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Abstract

This paper provides a non-symmetric generalization of the position value for
communication situations. The definition of the weighted position value is moti-
vated by the two different kinds of asymmetry in communication situations. It is
shown that the weighted position value is characterized by component efficiency
and a modification of balanced link contributions that is used by Slikker (Inter-
national Journal of Game Theory 2005, Vol. 33, pp.505-514) to characterize the
(non-weighted) position value.
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1 Introduction

A communication situation is one in which participants with an economic or social
problem obtain a payoff through cooperation, and their cooperation is restricted to the
exogenously given communication structure. Two major allocation rules in commu-
nication situations assume a symmetric treatment of players. The first is the Myerson
value introduced by Myerson (1977). The Myerson value is thenon-weightedShapley
value applied to a graph-restricted game, which is derived from an original commu-
nication situation so as to represent a communication restriction among players. He
characterized the Myerson value by component efficiency and fairness. His fairness
axiom requires that two end point players of each link receiveequaldamage by delet-
ing the link, and thus, well describes the symmetric treatment of players in the Myerson
value. An alternative allocation rule for communication situations is the position value
introduced by Borm, Owen, and Tijs (1992). The position value is defined using a link
game where each link in the communication situation is viewed as a player. In the
defining the position value, thenon-weightedShapley value for the link game is calcu-
lated first, and then the value of a link isequallydivided by the two end point players
of the link. The sum of half of the Shapley value of the links that a player has is his
position value.

In this short paper, we add a non-symmetric flavor into communication situations.
We define the weighted position value in communication situations, motivated by two
sources of asymmetry. The first is asymmetry among links. Asymmetry among links
is embedded in the definition of the weighted position value, by applying the weighted
Shapley value (Shapley (1953a)) instead of the Shapley value to the link games. The
second is asymmetry among players, described by the unequal division of the value
between the two end point players. We axiomatize the weighted position value, by
component efficiency and weighted balanced link contributions which is the modifica-
tion of balanced link contributions introduced by Slikker (2005). In addition, as a result
of considering the relationship between two kinds of asymmetry, we obtain a new al-
location rule in communication situations. This allocation rule is characterized by the
component efficiency and another form of the weighted balanced link contributions, in
which asymmetry among players appears in the same manner as the weighted Shapley
value and the weighted Myerson value.

There are studies on asymmetry between players in communication situations, but
not on asymmetry between links. Haeringer (1999) considered asymmetries between
players in communication situations and introduced the weighed Myerson value, which
is simply defined by applying theweightedShapley value for graph-restricted games.
Slikker and van den Nouweland (2000) considered the weight system by Kalai and
Samet (1987), and extended the weighted Myerson value to hierarchical structures
among players. In the case of the position value, Kongo (2007) considered an ex-
tension of the position value to non-symmetric situation, but his extension was only for
asymmetry among players.

This paper is organized as follows: In the next section, the basic notations and
definitions used in this paper are given. The weighted position value is provided in
Section 3 and its axiomatic characterization is presented in Section 4. In Section 5, the
relationship between two kinds of asymmetry is considered. Section 6 concludes the
paper.
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2 Notations and definitions

Let N be a set of finite players and|N| = n where| · | represents the cardinality of the
set. ForS⊆ N, let N−S denote a setN \S. A function v : 2N → R with v( /0) = 0
is acooperative game with transferable utility, or simply, agame. A set of all games
on N is denoted byV N. If v ∈ V N satisfiesv({i}) = 0 for any i ∈ N, v is called a
zero-normalizedgame. A set of all zero-normalized games onN is denoted byV N

0 .
For anyS⊆ N, let uS∈ V N be aS-unanimity gamedefined by

uS(T) =

{
1 if S⊆ T

0 otherwise
,

for anyT ⊆N. It is well known that anyv∈ V N is represented as a linear combination
of unanimity games, that is,

v = ∑
S⊆N;S6= /0

∆v(S)uS,

where∆v(S) = ∑T⊆S(−1)|S|−|T|v(T) is adividendof S.
A solution for a gamev∈ V N is a function which associates a gamev with a payoff

vectorx = (xi)i∈N that satisfies∑i∈N xi 5 v(N). A well-known solution is theShapley
valueφ (Shapley (1953b)). It is defined by

φi(v) = ∑
S⊆N;S3i

∆v(S)
|S| ,

for any i ∈ N.
A non-symmetric generalization of the Shapley value is considered by Shapley

(1953a). For any playeri, let θi > 0 denote a positive weight fori andθ = (θi)i∈N

denote a positive weight vector of players. Given a weight vectorθ , the “weighted”
version of the Shapley value is defined as follows. For anyi ∈ N,

φ θ
i (v) = ∑

S⊆N;S3i

∆v(S)
θi

∑ j∈Sθ j
.

