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Nonsatiation and existence of competitive equilibrium

Norihisa Sato∗

Graduate School of Economics, Waseda University, 1-6-1 Nishiwaseda Shinjuku-ku,
Tokyo 169-8050, Japan

Abstract

In this paper, we provide a new assumption on satiation of preferences that is
weaker than the standard nonsatiation assumption and Allouch and Le Van’s
(2008a; 2008b) weak nonsatiation. It allows, under certain conditions, prefer-
ences to be satiated only inside the individually rational feasible consumption
sets. Moreover, just like the two nonsatiation assumptions, our assumption
depends solely on the characteristics of consumers.

JEL classification: C62; D50

Key words: Satiation, Quasi-equilibrium, Individually rational feasible
consumption.

1. Introduction

Insatiability of consumers’ preferences is a standard assumption in the
classical general equilibrium theory (Arrow and Debreu, 1954; Debreu, 1959,
among others). This assumption, in its strong form, asserts that consumers’
preferences are insatiable over the entire consumption set. However, in some
cases, we observe that consumption sets are naturally compact (see Mas-
Colell, 1992) and every continuous preference has therefore at least one sa-
tiation point. As is well known in the literature, a simple way to avoid this
inconsistency is to assume that when a preference has satiation points, they

∗Tel: +81 3 3208 8560; fax: +81 3 3204 8957
Email address: nrsato@gmail.com (Norihisa Sato)



are always outside the individually rational feasible consumption set. 1 This
weaker version of the standard nonsatiation allows preferences to be sati-
ated, but excludes the case in which satiation occurs inside the individually
rational feasible consumption sets.

It has been known that a competitive equilibrium may fail to exist when
preferences are satiated in the individually rational feasible consumption set.
Recently, however, Allouch and Le Van (2008a,b) have shown that even if
there exists a consumer whose preference has satiation points in his or her
individually rational feasible consumption set, one can still obtain the exis-
tence of competitive equilibrium by assuming that the preference also has at
least one satiation point outside the set. The assumption is a direct general-
ization of the standard nonsatiation assumption, and therefore, they call it
“weak nonsatiation”.

Won and Yannelis (2006) introduce a different assumption that allows
for satiation inside the individually rational feasible consumption sets. Their
existence results are quite general. For example, in their proofs, individually
rational feasible consumption sets do not need to be bounded and consumers’
preferences are allowed to be non-ordered. Moreover, Won and Yannelis’s re-
sults apply to the case in which satiation occurs only insides the individually
rational feasible consumption sets, while Allouch and Le Van’s (2008a,b) re-
sult does not. In fact, Won and Yannelis’s assumption contains Allouch and
Le Van’s weak nonsatiation as a special case. However, it is worth noting
that while Won and Yannelis’s assumption contains a restriction on the price
system, weak nonsatiation depends solely on the characteristics of consumers
just like the standard nonsatiation.

The main contribution of this paper is to establish the existence of com-
petitive equilibrium by introducing a new assumption that is weaker than Al-
louch and Le Van’s (2008a,b) weak nonsatiation and therefore the standard
nonsatiation assumption. Our assumption allows each consumer’s preference
to be satiated only inside the individually rational feasible consumption set,
provided that at least one satiation point lies on a “boundary” of the set.
Roughly speaking, the “boundary” of one’s individually rational feasible con-
sumption set is defined as the set of individually rational feasible consump-

1A consumption bundle is said to be individually rational feasible if it can be achieved
by a trade in which every consumer involved attains at least the same utility as that
gained from his or her initial endowment. For the existence proof under this assumption,
see Bergstrom (1976); Dana and Le Van (1999), for example.
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tion bundles beside each of which there are another consumption bundles
that are at least as good as the initial endowment for the consumer but are
not individually rational feasible. Although our existence results, unlike Won
and Yannelis (2006), rely on the boundedness of individually rational feasible
consumption sets and the existence of ordered preferences, our nonsatiation
assumption does not imply Won and Yannelis’s assumption. Moreover, just
like Allouch and Le Van’s weak nonsatiation and standard nonsatiation, our
assumption depends solely on the characteristics of consumers.

