value, the egalitarian value, and the CIS (center of gravity of the imputation
set) value (Driessen and Funaki 1991). Together with other basic axioms, the Shapley
value and the egalitarian value are axiomatized, and these form our main results.

This paper is organized as follows. Section 2 states the notation and definitions are
provided. The less restrictive fairness property is provided in Section 3. Sections 4
and 5 present axiomatizations of the Shapley and egalitarian values, respectively. In
Section 6, our results are generalized to the situations where players are asymmetric.
Section 7 concludes the paper. All the proofs of the propositions and theorems are
relegated in the Appendix.

2 Preliminaries

Let N ⊆ N be a finite set ofplayers, and letv : 2N → R with v(∅) = 0 be a
characteristic function. A pair (N, v) is acooperative game with transferable utility,
or simply, agame. Let Γ be a set of all games and let|N | = n, where| · | represents
the cardinality of the set. A non-empty subsetS ⊆ N is called a coalition, andv(S) is
the worth of the coalition. For simplicity, each singleton{i} ⊆ N is represented asi
when the possibility of confusion does not exist.

A game(N, v) iszero-monotonicif, for any i ∈ N and for anyS ⊆ N\i, v(S∪i) ≥
v(S) + v(i). A game(N, v) is superadditiveif, for any S, T ⊆ N with S ∩ T = ∅,
v(S ∪ T ) ≥ v(S) + v(T ). A game(N, v) is convexif, for anyS, T ⊆ N , v(S ∪ T ) +
v(S ∩ T ) ≥ v(S) + v(T ). The sets of all zero-monotonic games, all superadditive
games, and all convex games are denoted byΓM , ΓS , andΓC , respectively. In general,
ΓC ⊆ ΓS ⊆ ΓM .

For any coalitionS, let (N, uS) ∈ Γ be theS-unanimity gamedefined by

uS(T ) =

{
1 if S ⊆ T

0 otherwise

for any T ⊆ N . It is well known that any(N, v) ∈ Γ is represented as a linear
combination of unanimity games, i.e.

v =
∑

S⊆N ;S ̸=∅

∆v
SuS ,

where∆v
S =

∑
T⊆S(−1)|S|−|T |v(T ) is thedividendof S.

A value onΓ is a function that associates each game(N, v) ∈ Γ with an n-
dimensionalvectorx = (xi)i∈N , which satisfies

∑
i∈N xi 5 v(N). A valuex on

Γ is efficientif
∑
i∈N xi = v(N). One of the well-known efficient values is theShap-

ley valueϕ = (ϕi)i∈N (Shapley 1953); for any(N, v) ∈ Γ and for anyi ∈ N , it is
defined as

ϕi(N, v) =
∑

S⊆N ;S∋i

∆v
S

|S|
.
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Letφ be a value onΓ. Thebalanced contributions property(Myerson 1980) is the
following. For any(N, v) ∈ Γ and for any{i, j} ⊆ N ,

φi(N, v) − φi(N \ j, v) = φj(N, v) − φj(N \ i, v),

where(N \j, v) and(N \i, v) are restrictions of(N, v) onN \j andN \i, respectively.
Assume that a valueφ is commonly accepted as a distribution rule in the society, and
that the claim fromi againstj is measured byi’s contribution toj, i.e., c(i, j) =
φj(N, v) − φj(N \ i, v). Then, the balanced contributions property is interpreted as
a condition that claims between any two players are balanced with each other, i.e.,
c(i, j) = c(j, i).

Myerson (1980) showed that the Shapley value is a unique efficient value onΓ, and
it satisfies the balanced contributions property.

3 Balanced cycle contributions property

Let e(i, j) = c(i, j) − c(j, i) be theexcess claim fromi againstj. Then, the balanced
contributions property is interpreted as a condition that, for any two individualsi and
j, the excess claim fromi againstj is zero, i.e.,e(i, j) = 0. A weaker and minimal re-
quirement for balancedness of claims in a society is that the balancedness of the excess
claims is attained as a whole of the members in a society. One of the possible expres-
sions is that the sum of the excess claims among the society members is zero. That
is, given a coalitionS with |S| = s and an order(i1, i2, . . . , is) on S, the following
condition holds:

e(i1, i2) + e(i2, i3) + · · · + e(is−1, is) + e(is, i1) =
s∑
ℓ=1

e(iℓ, iℓ+1) = 0, (1)

whereis+1 = i1. In fact, this is a weaker requirement than the balancedness of claims
for each pair of individuals because, ife(i, j) = 0 holds for each{i, j} ⊆ N , the above
condition obviously holds. This can be interpreted as the condition that the sum of the
excess claims of all the players is zero, or that the average of the excess claims among
all the players is zero, irrespective of the order of players.