φ θ is called theweighed Shapley value.
Next, we consider communication relations between players. Given a player set

N, the bilateral communication channels between the players inN are described by an
undirected graphg⊆ g∗ = {{i, j}|i, j ∈N, i 6= j}. A set of all graphs onN is denoted by
GN. Each communication channel in a graph is called alink, and it is represented asi j
or ` instead of{i, j}. Forg⊆ g∗ andi ∈N, gi = {`∈ g|i ∈ `} is a set of links that player
i belongs to. Given a graphg, if there exists a finite sequence of playersi1, . . . , iH such
thati1 = i, iH = j andihih+1 ∈ g for anyh= 1, . . . ,H−1, theni is connected toj in the
graph. Given a graphg, players can communicate with each other, if and only if they
are connected to each other in the graphg. Let

N/g = {{ j ∈ N|i is connected toj in g}∪{i} | i ∈ N}.
N/g represents a collection of a set of communicable players. For anyS⊆ N, let
g(S) = {` ∈ g|`⊆ S} denote a restriction ofg onS. By g(S), S/g is defined in the same
manner asN/g, that is,

S/g = {{ j ∈ S|i is connected toj in g(S)}∪{i} | i ∈ S}.
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Fix player setN. Let v∈ V N
0 andg∈ GN. A pair (v,g) is called acommunication

situation. An allocation rule for communication situations is an-dimensional vector
valued function onV N

0 ×GN. Letψ be an allocation rule for communication situations.
The Myerson value (Myerson (1977)) is a famous allocation rule and is extended to the
case with players’ asymmetry by Haeringer (1999). Letθ be a weight vector for players
in N. Theweighted Myerson valueµθ is defined as follows. For anyi ∈ N,

µθ
i (v,g) = φ θ

i (vg),

wherevg ∈ V N is a graph-restricted game byg defined byvg(S) = ∑C∈S/gv(C) for any
S⊆ N. Thus, the weighted Myerson value is the weighted Shapley value, applied to
the graph-restricted game.

Another allocation rule in communication situations is the position value. Given a
communication situation(v,g), a link gamer ∈ V g of the communication situation is
defined by

r(g′) = vg′(N),

for anyg′ ⊆ g. The position valueπ for a communication situation(v,g) is defined as
follows. For any playeri ∈ N,

πi(v,g) = ∑
`∈gi

1
2

φ`(r).

Thus, the position value of the players is such that first the allocation of each of the
links in the link game is measured by the Shapley value; the players who are at the
end point of a link and implicitly assumed to have equal bargaining power split the
allocation of the link equally, and the player collects that amount from all the links to
which he belongs.

An axiomatic foundation for the position value was first presented by Borm, Owen,
and Tijs (1992). Their characterization works in the restricted class ofcycle-free
graphs. Later, Slikker (2005) found the way to characterize the position value for
an unrestricted class of communication situations through the following two axioms.
Let ψ denote an allocation rule for communication situations. Given a communication
situation(v,g),

Component Efficiency:For any componentC∈ N/g,

∑
i∈C

ψi(v,g) = v(C).

Balanced link contributions: For anyi ∈ N and anyj ∈ N,

∑
`∈g j

(ψi(v,g)−ψi(v,g− `)) = ∑
`′∈gi

(
ψ j(v,g)−ψ j(v,g− `′)

)
.

Component efficiency is quite natural for communication situations. This property
requires that only the players who can communicate with each other can cooperate, and
they divide the worth of their cooperation among themselves. Balanced link contribu-
tions, is a concept related to the balance between any two players’ bargaining power
and thus the fair treatment accorded to the two players in terms of their links. It re-
quires that the sum of the differences of the payoff for playeri in severing link` over
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all the links to which playerj belongs, is equal the sum of the differences of the payoff
for player j in severing link̀ ′ over all the links to which playeri belongs.