This paper is organized as follows. In Section 2, we describe the model
and then introduce the new assumption. In Section 3, we provide our main
results. In Section 4, we consider an alternative to the new assumption
and provide some related results. As a concluding remark, in Section 5,
we compare our assumption with the assumption introduced by Won and
Yannelis (2006). Some of the proofs of propositions in Section 3 are provided
in the Appendix.

2. Model and Assumptions

2.1. Model

We consider a pure exchange economy E with ℓ commodities and n con-
sumers (ℓ, n ∈ N). 2 For convenience, let I be the set of all consumers,
that is, I = {1, · · · , n}. Each consumer i ∈ I is characterized by a con-
sumption set Xi ⊂ Rℓ, an initial endowment ωi ∈ Rℓ, and a utility function
ui : Xi → R. Let X =

∏
i∈I Xi with a generic element x = (xi)i∈I , and put

ω = (ωi)i∈I ∈ Rℓn.
The pure exchange economy E is thus summarized by the list

E =
(
Rℓ, (Xi, ui, ωi)i∈I

)
.

An allocation x ∈ X is feasible if
∑

i∈I xi =
∑

i∈I ωi. Note that we do not
allow free disposal. We denote the set of all feasible allocations by F . Let Fi

2We use the following mathematical notations. The symbols N, Rℓ and Rℓ
+ denote the

set of natural numbers, the ℓ-dimensional Euclidean space and the nonnegative orthant
of Rℓ, respectively. For x, y ∈ Rℓ, we denote by x · y =

∑ℓ
j=1 xjyj the inner product, by

∥x∥ =
√

x · x the Euclidean norm. Let B(x0, r) = {x ∈ Rℓ : ∥x − x0∥ < r} denote the
open ball centered at x0 with radius r. For a ∈ R = R1, we denote by |a| the absolute
value of a. For a, b ∈ R with a ≤ b, we denote by (a, b) and [a, b], the open interval and
the closed interval between a and b, respectively. For a set A ⊂ Rℓ, we denote by intA,
cl A and bdA, the interior, the closure and the boundary of A in Rℓ, respectively.
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be the projection of F onto Xi, and call it individually feasible consumption
set of consumer i ∈ I. Then, it is easy to check that Fi = Xi ∩ (−∑

j ̸=i Xj +∑
k∈I{ωk}) for all i ∈ I.
An allocation x ∈ X is individually rational feasible if x ∈ F and

ui(xi) ≥ ui(ωi) for all i ∈ I. We denote the set of all individually ratio-
nal feasible allocations by A. Let Ai be the projection of A onto Xi, and call
it individually rational feasible consumption set of consumer i ∈ I.

Let Ri = {xi ∈ Xi : ui(xi) ≥ ui(ωi)} for each i ∈ I. Then, it is easy to
check that

Ai = Ri ∩
(
−

∑
j ̸=i

Rj +
∑
k∈I

{ωk}
)

for all i ∈ I.

For simplicity of notation, we put

Gi = −
∑
j ̸=i

Rj +
∑
k∈I

{ωk} for each i ∈ I.

Note that Ai = Ri ∩ Gi ⊂ Ri for all i ∈ I.
The utility function ui is satiated at si ∈ Xi if si maximizes ui over Xi,

and we call the consumption bundle si a satiation point of ui. Let Si denote
the set of all satiation points of ui, that is,

Si = {si ∈ Xi : ui(si) ≥ ui(xi) for all xi ∈ Xi}.

Put S =
∏

i∈I Si.
We adopt the following standard definitions of competitive equilibrium

and quasi-equilibrium.

Definition 1. An element (x, p) ∈ X ×Rℓ \ {0} is a competitive equilibrium
of the economy E if

(a) for all i ∈ I,

(a-1) p · xi ≤ p · ωi,

(a-2) if ui(xi) > ui(xi), then, p · xi > p · ωi,

(b)
∑

i∈I xi =
∑

i∈I ωi.

Definition 2. An element (x, p) ∈ X ×Rℓ \{0} is a quasi-equilibrium of the
economy E if
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(a) for all i ∈ I,

(a-1) p · xi ≤ p · ωi,

(a-2) if ui(xi) > ui(xi), then, p · xi ≥ p · ωi,

(b)
∑

i∈I xi =
∑

i∈I ωi.

2.2. Assumptions

We first make the following two sets of assumptions on the economy E .