A similarity to the above condition is found in the general equilibrium theory of
standard microeconomics. In this study, the excess demands of the individual eco-
nomic agents are aggregated through the market, and the total excess demand, which
is the sum of the individual demands of the economic agents, becomes zero at market
equilibrium.

An order onS, (i1, i2, . . . , is), might be determined by some exogenous factors.
Otherwise, both the group and the order might be endogenously determined. This
can be explained by the following example. A playerj1 chooses one of the excess
claims, saye(j1, j2), which maximizes its excess claim. Then, the second player,j2,
also chooses one of its excess claims, saye(j2, j3), and this process is continued until
some player chooses the claim regarding one of the earlier players. As a result, we
obtain coalitionS = {i1, i2, . . . , is}, whose members can be indexed by the above
procedure.1 Then, the above condition simply states that after the determination of

1This kind of process that constructs closed cycles among players can be seen as a variation of Gale’s
Top Trading Cycles algorithm that is used in several kinds of allocation problems such as housing markets
(Shapley and Scarf 1974) and school choice problems (Abdulkadiroğlu and S̈onmez 2003).
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the coalition and the order, the sum of the excess claims among the members of the
coalition according to the order should be zero.

Sincee(iℓ, iℓ+1) = c(iℓ, iℓ+1) − c(iℓ+1, iℓ), eq.(1) can be reduced to

s∑
ℓ=1

c(iℓ, iℓ+1) =
s∑
ℓ=1

c(iℓ+1, iℓ).

Thus, given an order(i1, i2, . . . , is), the sum of the claims from each player against his
predecessor is balanced with the sum of the claims by each player against his succes-
sor. The left-hand side of the above equation is calledcycle contributions with respect
to an order(i1, i2, . . . , is) and the right-hand side is calledcycle contributions with re-
spect to the inverse order. Hence, eq.(1) can be observed as the balancedness of cycle
contributions with respect to the order and its inverse order.

Together with the assumption that a claim fromi againstj is measured byφj(N, v)−
φj(N \ i, v), we obtain the following axiom:

Group balanced cycle contributions property (GBCC): For any(N, v) ∈ Γ, anyS
with s = |S| ≥ 2, and any order(i1, i2, . . . , is) onS,

s∑
ℓ=1

(φiℓ(N, v) − φiℓ(N \ iℓ−1, v)) =
s∑
ℓ=1

(φiℓ(N, v) − φiℓ(N \ iℓ+1, v)) ,

wherei0 = is andis+1 = i1.

The GBCC requires the balancedness of cycle contributions for any group. How-
ever, given the aim to attain only the balancedness of excess claims in a society as a
whole, the balancedness of cycle contributions for only the grand coalition is justified.
Thus, we get the following:

Balanced cycle contributions property (BCC): For any(N, v) ∈ Γ and any order
(i1, i2, . . . , in) onN ,

n∑
ℓ=1

(φiℓ(N, v) − φiℓ(N \ iℓ−1, v)) =
n∑
ℓ=1

(φiℓ(N, v) − φiℓ(N \ iℓ+1, v)) ,

wherei0 = in andin+1 = i1.

Since the term
∑n
ℓ=1 φiℓ(N, v) is common to both sides, the condition described

in the axiom is reduced to:

n∑
ℓ=1

φiℓ(N \ iℓ−1, v) =
n∑
ℓ=1

φiℓ(N \ iℓ+1, v),

wherei0 = in andin+1 = i1. This is a more convenient representation of the BCC.
Hence, we use this representation of BCC hereafter.

Note that, in a two person game({i, j}, v), the conditions required by the GBCC
and BCC are automatically satisfied because both the left- and right-hand sides of the
equations of the condition areφi(i, v) + φj(j, v).

It is obvious that the BCC is weaker than the GBCC. The following shows the
equivalence of the two axioms:

Proposition 1. The GBCC and the BCC are equivalent.
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It is obvious that any value onΓ satisfying the balanced contributions property also
satisfies the BCC. Moreover, it is clear that theegalitarian valueψ = (ψi)i∈N , which
is defined as, for any(N, v) ∈ Γ and anyi ∈ N , ψi(N, v) = v(N)

n , also satisfies

the BCC because
∑n
ℓ=1 ψiℓ(N \ iℓ−1, v) =

∑n
ℓ=1 ψiℓ(N \ iℓ+1, v) =

∑
i∈N

v(N\i)
n−1 .

Since the egalitarian value is efficient, the BCC is definitely weaker than the balanced
contributions property.