Taking the viewpoint that the “average” of the differences of the payoff instead
of the “total sum” should be balanced, balanced link contributions is revised to the
following average balanced link contributions:

Average balanced link contributions: For anyi ∈ N and anyj ∈ N,

1
|g j | ∑

`∈g j

(ψi(v,g)−ψi(v,g− `)) =
1
|gi | ∑

`′∈gi

(
ψ j(v,g)−ψ j(v,g− `′)

)
.

One advantage of average balanced link contributions over balanced link contribu-
tions is its simplicity. The average of the differences of the player’s payoff over the
links of his opponent is considered as an expected differences of his payoff when the
opponent cuts one of his links at random. Thus, the average balanced link contributions
suggests that the threat of playeri to j, which is measured by the expected difference
of player j ’s payoff wheni cut one of his link at random, balances with the threat of
player j to i.

In the literature on communication situations, it remains open as to what kinds of
allocation rules satisfy the average balanced link contributions. Our attempt to extend
the position value to non-symmetric cases in two directions gives some insight into the
form of such an allocation rule. This point is considered in Section 5.

3 Weighted position value

One step of extending the position value to non-symmetric situations is considered by
Kongo (2007). He dropped a symmetric treatment among players in order to respond to
economic and social situations where players in an underlying game should be treated
in an asymmetric way, because of personal characteristics that are not reflected in the
game itself (e.g., they have the different bargaining abilities or input different effort
levels to achieve or maintain the underlying situation).

Let θ ∈RN
++ be a positive weight vector for players. Then, theplayer-wise weighted

position valueπθ for (v,g) is defined by

πθ
i (v,g) = ∑

ih∈gi

θi

θi +θh
φih(r),

for any i ∈ N. Thus, the symmetric assumption between players in the position value,
which is expressed by the equal split of the allocation of a link between players at the
end-point of the link, is now replaced by an asymmetry between the two players in a
such way that the allocation of the link is divided proportionally to their weights.

Another way of extending the position value to a non-symmetric situation, is to
consider an asymmetry among links. The asymmetry among links in underlying game
is often caused by the physical aspects. One typical factor is the length of each link,
which may influence the speed of communication between the players and the accuracy
of the information conveyed on the link. Other factor is the different construction costs
for the links, which may be sunk in the current situation, but for which it may be
necessary to compensate from the profits of the underlying game.

Let σ ∈ Rg∗
++ be a positive weight vector for links. Here, for notational conve-

nience, we define the weights for the potential links that may not appear in the current
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communication situation(v,g). Then, thelink-wise weighted position valueπσ is de-
fined by

πσ
i (v,g) = ∑

ih∈gi

1
2

φ σ
ih(r),

for any i ∈ N. Thus, the asymmetry among links is now represented in the weighted
Shapley value for the link game.

It is quite natural to consider the mixture of both kinds of asymmetric extensions
of position value. Letθ ∈RN

++ andσ ∈Rg∗
++ denote weights on players inN and links

in g∗ respectively. A pairw = (θ ,σ) is called aweight structurefor communication
situations.

Definition 1. Given a weight structurew = (θ ,σ) for communication situations, the
weighted position valueπw for (v,g) is defined as follows. For any playeri ∈ N,

πw
i (v,g) = ∑

ih∈gi

θi

θi +θh
φ σ

ih(r).

4 Axiomatic characterization

Given a weight structurew = (θ ,σ), the balanced link contributions is modified for
asymmetric cases as follows:

Weighted balanced link contributions: For anyi ∈ N and anyj ∈ N,

∑
jk∈g j

σ jk
θ j

θ j +θk
(ψi(v,g)−ψi(v,g− jk))

= ∑
ih∈gi

σih
θi

θi +θh
(ψ j(v,g)−ψ j(v,g− ih)) .

Thus, balanced link contributions is extended in the two directions. First, an asym-

metry among players is reflected in the proportion
θ j

θ j+θk
of the difference of playeri’s

payoff, when playerj breaks down his linkjk. Second, an asymmetry among links is
reflected in the multiplierσ jk for the difference of the playeri’s payoff in player j ’s
serving link jk.