Assumption 1. For each i ∈ I,

(a) Xi is closed and convex, (b) Xi is bounded, (c) ωi ∈ Xi.

Assumption 2. For each i ∈ I,

(a) ui is upper semicontinuous on Xi,
3

(b) ui is strictly quasi-concave. 4

The existence of a quasi-equilibrium is ensured, as shown in 3.1, under
Assumptions 1 and 2 and our new assumption on satiation of preferences
introduced below. To prove the existence of a competitive equilibrium, how-
ever, we need some additional assumptions (see 3.2). It is worth noting that
in the main existence theorems of this paper (Theorem 2 and 3), Assumption
1 (b) can be weakened to the boundedness of A by the standard truncation
technique.

It is easy to check that under Assumptions 1 and 2, we have the following
facts.

Fact 1. Si ̸= ∅ for each i ∈ I.

Fact 2. Ri, Gi and Ai are nonempty, compact and convex in Rℓ for each
i ∈ I.

Especially, the convexity of Ri in Fact 2 follows from the quasi-concavity of
ui,

5 which is implied by Assumptions 1 (a), 2 (a) and 2 (b).

3A function f : X → R is upper semicontinuous on X ⊂ Rℓ if and only if for all α ∈ R,
the set {x ∈ X : f(x) ≥ α} is closed in X.

4A function f : X → R is strictly quasi-concave if and only if for all x, y ∈ X with
f(x) > f(y) and for all λ ∈ (0, 1), we have f(λx + (1 − λ)y) > f(y).

5A function f : X → R is quasi-concave if and only if for all x, y ∈ X and for all
λ ∈ [0, 1], we have f(λx + (1 − λ)y) ≥ min{f(x), f(y)}.
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Before introducing our new assumption on satiation of preferences, we
first define some additional notations.

For each i ∈ I, let intRi
Ai denote the interior of Ai in the relative topology

on Ri ⊂ Rℓ, that is, for xi ∈ Ri, we have xi ∈ intRi
Ai if and only if there exists

an open ball B(xi, r) centered at xi with radius r such that B(xi, r)∩Ri ⊂ Ai.
Note that intRi

Ai = Ai if Ri = Ai. Let Ac
i and (intRi

Ai)
c denote the

complements of Ai and intRi
Ai in Xi, that is, Ac

i = Xi \Ai and (intRi
Ai)

c =
Xi \ intRi

Ai.
Roughly speaking, if xi ∈ intRi

Ai, when consumer i ∈ I slightly changes
his or her consumption plan from xi so that the resulting consumption bundle
x′

i is within Ri, the bundle x′
i will also lie on Ai. In contrast, if xi ∈ Ai \

intRi
Ai, the resulting consumption bundle x′

i ∈ Ri may not lie on Ai no
matter how small the change is.

We now introduce the following assumption.

Assumption 3. For each i ∈ I, if Si ̸= ∅, we have Si ∩ (intRi
Ai)

c ̸= ∅.

Since (intRi
Ai)

c = Ac
i ∪ (Ai \ intRi

Ai), this assumption allows consumer’s
satiation area to be a subset of the individually rational feasible consumption
set, provided that it touches the complement of intRi

Ai in Ai. In other words,
under Assumption 3, we must have Si ∩ (Ai \ intRi

Ai) ̸= ∅ if Si ⊂ Ai. Note
that under Assumptions 1 and 2, the set Ai \ intRi

Ai coincides with the
boundary of Ai in the relative topology on Ri.

Assumption 3 generalizes the following two assumptions.

[Nonsatiation] For each i ∈ I, we have Si ∩ Ai = ∅.

[Weak nonsatiation] For each i ∈ I, if Si ̸= ∅, we have Si ∩ Ac
i ̸= ∅.

[Nonsatiation] is a standard assumption on preference satiation that en-
sures the existence of a competitive equilibrium. It excludes the case in which
satiation occurs inside the individually rational feasible consumption sets.

[Weak nonsatiation], introduced by Allouch and Le Van (2008a, 2008b),
is a generalization of [Nonsatiation]. This assumption allows consumer’s
satiation points to be inside the individually rational feasible consumption
set, provided that at least one satiation point lies outside Ai. However, it
excludes the case in which Si is a subset of Ai, while Assumption 3 does
not. Note that [Weak nonsatiation] coincides with [Nonsatiation] when Si is
a singleton for all i ∈ I with Si ̸= ∅.
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In the following example, only Assumption 3 holds among the above three
nonsatiation assumptions.