The BCC requires that cycle contributions among all players should be balanced
between any order on the set of all players and its inverse order. Similarly, we can con-
sider the property that cycle contributions among all groups of three (or more) players
should be balanced between any order on the group and its inverse order as follows.

BCC for three players: For any (N, v) ∈ Γ and for any three player coalition
{i, j, k} ⊆ N

φi(N \k, v)+φj(N \i, v)+φk(N \j, v) = φi(N \j, v)+φj(N \k, v)+φk(N \i, v).

Note that in the above property, there is no need to specify the order of the players
i, j, k because the above condition remains unchanged for any order and its inverse. It
is straightforward that any value onΓ satisfying the balanced contributions property
also satisfies the BCC for three players. Thus, the BCC for three players is a weaker
property than the balanced contributions property as well as the BCC is. The relation-
ships between the BCC and the BCC for three players is as follows.

Proposition 2. The BCC and the BCC for three players are equivalent.

Thus, this proposition implies the equivalence of the BCC and the BCC for three
players.

In the above, we consider only groups of three players. In the following, we con-
sider groups ofr players, wherer ≥ 4.

BCC for r players: For any(N, v) ∈ Γ, anyS ⊆ N such that|S| = r and any order
(i1, i2, . . . , ir) onS,

r∑
ℓ=1

(φiℓ(N, v) − φiℓ(N \ iℓ−1, v)) =
r∑
ℓ=1

(φiℓ(N, v) − φiℓ(N \ iℓ+1, v)) ,

wherei0 = ir andir+1 = i1.

The following proposition indicates that the BCC and the BCC forr players, where
r ≥ 4, are almost equivalent.

Proposition 3. Let r ≥ 4. (i) If φ satisfies the BCC, it also satisfies the BCC forr
players. (ii) Ifφ satisfies the BCC forr players, it satisfies BCC when there arer or
more players.

So, the BCC forr players, wherer ≥ 4, is slightly weaker than the BCC. The
difference between Propositions 2 and 3 comes from the fact that while the BCC forr
players, wherer ≥ 4 is silent for a three person game (correctly speaking, a game with
less than or equal tor−1 players), the BCC requires a non-trivial restriction to a game
with three players.
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4 Axiomatization of the Shapley value

Along with two other basic axioms, the BCC characterizes the Shapley value. The first
axiom is a very fundamental one.

Efficiency (EF): For any(N, v) ∈ Γ,∑
i∈N

φi(N, v) = v(N).

The second property, which was introduced by Derks and Haller (1999), is related
to null players. Anull player in (N, v) is a playerk ∈ N , satisfyingv(S ∪ k) = v(S)
for anyS ⊆ N \ k.

Null player out property (NPO): For any(N, v) ∈ Γ, if k ∈ N is a null player in
(N, v), then for anyi ∈ N \ k,

φi(N, v) = φi(N \ k, v).

The NPO requires that a deletion of null players does not affect the payoffs of
other players. Note that, in general, the NPO has no relationship with the generalnull
player property.2 However, along with EF, the NPO implies the null player property.
It is easily verified that the Shapley value satisfies the NPO and EF. We obtain the
following.

Theorem 1. The Shapley value is the unique value onΓ that satisfies EF, the BCC,
and NPO.

For the independence of EF, the BCC, and NPO, see Table 1.

Table 1: Independence of the axioms in Theorem 1

Values / Properties EF BCC (forr) NPO
The Banzhaf value (Banzhaf 1965)− + +

Theτ -value (Tijs 1987)3 + − +
The egalitarian value + + −

+: satisfies,−: does not satisfy

Since the BCC and BCC for three players are equivalent, we obtain the fact that
the Shapley value is a unique efficient value satisfying the BCC for three players and
NPO as a corollary of Theorem 1. On the other hand, since the BCC forr players
wherer ≥ 4 is weaker than the BCC, we cannot obtain the axiomatization of the
Shapley value through the BCC forr players directly from Theorem 1 and Proposition
3. However, the following theorem shows that the Shapley value is axiomatized by EF,
the BCC forr players and NPO.

Theorem 2. Let r ≥ 3. The Shapley value is the unique value onΓ that satisfies EF,
the BCC forr players, and NPO.

2Thenull player propertyrequires that null players obtain nothing.
3Note that theτ -value is defined on the class of the quasi-balanced games.
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A remark on Theorems 1 and 2 is that it is easy to check that the proofs of Theo-
rems 1 and 2 (see Appendix) are applicable when we consider only restricted classes
of games such as the zero-monotonic games, superadditive games, or convex games.
Thus, Theorems 1 and 2 also hold, even though we replaceΓ in the statement of the
theorems byΓM , ΓS , or ΓC , respectively.