The next theorem characterizes the weighted position value. Since whenσ` = σ`′
holds for any two links̀ and`′, weighted balanced link contributions coincides with
the one considered in Kongo (2007), which he used to characterize the player-wise
position value. Thus, the next theorem includes Theorem 1 in Kongo (2007).

Theorem 1. Given a weight structurew= (θ ,σ), there exists a unique allocation rule
on communication situations that satisfies component efficiency and weighted balanced
link contributions. This allocation rule is the weighted position valueπw.

Proof. Let a weight structurew = (θ ,σ) be given. The following proof is modification
of the proof of Lemma 3.1 and Theorem 3.1 of Slikker (2005).
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First, we show thatπw satisfies the two axioms. For the component efficiency, for
anyC∈ N/g,

∑
k∈C

πw
k (v,g) = ∑

i j∈g(C)

( θi

θi +θ j
+

θ j

θi +θ j

)
φ σ

i j (r) = ∑
i j∈g(C)

φ σ
i j (r)

= ∑
i j∈g(C)

φ σ
i j (r|g(C)) = r(g(C)) = v(C),

wherer|g(C) ∈ V g(C) is a restriction ofr ∈ V g ong(C). In the above equation, the third
equality holds because for anyi j ∈ g(C) and anyg′ ⊆ g− i j , the marginal contributions
of i j to g′ are equal to those ofi j to g′∩g(C). The fourth equality is by the efficiency
of the weighted Shapley value.

For anyg′ ⊆ g, let σ(g′) denote∑`∈g′ σ`. If a domain for the summation is empty,
we put the value for the summation at zero.

For weighted balanced link contributions, for anyi, j ∈ N,

∑
jk∈g j

σ jk
θ j

θ j +θk
(πw

i (v,g)−πw
i (v,g− jk))

= ∑
jk∈g j

σ jk
θ j

θ j +θk

(
∑

ih∈gi

θi

θi +θh
∑

g′⊆g
g′3ih

σih
∆r(g′)
σ(g′)

− ∑
ih∈(g− jk)i

θi

θi +θh
∑

g′⊆g− jk
g′3ih

σih

∆r|g− jk
(g′)

σ(g′)

)

= ∑
jk∈g j

σ jk
θ j

θ j +θk

(
∑

g′⊆g

∆r(g′)
σ(g′) ∑

ih∈g′i

σih
θi

θi +θh

− ∑
g′⊆g− jk

∆r|g− jk
(g′)

σ(g′) ∑
ih∈g′i

σih
θi

θi +θh

)

= ∑
jk∈g j

σ jk
θ j

θ j +θk
∑

g′⊆g
g′3 jk

∆r(g′)
σ(g′) ∑

ih∈g′i

σih
θi

θi +θh

= ∑
g′⊆g

∑
jk∈g′j

σ jk
θ j

θ j +θk

∆r(g′)
σ(g′) ∑

ih∈g′i

σih
θi

θi +θh

= ∑
g′⊆g

∆r(g′)
σ(g′) ∑

ih∈g′i

σih
θi

θi +θh
∑

jk∈g′j

σ jk
θ j

θ j +θk

= ∑
ih∈gi

σih
θi

θi +θh
(πw

j (v,g)−πw
j (v,g− ih)),

where the third equality is by the fact that for anyg′ ⊆ g− jk ∆r(g′) = ∆r|g− jk
(g′) and

the last equality follows by the same arguments as for the first four equalities.
To prove the uniqueness, letψ satisfy the two axioms. The proof is by induction

of the number of links ing. If g = /0, component efficiency impliesψ(v,g) = v({i}) =
πw(v,g) for any i ∈ N thus, ψ = πw. Let m≥ 1. Suppose thatψ = πw holds for
any graph that contains less thanm−1 links and consider the case thatg containsm
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links. FixC∈N/g. If C is singleton, component efficiency impliesψ(v,g) = v({i}) =
πw(v,g) for i ∈C. If |C| ≥ 2, without loss of generality, letC = {1,2, . . . ,c}. Applying
weighted balanced link contributions to pairs{1,2},{1,3}, . . . ,{1,c}, we obtain

∑
2k∈g2

σ2k
θ2

θ2 +θk
ψ1(v,g)− ∑

1h∈g1

σ1h
θ1

θ1 +θh
ψ2(v,g)

= ∑
2k∈g2

σ2k
θ2

θ2 +θk
ψ1(v,g−2k)− ∑

1h∈g1

σ1h
θ1

θ1 +θh
ψ2(v,g−1h)

= ∑
2k∈g2

σ2k
θ2

θ2 +θk
πw

1 (v,g−2k)− ∑
1h∈g1

σ1h
θ1

θ1 +θh
πw

2 (v,g−1h);

...