Example 1. Consider an exchange economy E with two commodities and
two consumers. Let X1 = X2 = R2

+ and ω1 = ω2 = (4, 4). Consumers’ utility
functions are as follows.

u1(x1) = −∥(x11, x12) − (4, 6)∥2 and u2(x2) = x21.

Note that u1 has a unique satiation point s1 = (4, 6), while u2 is never
satiated on X2.

6

Let y2 = (4, 2). Then, it is easy to check that the allocations (s1, y2) is
feasible. Moreover, since

u2(y2) = 4 = u2(ω2),

we have s1 ∈ A1. Therefore, neither [Nonsatiation] nor [Weak nonsatiation]
holds.

We prove that Assumption 3 holds. Let ε1 = (1, 0), and for each t ∈ (0, 1],
let

z1(t) = s1 + tε1 = (4 + t, 6) ∈ X1

z2(t) = y2 − tε1 = (4 − t, 2) ∈ X2.

We claim that z1(t) ∈ R1 \ A1 for all t ∈ (0, 1]. To see this, note first
that we have z1(t) + z2(t) =

∑
i∈I ωi for all t ∈ (0, 1]. Next, since u1(z1(t)) =

−t2 > −4 = u1(ω1), we have z1(t) ∈ R1 for all t ∈ (0, 1]. Moreover, for all
t ∈ (0, 1], since

u2(z2(t)) = 4 − t < 4 = u2(ω2),

we have z2(t) /∈ R2. Therefore, z1(t) /∈ A1 for all t ∈ (0, 1].
Since z1(t) ∈ R1 \ A1 for all t ∈ (0, 1] and z1(t) → s1 as t → 0, we obtain

s1 ∈ A1 \ intR1 A1. Therefore, Assumption 3 holds.
It is easy to check that the allocation x = (s1, y2) together with the price

p = (1, 0) is a competitive equilibrium of E .

6Neither the unboundedness of Xi nor the existence of insatiable consumer is essential
for the arguments in this example. The same applies to the other examples provided in
this paper.
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Note that this example also shows that unlike [Weak nonsatiation], As-
sumption 3 does not coincide with [Nonsatiation] even if Si is a singleton
for all i ∈ I with Si ̸= ∅. Our assumption coincides, however, with [Weak
nonsatiation] if Ri = Ai for all i ∈ I.

3. Main Results

3.1. Existence of quasi-equilibrium

The purpose of this subsection is to demonstrate the existence of a quasi-
equilibrium of E under Assumptions 1 – 3 (Theorem 2). In its proof, we use
the following existence theorem by Allouch and Le Van (2008b). 7

Theorem 1. (Allouch and Le Van, 2008b)
Under Assumptions 1, 2 and [Weak nonsatiation], there exists a quasi-

equilibrium (x, p) ∈ X × Rℓ of E.

The strategy of the proof of our existence theorem is as follows.
First, under our assumptions, we can choose s = (si)i∈I ∈ S so that

si ∈ (intRi
Ai)

c for all i ∈ I. (1)

Next, for this s, we construct a sequence {ων}ν∈N = {(ων
i )i∈I}ν∈N ⊂ Rℓn

that satisfies the following properties:

(a) ων → ω as ν → ∞,

(b) there exists ν ∈ N such that for all ν ≥ ν,

(b-1) ων
i ∈ Xi for all i ∈ I, and

(b-2) si /∈ Rν
i ∩ (−∑

j ̸=i R
ν
j +

∑
k∈I{ων

k}) for all i ∈ I, where

Rν
i = {xi ∈ Xi : ui(xi) ≥ ui(ω

ν
i )}.8

7In the original version of Theorem 1 (Allouch and Le Van, 2008b, p.5, Theorem 2),
instead of Assumption 1 (b), the boundedness of A is assumed.

8To be precise, we cannot always find a sequence {ων}ν∈N ⊂ Rℓn that satisfies all the
properties stated above. However, as will be shown later, we may assume without loss of
generality that there exists a sequence that satisfies the properties (a) and (b) as far as
the existence of quasi-equilibrium matters.