5 Axiomatization of the egalitarian value

Replacing NPO with the other property, the egalitarian value is characterized in a sim-
ilar manner.

A proportional playerin (N, v) is a playerk ∈ N , satisfyingv(S ∪ k) − v(S) =
1
|S|v(S) for all non-emptyS ⊆ N \ k. Thus, a proportional player is a player whose
marginal contributions to any non-empty coalition is directly proportional to the worth
of the coalition, and it is inversely proportional to the size of the coalition. Similar to
NPO, the following is considered.

Proportional player out property (PPO): For any(N, v) ∈ Γ, if k ∈ N is a propor-
tional player in(N, v), then for anyi ∈ N \ k,

φi(N, v) = φi(N \ k, v).

EF and PPO imply that any proportional player obtains an equal division of the
worth of the grand coalition, since ifk ∈ N is a proportional player in(N, v),

φk(N, v) = v(N) −
∑
i∈N\k

φi(N, v) = v(N) −
∑
i∈N\k

φi(N \ k, v)

= v(N) − v(N \ k) = v(N) − n− 1
n

v(N) =
v(N)
n

.

The egalitarian valueψ satisfies PPO, since ifk ∈ N is a proportional player in
(N, v), then for anyi ∈ N \ k,

ψi(N \ k, v) =
v(N \ k)
n− 1

=
(n− 1)v(N)

n
· 1
n− 1

=
v(N)
n

.

Following are the parallel results with Theorems 1 and 2.

Theorem 3. The egalitarian value is the unique value onΓ that satisfies EF, the BCC,
and PPO.

For the independence of EF, the BCC, and PPO, see Table 2.

Theorem 4. Let r ≥ 3. The egalitarian value is the unique value onΓ that satisfies
EF, the BCC forr players, and PPO.

Unlike the case of the Shapley value, the proofs of Theorem 3 and 4 (see appendix)
are not applicable when we consider only restricted classes of games, such as the zero-
monotonic games, superadditive games, or convex games. These differences come
from the differences between the properties of null players and proportional players.
Given a zero-monotonic, superadditive, or convex game, when we add a player who
is a null player in the null-extended game,4 the extended game is zero-monotonic,

4For the definition of the null-extended game, see the proof of Theorem 1 in the Appendix.
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Table 2: Independence of the axioms in Theorem 2

Values / Properties EF BCC (forr) PPO

φ =

{
ψ
2 if |N | = 1 andv(N) > 0
ψ otherwise

− + +

φi(N, v) =

{
v(N) − v(N \ i) if i ∈ P
(1−|P |)v(N)+

∑
j∈P v(N\j)

|N\P | otherwise
+ − +

the Shapley value + + −

P : a set of all proportional players, +: satisfies,−: does not satisfy

superadditive, or convex, respectively. However, when we add a player who is a pro-
portional player in the proportional-extended game,5 the extended game may not be
zero-monotonic, superadditive, or convex. These are crucial in our proofs.

6 Weighted balanced cycle contributions property

In this section, we consider a non-symmetric generalization of the analysis in the previ-
ous sections. Letwi(> 0) denote a positive weight for a playeri in the set of potential
player N. Let w = (wi), which is fixed throughout this section. Thew-weighted
Shapley valueϕw = (ϕwi )i∈N for any(N, v) ∈ Γ and anyi ∈ N is defined by

ϕwi (N, v) =
∑

S⊆N ;S∋i

wi∑
j∈S wj

∆v
S .

Whenwi = wj for all i, j ∈ N , thew-weighted Shapley value coincides with the
Shapley value.

A non-symmetric generalization of the BCC is as follows.

Weighted balanced cycle contributions property (WBCC):For any(N, v) ∈ Γ and
any order(i1, i2, . . . , i|N |) onN ,

|N |∑
ℓ=1

wiℓφiℓ(N \ iℓ−1, v) =
|N |∑
ℓ=1

wiℓφiℓ(N \ iℓ+1, v),

wherei0 = i|N | andi|N |+1 = i1.

Since thew-weighted Shapley value satisfies the weighed balanced contributions
property that requires,wi(ϕwi (N, v)−ϕwi (N \ j, v)) = wj(ϕwj (N, v)−ϕwj (N \ i, v)),
for each pair of playersi, j ∈ N , it also satisfies the WBCC.

As the following theorem shows, the WBCC with EF and NPO axiomatizes the
w-weighted Shapley value.

Theorem 5. Thew-weighted Shapley value is the unique value onΓ that satisfies EF,
the WBCC, and NPO.