∑
ck∈gc

σck
θc

θc +θk
ψ1(v,g)− ∑

1h∈g1

σ1h
θ1

θ1 +θh
ψc(v,g)

= ∑
ck∈gc

σck
θc

θc +θk
ψ1(v,g−ck)− ∑

1h∈g1

σ1h
θ1

θ1 +θh
ψc(v,g−1h)

= ∑
ck∈gc

σck
θc

θc +θk
πw

1 (v,g−ck)− ∑
1h∈g1

σ1h
θ1

θ1 +θh
πw

c (v,g−1h);

Also, by component efficiency,

∑
i∈C

ψi(v,g) = v(C).

Thesec equalities form a regular system of linear equations inc variables and it has a
unique solution which is a weighted position value. Hence, for anyi ∈C, ψi coincides
with πw

i . For anyi ∈C′ ∈N/g we can prove the coincidence betweenψi andπw
i in the

same way. By induction ofm, the proof is completed.

Corollary 1 (Kongo (2007)). The player-wise weighted position valueπθ is charac-
terized by the component efficiency and the player-wise weighted balanced link contri-
butions defined by: for anyi ∈ N and for anyj ∈ N,

∑
jk∈g j

θ j

θ j +θk
(ψi(v,g)−ψi(v,g− jk))

= ∑
ih∈gi

θi

θi +θh
(ψ j(v,g)−ψ j(v,g− ih)) .

Corollary 2. The link-wise weighted position valueπσ is characterized by the compo-
nent efficiency and the link-wise weighted balanced link contributions defined by: for
anyi ∈ N and for anyj ∈ N,

∑
jk∈g j

σ jk (ψi(v,g)−ψi(v,g− jk)) = ∑
ih∈gi

σih (ψ j(v,g)−ψ j(v,g− ih)) .
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5 Basis for the weights

Let us consider the relationship between weights for players and weights for links.
Given a weight vectorθ for players, if we adapt the viewpoint that the weight of a link
is determined by the weights for the end point players for the link, a candidate ofσih

would be
σ∗ih(θ) = θi +θh.

One may suppose that average of the two players’ weights is preferable for the weight
of the link, as compared to the sum of the weights of the end point players. Generally
speaking, the choice of the appropriate form of the weight is quite a difficult question
and it strongly depends on the context. Fortunately, however, this point does not matter
because the scale of the weight vector for players is independent of that of the weight
for links, thanks to the separability of the two sources of the weight. Both the average
and the total sum generate the same result.

Let σ∗(θ) = (σ∗` (θ))`∈g∗ . For weight structurew∗(θ) = (θ ,σ∗(θ)), the weighted
balanced contributions is reduced to the following: For anyi ∈ N and for anyj ∈ N,

∑
jk∈g j

θ j (ψi(v,g)−ψi(v,g− jk)) = ∑
ih∈gi

θi (ψ j(v,g)−ψ j(v,g− ih)) .

Dividing the above equation byθiθ j , we obtain the following property.

Class-balanced link contributions:For anyi ∈ N and anyj ∈ N,

∑
jk∈g j

1
θi

(ψi(v,g)−ψi(v,g− jk)) = ∑
ih∈gi

1
θ j

(ψ j(v,g)−ψ j(v,g− ih)) .

Class-balanced contributions requires that the sum of link contributions normalized
by player’s weightθi should balance.

The “player” version of the class balanced link contributions is defined as follows:

Class-balanced contributions:For anyi ∈ N and anyj ∈ N,

1
θi

(ψi(v,g)−ψi(v,g−g j)) =
1
θ j

(ψ j(v,g)−ψ j(v,g−gi)) .