8



We then define an auxiliary economy Eν by Eν = (Rℓ, (Xi, ui, ω
ν
i )i∈I) for

each ν ≥ ν (the economy Eν differs from the initial economy only in its
initial endowments). By the definition, each Eν satisfies all the assumptions
in Theorem 1. Especially, [Weak nonsatiation] holds by the property (b-2)
of {ων}ν∈N.

Therefore, we obtain a sequence {(xν , pν)}ν≥ν ⊂ X × Rℓ each term of
which is a quasi-equilibrium of Eν . Under our assumptions, we may assume
that the sequence has a limit point, and we can prove that the point is a
quasi-equilibrium of the original economy.

Next lemma shows that for a fixed s ∈ S that satisfies (1), we can find
a sequence {εν}ν∈N ⊂ Rℓ with certain properties. It is used in our main
existence theorem to construct the sequence {ων}ν∈N ⊂ Rℓn described above.

Lemma 1. Suppose that Assumptions 1 and 2 hold, and suppose that there
exists s = (si)i∈I ∈ S that satisfies

si ∈ (intRi
Ai)

c for all i ∈ I.

Then, there exist {εν}ν∈N ⊂ Rℓ and ν ∈ N such that νεν → 0 as ν → ∞,
and for every ν ≥ ν and i ∈ I,

si /∈ Ri ∩ (Gi − {εν}).

Proof. Let s = (si)i∈I ∈ S be the element that satisfies si ∈ (intRi
Ai)

c for
all i ∈ I. Put Ibd = {i ∈ I : si ∈ Ai \ intRi

Ai} and Iout = I \ Ibd = {i ∈ I :
si /∈ Ai}.

In the following, we divide the proof into several cases, in each of which
we construct a sequence {εν}ν∈N ⊂ Rℓ that satisfies the properties stated in
the lemma.

Case 1. Ibd = ∅.

First, if Ibd = ∅ (equivalently, Iout = I), it is clear that the sequence
{εν}ν∈N ⊂ Rℓ defined by εν = 0 for all ν ∈ N satisfies the desired properties.

Case 2. Ibd ̸= ∅.
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We first consider the sequence {εν
out}ν∈N ⊂ Rℓ defined by

εν
out =

1

ν2

∑
h∈Ibd

(sh − ωh) for each ν ∈ N.

It is clear that εν
out → 0 and νεν

out → 0 as ν → ∞.
Then, for i ∈ Iout, we have the following claim.

Claim 1. For each i ∈ Iout, there exists νi ∈ N such that

si /∈ Ri ∩ (Gi − {εν
out}) for all ν ≥ νi.

Proof of Claim 1. First, for each i ∈ Iout, since si /∈ Ai and si ∈ Ri, we
must have si /∈ Gi. Then, since Gi is closed in Rℓ, there exists a positive
real number ri > 0 such that B(si, ri) ∩ Gi = ∅. Since εν

out → 0 as ν → ∞,
there exists νi such that si + εν

out ∈ B(si, ri) for all ν ≥ νi, which implies
that si /∈ Gi − {εν

out} for all ν ≥ νi. ¤

With respect to i ∈ Ibd, we have the following claim.

Claim 2. For each i ∈ Ibd, either (a) there exists νi ∈ N such that

si /∈ Ri ∩ (Gi − {εν
out}) for all ν ≥ νi

or (b) there exists ν ′
i ∈ N such that

si ∈ Ri ∩ (Gi − {εν
out}) for all ν ≥ ν ′

i.

The proof of Claim 2 is given in the Appendix.

Next, let Iin be the subset of Ibd such that i ∈ Iin if and only if there
exists νi ∈ N that satisfies

si ∈ Ri ∩ (Gi − {εν
out}) for all ν ≥ νi.

By the definition of Iin and Claims 1 and 2, there exists νout such that for
all i ∈ I \ Iin,

si /∈ Ri ∩ (Gi − {εν
out}) for all ν ≥ νout.

Then, we have two cases.
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Case 2-A. Iin = ∅.

It is clear that the sequence {εν}ν∈N ⊂ Rℓ defined by εν = εν
out for each

ν ∈ N satisfies all the properties in the statement of the lemma.

Case 2-B. Iin ̸= ∅.