5For the definition of the proportional-extended game, see the proof of Theorem 3 in the Appendix.
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Similar to Theorem 2, thew-weighted Shapley value is also a unique value onΓ,
satisfying EF, the WBCC forr players, and NPO. Moreover, these results also hold for
restricted domains of games such asΓM , ΓS andΓC .

Thew-weighted egalitarian valueψw is defined by

ψwi (N, v) =
wi∑
j∈N wj

v(N),

for eachi ∈ N . Whenwi = wj for all i, j ∈ N , thew-weighted egalitarian value
coincides with the egalitarian value.

A w-weighted proportional playerin (N, v) is a playerk ∈ N satisfyingv(S ∪
k)− v(S) = wk∑

j∈S wj
v(S) for all S ⊆ N \ k with S ̸= ∅. The following is a weighted

version of PPO.

Weighted proportional player out (WPPO): For any(N, v) ∈ Γ, if k ∈ N is a
w-weighted proportional player in(N, v), then for anyi ∈ N \ k,

φi(N, v) = φi(N \ k, v).

The following theorem holds.

Theorem 6. Thew-weighted egalitarian value is the unique value onΓ that satisfies
EF, the WBCC, and WPPO.

7 Concluding remarks

Except the Shapley and egalitarian values, there are several famous values that satisfy
BCC such as the CIS value and the ENSC (egalitarian non-separable contribution)
value (Driessen and Funaki 1991). The CIS value is characterized in a similar manner
as we did in the note, while the ENSC value is not. For the case of the CIS value, we
focus on the playerk ∈ N satisfyingv(S ∪ k) − v(S) = 1

|S| (v(S) −
∑
i∈S v(i)) for

all non-empty subsetS ⊆ N \ k. EF, the BCC (or the BCC forr players) and the
property that the elimination of the above-mentioned player does not affect the value
of the other players, characterize the CIS value. For the case of the ENSC value, we
can show that there exists no player whose elimination does not affect the value of the
other players.

Between Theorems 1 and 3, the player on which we pay attention is different.
Hence, we cannot generalize our results toα-egalitarian Shapley values (Joosten 1996),
which are convex combinations of the egalitarian and Shapley values. If we pay atten-
tion to only null players and focus on the effect of the elimination of a null player in
each value, all values we mention here (including the ENSC value) and all their convex
combinations are characterized.

Acknowledgements: The authors would like to thank René van den Brink and Yuk-
ihiko Funaki, who provided us with helpful comments and discussions. The
second author would like to acknowledge the financial support provided by the
Japan Society for the Promotion of Science (JSPS).
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Appendix: Proofs

Proof of Proposition 1.It is sufficient to show that the BCC implies the GBCC. Sup-
pose thatφ satisfies BCC. We will show thatφ satisfies the balancedness of the cycle
contributions for any coalitionS with the fixed sizes, inductively.

Consider the case fors = 3. Whenn = 3, the result is obvious. Hence, we
consider the case wheren ≥ 4. For any(N, v) ∈ Γ with n ≥ 4, let {i, j, k} ⊆ N and
a = (a1, a2, . . . , am) be an order on the setN\{i, j, k}. Hence,(i, j, k, a) is an order
onN .

By BCC with respect to an order(i, j, k, a) onN ,

φi(N \am, v)+φj(N \i, v)+φk(N \j, v)+φa1(N \k, v)+· · ·+φam(N \am−1, v)
= φi(N \j, v)+φj(N \k, v)+φk(N \a1, v)+φa1(N \a2, v)+· · ·+φam(N \i, v).

(2)

By BCC with respect to an order(i, k, j, a),

φi(N \am, v)+φk(N \i, v)+φj(N \k, v)+φa1(N \j, v)+· · ·+φam(N \am−1, v)
= φi(N \k, v)+φk(N \j, v)+φj(N \a1, v)+φa1(N \a2, v)+· · ·+φam(N \i, v).

(3)

eq.(2) − eq.(3) equals

φi(N \ k, v) + φj(N \ i, v) + 2φk(N \ j, v) + φa1(N \ k, v) − φa1(N \ j, v)
= φi(N \ j, v) + 2φj(N \ k, v) + φk(N \ i, v) + φk(N \ a1, v) − φj(N \ a1, v).