Thus, while in class-balanced link contributions the sum of the difference of player
i’s payoff, whenj holds all the links and whenj cuts one of his links over all the links
of player j is divided by the weight of playeri, in class-balanced contributions the
difference of the payoff of playeri when his opponentj holds all the links and whenj
cuts his all links is divided by the weight of playeri.

Now, we present the following theorems, which axiomatize allocation rules satis-
fying class-balanced contributions and class-balanced link contributions respectively.
Theorem 2 is by Slikker and van den Nouweland (2000), and Theorem 3 is an imme-
diate consequence of the above argument and Theorem 1.

Theorem 2 (Slikker and van den Nouweland (2000)). Given a weight vectorθ for
players, there is a unique allocation rule on communication situations, that satisfies
component efficiency and class-balanced contributions. This is the weighed Myerson
valueµθ .
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Theorem 3. Given a weight vectorθ for players, there is a unique allocation rule on
communication situations that satisfies component efficiency and class-balanced link
contributions. This solution is defined by

λ θ
i (v,g) = πw∗(θ)

i (v,g),

for anyi ∈ N.

Recall thatλ θ and class-balanced link contributions are the special case of the
weighed position valueπw and weighted balanced link contributions. Since Theorem
1 works for any given weight structurew, the proof of Theorem 3 is obvious from the
definition ofλ θ and the weight structurew∗(θ).

In the above discussion, we consider that the weight for links is determined by the
weight for the players. Next, we consider that the weight for players is determined
by the structure of the links. Here, there is an appropriate source of the weight for
the players in terms of the links: the number of the links that each player has. In the
co-author model (Jackson and Wolinsky (1996)), it is assumed that a player equally
allocated his constant effort capacity to all the links that he has, and thus his per capita
effort towards each link decreases as the total number of his links increases. Similarly,
we consider that the weight for the player is represented as his per capita effort. Then,
the weight of playeri is

θ ∗i (g) =
1
|gi | ,

whengi 6= /0 andθ ∗i (g) equals an arbitrary positive numbera > 0 whengi = /0.1

Now we obtain the way that both weights for players and links are endogenously
determined by the underlying communication situation itself. Given(v,g), first the
weight for players is determined asθ ∗(g) and then the weight for the links isσ∗(θ ∗(g)).
By using this weight structurew∗∗(g) = (θ ∗(g),σ∗(θ ∗(g))) which depends on the cur-
rent communication situation, we have a new allocation rule for communication situa-
tion.

Definition 2. An allocation ruleκ for communication situations is defined as follows.
For each(v,g) andi ∈ N,

κi(v,g) = πw∗∗(g)
i (v,g) = ∑

ih∈gi

θ ∗i (g)
θ ∗i (g)+θ ∗h (g)

φ σ∗(θ∗(g))
ih (r).

Let us consider an allocation rule that satisfies average balanced link contributions.
Class-balanced link contributions can be reduced to:

θ j ∑
jk∈g j

(ψi(v,g)−ψi(v,g− jk)) = θi ∑
ih∈gi

(ψ j(v,g)−ψ j(v,g− ih)) ,

for any i ∈N and anyj ∈N. Fix communication situation(v,g) andθ̂i = 1
|gi | for i ∈N.

An allocation ruleλ θ̂ satisfies the above equation for communication situation(v,g).
However, this allocation ruleλ θ̂ does not satisfy average balanced link contributions
because, in general,λ θ̂ does not satisfy the above condition for other communication

1Note that ifgi = /0, his weight isnot determined by the structure of the links, since, in our setting, the
weight must be positive. However, if we consider component efficiency together, the player who has no links
always obtains nothing and thus the weight of the player has no meaning.
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situations(v′,g′). On the other hand, the allocation ruleκ does not satisfy the aver-
age balanced link contributions, either. This is because whileκ(v,g) = λ θ̂ (v,g) holds,
κ(v,g′) does not coincide withλ θ̂ (v,g′) for g′ ( g. Thus, both exogenous and en-
dogenous approaches can not answer the form of the solution that satisfies the average
balanced link contributions.

6 Conclusions

This paper, extends the position value to communication situations with asymmetry
among players, as well as among links. The weighted position value is defined, with
respect to weight structurew= (θ ,σ). We axiomatized the weighted position value by
the component efficiency and weighted balanced link contributions.
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