For simplicity of notation, we assume without loss of generality that Iin =
{1, 2, · · · ,M}, where M = |Iin| ≤ n.

In view of the definition of Iin, there exists νin such that for all i ∈ Iin,

si ∈ Ri ∩ (Gi − {εν
out}) for all ν ≥ νin.

Put ν = max{νout, νin}.
We construct the sequence {εν}ν∈N in several steps.
First, for each fixed ν ≥ ν, we inductively construct M vectors

εν
1, · · · , εν

M ∈ Rℓ that satisfy the following properties:
For each m ∈ Iin,

(i) sm + εν
m ∈ Rm \ Am and ∥εν

m∥ < 1/2mν2m+2, and

(ii) for all i ∈ (I \ Iin) ∪ {1, · · · ,m},

si /∈ Ri ∩
(
Gi − {εν

out} −
m∑

q=1

2qν2q{εν
q}

)
.

We first construct εν
1 as follows.

Since ν ≥ ν (≥ νout), there exists a positive real number rν
1 such that

B(si, r
ν
1) ∩ (Gi − {εν

out}) = ∅ for all i ∈ I \ Iin.

Then, since s1 ∈ A1 \ intR1 A1, there exists εν
1 ∈ Rℓ \ {0} such that

s1 + εν
1 ∈ R1 \ A1 and ∥εν

1∥ < min

{
rν
1

2ν2
,

1

2ν4

}
.9

9Recall that for xi ∈ Ai, we have xi ∈ Ai \ intRi Ai if and only if

B(xi, r) ∩ Ri ̸⊂ Ai

for any positive real number r.
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Since 2ν2∥εν
1∥ < rν

1 , we have

si /∈ Ri ∩ (Gi − {εν
out} − 2ν2{εν

1}) for all i ∈ I \ Iin. (2)

We need to show that (2) also holds for i = m = 1.

Claim 3.
s1 /∈ R1 ∩ (G1 − {εν

out} − 2ν2{εν
1}).

The proof of Claim 3 is given in the Appendix.

Let m ∈ Iin with m ≥ 2, and suppose that εν
1, · · · , εν

m−1 are the vectors
that satisfy properties (i) and (ii) for each m. We construct εν

m as follows.
First, by property (ii) with respect to m − 1, we have, for all i ∈ (I \

Iin) ∪ {1, · · · ,m − 1},

si /∈ Ri ∩
(
Gi − {εν

out} −
m−1∑
q=1

2qν2q{εν
q}

)
, (3)

Note that for all q ∈ {1, · · · ,m− 1}, by the first part of property (i) and the
convexity of Rq, we have sq + λεν

q ∈ Rq for all λ ∈ [0, 1].
By (3), there exists a positive real number rν

m such that for all i ∈ (I \
Iin) ∪ {1, · · · ,m − 1},

B(si, r
ν
m) ∩

(
Gi − {εν

out} −
m−1∑
q=1

2qν2q{εν
q}

)
= ∅.

Since sm ∈ Am \ intRm Am, we can choose εν
m ∈ Rℓ so that

sm + εν
m ∈ Rm \ Am and ∥εν

m∥ < min

{
rν
m

2mν2m
,

1

2mν2m+2

}
.

Since 2mν2m∥εν
m∥ < rν

m, we have, for all i ∈ (I \ Iin) ∪ {1, · · · ,m − 1},

si /∈ Ri ∩
(
Gi − {εν

out} −
m∑

q=1

2qν2q{εν
q}

)
, (4)

We claim that (4) also holds for i = m.

12



Claim 4.

sm /∈ Rm ∩
(
Gm − {εν

out} −
m∑

q=1

2qν2q{εν
q}

)
.

The proof of Claim 4 is given in the Appendix.

Thus, we conclude that for each ν ≥ ν, there exist M vectors εν
1, · · · , εν

M ∈
Rℓ that satisfy the properties (i) and (ii). Note that by property (ii) with
respect to m = M ,

si /∈ Ri ∩
(
Gi − {εν

out} −
∑

m∈Iin

2mν2m{εν
m}

)
for all i ∈ I. (5)

We now define a sequence {εν
in}ν∈N ⊂ Rℓ by

εν
in =

1 for ν < ν∑
m∈Iin

2mν2mεν
m for ν ≥ ν.