(4)
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Similarly, by BCC with respect to two orders(j, k, i, a) and(j, i, k, a), we obtain

φj(N \ i, v) + φk(N \ j, v) + 2φi(N \ k, v) + φa1(N \ i, v) − φa1(N \ k, v)
= φj(N \ k, v) + 2φk(N \ i, v) + φi(N \ j, v) + φi(N \ a1, v) − φk(N \ a1, v),

(5)

and by BCC with respect to two orders(k, i, j, a) and(k, j, i, a), we obtain

φk(N \ j, v) + φi(N \ k, v) + 2φj(N \ i, v) + φa1(N \ j, v) − φa1(N \ i, v)
= φk(N \ i, v) + 2φi(N \ j, v) + φj(N \ k, v) + φj(N \ a1, v) − φi(N \ a1, v).

(6)

1
4 (eq.(4) + eq.(5) + eq.(6)) equals

φj(N \i, v)+φk(N \j, v)+φi(N \k, v) = φj(N \k, v)+φk(N \i, v)+φi(N \j, v).

Thus, the balancedness of the cycle contributions holds for any coalitionS with s = 3.
From the above results, we can present the case fors = 4, . . . , n − 1, inductively.

Let S = {i1, i2, . . . , is}. Adding the two equalities obtained from the GBCC for the
two sets{i1, i2, . . . , is−1} and{i1, is−1, is}, and rearranging it results in the equality
of GBCC forS.

Proof of Proposition 2:Let a valueφ satisfy the BCC. Note that both conditions are
trivially satisfied for any game with two players or less. Moreover, for any three players
game, the BCC and the BCC for three players are equivalent. Thus, we consider the
case|N | ≥ 4.

First, we show that the BCC implies the BCC for three players. By Proposition
1, the BCC and the GBCC are equivalent and it is obvious that the GBCC implies the
BCC for three players. Thus, the desired result is obtained.

Next, we show that the BCC for three players implies the BCC. Let a valueφ
satisfy the BCC for three players. For any(N, v) ∈ Γ with |N | ≥ 4, consider an order
(i1, i2, . . . , i|N |) onN . By the BCC for three players with respect to(i1, i2, i3),

φi1(N \ i3, v) + φi2(N \ i1, v) + φi3(N \ i2, v)
= φi1(N \ i2, v) + φi2(N \ i3, v) + φi3(N \ i1, v). (7)

By the BCC for three players with respect to(i1, i3, i4),

φi1(N \ i4, v) + φi3(N \ i1, v) + φi4(N \ i3, v)
= φi1(N \ i3, v) + φi3(N \ i4, v) + φi4(N \ i1, v). (8)

eq.(7) + eq.(8) equals

φi1(N \ i4, v) + φi2(N \ i1, v) + φi3(N \ i2, v) + φi4(N \ i3, v)
= φi1(N \ i2, v) + φi2(N \ i3, v) + φi3(N \ i4, v) + φi4(N \ i1, v). (9)

Next, by the BCC for three players with respect to(i1, i4, i5),

φi1(N \ i5, v) + φi4(N \ i1, v) + φi5(N \ i4, v)
= φi1(N \ i4, v) + φi4(N \ i5, v) + φi5(N \ i1, v). (10)
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eq.(9) + eq.(10) equals

φi1(N \ i5, v) + φi2(N \ i1, v) + φi3(N \ i2, v) + φi4(N \ i3, v) + φi5(N \ i4, v)
= φi1(N \ i2, v)+φi2(N \ i3, v)+φi3(N \ i4, v)+φi4(N \ i5, v)+φi5(N \ i1, v).

Repeating a similar argument with respect to(i1, i5, i6), . . . , (i1, i|N |−1, i|N |), we ob-
tain

n∑
r=1

φir (N \ ir−1, v) =
n∑
r=1

φir (N \ ir+1, v).

Proof of Proposition 3:First, we show (i). By (i) of Proposition 2, ifφ satisfies the
BCC, it also satisfies the BCC for three players. By the proof of (ii) of Proposition 2, it
is clear that “ifφ satisfies the BCC for three players, it satisfies the BCC forr players
with respect tor ≥ 4 when there arer or more players.” If there are less thanr players,
it is trivial thatφ satisfies the BCC forr players. Hence, (i) is obtained.

Next, we show (ii). Letr ≥ 4. If φ satisfies the BCC forr players, and there
are more thanr players in a game, leti, j, k ⊆ N anda = (a1, a2, . . . , ar−3) be an
order onS ⊆ N\{i, j, k} satisfying|S| = r − 3. Applying BCC forr players with
respect to orders(i, j, k, a), (i, k, j, a), (j, k, i, a), (j, i, k, a), (k, i, j, a), (k, j, i, a) on
S ∪{i, j, k}, we have thatφ satisfies the BCC for three players,i, j andk, as shown in
the proof of (i) of Proposition 2. Thus, by (ii) of Proposition 2, it satisfies the BCC.