Since

∥εν
in∥ ≤

∑
m∈Iin

2mν2m∥εν∥ <
M

ν2
for all ν ≥ ν,

we have νεν
in → 0 as ν → ∞ (recall that for all ν ≥ ν and m ∈ Iin, by the

second part of property (i), we have 2mν2m∥εν
m∥ < 1/ν2).

Finally, define a sequence {εν}ν∈N ⊂ Rℓ by

εν = εν
out + εν

in.

Then, from the definition, we have νεν → 0 as ν → ∞. Moreover, by (5),
for all ν ≥ ν, we have

si /∈ Ri ∩ (Gi − {εν}) for all i ∈ I,

which completes the proof. ¤

Let {εν}ν∈N be a sequence that satisfies the properties stated in Lemma
1. Next Lemma shows that we may assume that

∑
i∈I ωi − νεν ∈ ∑

i∈I Ri for
sufficiently large ν ∈ N as far as the existence of quasi-equilibrium matters.
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Lemma 2. Suppose Assumptions 1 and 2 hold. Suppose that there exists a
sequence {δν}ν∈N ⊂ Rℓ such that δν → 0 as ν → ∞, and∑

i∈I

ωi − δν /∈
∑
i∈I

Ri for all ν ∈ N.

Then, there exists a ℓ-dimensional vector p ̸= 0 such that

p · Ri ≥ p · ωi for all i ∈ I.10

Therefore, (ω, p) ∈ X × Rℓ is a quasi-equilibrium of E.

Proof. If
∑

i∈I ωi − δν /∈ ∑
i∈I Ri for all ν ∈ N, we have

∑
i∈I ωi ∈

bd(
∑

i∈I Ri). Since
∑

i∈I Ri is convex under Assumptions 1 and 2, by the
support theorem (Florenzano and Le Van, 2001, p25, Corollary 2.1.1), there
exists p ̸= 0 such that

p · z ≥ p ·
∑
i∈I

ωi for all z ∈
∑
i∈I

Ri.

Take arbitrary i ∈ I and xi ∈ Ri. Since xi +
∑

j ̸=i ωj ∈
∑

k∈I Rk, we have

p · xi + p ·
∑
j ̸=i

ωj ≥ p · ωi + p ·
∑
j ̸=i

ωj,

and thus,
p · xi ≥ p · ωi.

Therefore, we have

p · Ri ≥ p · ωi for all i ∈ I,

which completes the proof. ¤

We now state and prove our main existence theorem.

Theorem 2. Under Assumptions 1 – 3, there exists a quasi-equilibrium
(x, p) ∈ X × Rℓ \ {0} of E.

10By “p · Ri ≥ p · ωi”, we mean p · xi ≥ p · ωi for all xi ∈ Ri.

14



Proof. By Assumptions 1 (a), 1 (b), 2 (a) and 3, there exists s = (si)i∈I ∈ S
such that si ∈ (intRi

Ai)
c for all i ∈ I.

Then, by Lemma 1, there exist a sequence {εν}ν∈N ⊂ Rℓ and a natural
number ν1 ∈ N such that νεν → 0 as ν → ∞, and for every ν ≥ ν1 and
i ∈ I,

si /∈ Ri ∩ (Gi − {εν}). (6)

Suppose that the sequence {νεν}ν∈N contains a subsequence {νµε
νµ}µ∈N

that satisfies ∑
i∈I

ωi − νµε
νµ /∈

∑
i∈I

Ri for all µ ∈ N.

Then, by Lemma 2, (ω, p) ∈ X × Rℓ is a quasi-equilibrium of E .
Therefore, we may suppose without loss of generality that there exists

ν2 ∈ N such that for all ν ≥ ν2,∑
i∈I

ωi − νεν ∈
∑
i∈I

Ri.

By this relation, for each ν ≥ ν = max{ν1, ν2}, there exists xν = (xν
i )i∈I ∈∏

i∈I Ri such that
∑

i∈I xν
i =

∑
i∈I ωi − νεν . Note that since Ri is compact,

the sequence {xν
i }ν≥ν ⊂ Ri is bounded for each i ∈ I.

For each ν ≥ ν and i ∈ I, let

ων
i =

(
1 − 1

ν

)
ωi +

1

ν
xν

i .