Since Proposition 2 means the equivalence of the BCC and the BCC for three play-
ers, Theorem 1 is obtained as a corollary of Theorem 2. However, here we prove both
theorems independently because it enables us to understand how the BCC and the BCC
for r players prove the uniqueness of values.

Proof of Theorem 1:We have already shown that the Shapley value satisfies EF, the
BCC and NPO. Hence, it is sufficient to show the uniqueness.

Let φ be a value onΓ satisfying the three properties. We show the uniqueness of
the value by the induction with respect to the number of players.

When|N | = 1, by EF,φi(N, v) = v(i) for i ∈ N .
Assume that,φ is uniquely determined, for any game with less thann players. We

show thatφ(N, v) is uniquely determined whenN = {1, 2, . . . , n}.
Take any integerk ∈ N \ N . Then, the null-extended game(N ′, w) of a game

(N, v) with respect tok is defined as follows:

N ′ = N ∪ k,

and for anyS ⊆ N ′,
w(S) = v(S \ k).

Clearly,k is a null player in(N ′, w) and(N ′ \ j, w) for anyj ∈ N . In addition,
(N ′ \ k,w) = (N, v) and(N ′ \ {j, k}, w) = (N \ j, v) for anyj ∈ N .

Consider an order(1, k, 2, . . . , n) onN ′. By the BCC,

φ1(N ′ \ n,w) + φk(N ′ \ 1, w) + · · · + φn(N ′ \ (n− 1), w)
= φ1(N ′ \ k,w) + φk(N ′ \ 2, w) + · · · + φn(N ′ \ 1, w). (11)
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By EF and NPO,φk(N ′ \ 1, w) = φk(N ′ \ 2, w) = 0. By NPO,φi(N ′ \ j, w) =
φi(N \ j, v) for any{i, j} ⊆ N . Therefore, (11) is equal to the following:

φ1(N \ n, v) + φ2(N, v) + · · · + φn(N \ (n− 1), v)
= φ1(N, v) + φ2(N \ 3, v) + · · · + φn(N \ 1, v),

or,

φ1(N, v) − φ2(N, v) = −φ2(N \ 3, v) − · · · − φn(N \ 1, v)
+ φ1(N \ n, v) + φ3(N \ 2, v) + · · · + φn(N \ (n− 1), v).

Let b1 be the right-hand side of the above equation. By the induction hypothesis,b1 is
uniquely determined.

Applying the similar argument to the orders(1, 2, k, 3, . . . , , n), (1, 2, 3, k, 4, . . . , n),
. . . , and(1, 2, . . . , n− 1, k, n), we obtain the following(n− 1) equations:

φ1(N, v) − φ2(N, v) = b1,

φ2(N, v) − φ3(N, v) = b2,

...

φn−1(N, v) − φn(N, v) = bn−1,

By EF,
φ1(N, v) + φ2(N, v) + · · · + φn(N, v) = v(N).

Since thesen equations are linear independent,φ(N, v) is uniquely determined.

Proof of Theorem 2:Let (N, v) ∈ Γ. Since we know that the Shapley value satisfies
EF, NPO and the BCC forr players, we show that the valueφ satisfying the three
axioms is uniquely determined. In case|N | = 1, EF impliesv(i) = ψi(i, v). Consider
|N | ≥ 2. In what follows, we show that “if|N | ≥ 2 andφ satisfies EF, NPO and
BCC for r players, then it must satisfy the balanced contributions property introduced
by Myerson (1980).”

Take any integerk1, k2, . . . , kr−2 ∈ N \ N , and letK = {k1, k2, . . . , kr−2}.
Then, the null-extended game(N ′, w) of a game(N, v) with respect toK is defined
as follows:

N ′ = N ∪K,
and for anyS ⊆ N ′,

w(S) = v(S \K).

Clearly, |N ′| ≥ r and eachk ∈ K is a null player in(N ′, w) and its any restriction
(N ′′, w) whereN ′′ ⊆ N ′ such thatk ∈ N ′. In addition,(N ′ \K,w) = (N, v).

Take anyi, j ∈ N ⊆ N ′ and consider an order(i, j, k1, k2, . . . , kr−2). By the BCC
for r players,

φi(N ′ \ kr−2, w) + φj(N ′ \ i, w) + φk1(N
′ \ j, w) + · · · + φkr−2(N

′ \ kr−3, w)
= φi(N ′ \ j, w) + φj(N ′ \ k1, w) + φk1(N

′ \ k2, w) + · · · + φkr−2(N
′ \ i, w).

(12)

By EF ad NPO, eq.(12) equals

φi(N, v) + φj(N \ i, v) = φi(N \ j, v) + φj(N, v)
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⇐⇒ φi(N, v) − φi(N \ j, v) = φj(N, v) − φj(N \ i, v).

Proof of Theorem 3:The proof is similar to that of Theorem 1. The difference between
the two proofs is that in the proof of Theorem 3, we consider the proportional-extended
game(N ′, w) of a game(N, v) with respect tok ∈ N \N defined as follows:

N ′ = N ∪ k,

and for anyS ⊆ N ′,

w(S) =

{
0 if S = {k}

|S|
|S|−|S∩k|v(S \ k) otherwise.

Clearly,k is a proportional player in(N ′, w) and(N ′\j, w) for anyj ∈ N . In addition,
(N ′ \ k,w) = (N, v) and(N ′ \ {j, k}, w) = (N \ j, v) for anyj ∈ N .

Assume thatφ is the egalitarian value, if there are less than or equal ton−1 players.
Consider an order(1, k, 2, . . . , n) onN ′. By BCC, EF, PPO, the induction hypothesis
and the definition of the proportional-extended game, we have

φ1(N, v) − φ2(N, v) = 0.

Applying a similar argument to the orders(1, 2, k, 3, . . . , n), . . . , (1, 2, . . . , n−1, k, n),
we haveφ1(N, v) = φ2(N, v) = · · · = φn(N, v). By EF, we concludeφi(N, v) =
v(N)/n for all i ∈ N .

Proof of Theorem 4:We show the uniqueness of the value by the induction with respect
to the number of players.

When|N | = 1, by EF,φi(N, v) = v(i) for i ∈ N . Let (N, v) ∈ Γ, where|N | = n.
Assume that, for any game with less thann players,φ is the egalitarian value.

Take any integerk1, k2, . . . , kr−2 ∈ N\N , and letK = {k1, k2, . . . , kr−2}. Then,
the proportional-extended game(N ′, w) of a game(N, v) with respect toK is defined
as follows:

N ′ = N ∪K,

and for anyS ⊆ N ′,

w(S) =

{
0 if S ⊆ K,

|S|
|S|−|S∩K|v(S \K) otherwise.

Then, eachk ∈ K is a proportional player in(N ′, w) since for anyk ∈ K and any
S ⊆ N ′ \ k, if S ⊆ K, thenw(S ∪ k) = w(S) = 0, and otherwise,

w(S∪k)−w(S) =
|S| + 1

(|S| + 1) − |(S ∪ k) ∩K|
v((S∪k)\K)− |S|

|S| − |S ∩K|
v(S\K)

=
1

|S| − |S ∩K|
v(S \K) =

1
|S|

w(S).

Similarly, eachk ∈ K is a proportional player in any restricted game(N ′′, w), where
N ′′ ⊆ N ′ andk ∈ N ′′. In addition,(N ′ \K,w) = (N, v).
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Take anyi, j ∈ N ⊆ N ′, and consider an order(i, j, k1, k2, . . . , kr−2). By the
BCC for r players,

φi(N ′ \ kr−2, w) + φj(N ′ \ i, w) + φk1(N
′ \ j, w) + · · · + φkr−2(N

′ \ kr−3, w)
= φi(N ′ \ j, w) + φj(N ′ \ k1, w) + φk1(N

′ \ k2, w) + · · · + φkr−2(N
′ \ i, w).

Repeatedly applying PPO,φi(N ′ \ kr−2, w) = φi(N, v), φj(N ′ \ k1, w) = φj(N, v),
φi(N ′ \ j, w) = φi(N \ j, v), andφj(N ′ \ i, w) = φj(N \ i, v). By EF and
PPO,φk1(N

′ \ j, w) = 1
|N ′|−2w(N ′ \ {j, k1}). Moreover, by repeatedly applying

the definition of proportional players, 1
|N ′|−2w(N ′ \ {j, k1}) = v(N\j)

n−1 . Similarly,

φkp(N ′ \ kp−1, w) = v(N)
n for eachp = 2, . . . , r− 2, andφkp(N ′ \ kp+1, w) = v(N)

n
for eachp = 1, . . . , r − 3.

Thus, the above equation can be reduced to

φi(N, v) + φj(N \ i, v) +
v(N \ j)
n− 1

+ (r − 3)
v(N)
n

= φi(N \ j, v) + φj(N, v) +
v(N \ i)
n− 1

+ (r − 3)
v(N)
n

Moreover, by the induction hypothesis, the above equation is

φi(N, v) = φj(N, v).

Together with EF, we have the desired result.

Proofs of Theorems 5 and 6:The proofs of Theorems 5 and 6 are almost similar to the
proofs of Theorems 1 and 3.
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