Then, we have ων
i ∈ Ri by the convexity of Ri, and

∑
i∈I

ων
i =

(
1 − 1

ν

) ∑
i∈I

ωi +
1

ν

∑
i∈I

xν
i =

∑
i∈I

ωi − εν . (7)

Moreover, ων
i → ωi as ν → ∞ for each i ∈ I. Indeed, since {xν

i }ν∈N is
bounded,

∥ωi − ων
i ∥ ≤ 1

ν
∥ωi∥ +

1

ν
∥xν

i ∥ → 0 as ν → ∞.

We now define, for each ν ≥ ν, an auxiliary economy Eν by

Eν = (Rℓ, (Xi, ui, ω
ν
i )i∈I).

Note that Eν differs from E only in its initial endowments.
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Then, by the definition, each Eν satisfies all the assumptions in Theorem
1. Especially, each Eν satisfies [Weak nonsatiation]. To see this, note first
that for each i ∈ I, by (6) and (7),

si /∈ Gi − {εν}
= −

∑
j ̸=i

Rj +
∑
k∈I

{ωk} − {εν}

= −
∑
j ̸=i

Rj +
∑
k∈I

{ων
k}. (8)

Since ui(ω
ν
i ) ≥ ui(ωi) by the quasi-concavity of ui, we have Rν

i ⊂ Ri for each
i ∈ I, where

Rν
i = {xi ∈ Xi : ui(xi) ≥ ui(ω

ν
i )}.

Therefore,
−

∑
j ̸=i

Rν
j +

∑
k∈I

{ων
k} ⊂ −

∑
j ̸=i

Rj +
∑
k∈I

{ων
k}.

Finally, by this relation and (8),

si /∈ Rν
i ∩

(
−

∑
j ̸=i

Rν
j +

∑
k∈I

{ων
k}

)
= Aν

i ,

where Aν
i denotes the individually rational feasible consumption set of con-

sumer i ∈ I in Eν .
Therefore, by Theorem 1, each Eν (ν ≥ ν) admits a quasi-equilibrium

(xν , pν) ∈ X ×Rℓ \ {0}. In view of Definition 2, we may assume without loss
of generality that pν ∈ S(0, 1) = {p ∈ Rℓ : ∥p∥ = 1} for all ν ≥ ν.

We now obtain a sequence {(xν , pν)}ν≥ν ⊂ X×S(0, 1) each term of which
is a quasi-equilibrium of Eν . Since X × S(0, 1) is compact, we may assume
without loss of generality that the sequence has a limit point (x, p) ∈ X ×
S(0, 1). We prove that (x, p) is a quasi-equilibrium of the original economy.

We fist show that (a-2) of Definition 2 holds. Suppose that for some i ∈ I,
there exists xi ∈ Xi with

ui(xi) > ui(xi) and p · xi < p · ωi.

Then, since (xν , pν) → (x, p) and ων
i → ωi as ν → ∞, and ui is upper

semicontinuous, we have

ui(xi) > ui(x
ν
i ) and pν · xi < pν · ων

i
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for sufficiently large ν. However, this contradicts with the fact that (xν , pν)
is a quasi-equilibrium of Eν . Thus, (a-2) of Definition 2 holds. It is easy to
check that (x, p) satisfies (a-1) and (b) of Definition 2.

Therefore, we conclude that (x, p) ∈ X ×S(0, 1) is a quasi-equilibrium of
the original economy E . ¤

3.2. Existence of competitive equilibrium

There are several known sets of assumptions under which a quasi equilib-
rium is a competitive equilibrium (see, for example, Geistdoerfer-Florenzano,
1982). In this paper, we employ the simplest one:

Assumption 4. For all i ∈ I,

(a) ωi ∈ int Xi, and

(b) ui is continuous on Xi.

We now establish the existence of a competitive equilibrium under As-
sumption 3.

Theorem 3. Under Assumptions 1 – 4, there exists a competitive equilib-
rium (x, p) ∈ X × Rℓ \ {0} of E.

Proof. By Theorem 2, there exists a quasi-equilibrium (x, p) ∈ X ×Rℓ \{0}
of E . We prove that (x, p) is a competitive equilibrium of E .

It is clear that (x, p) satisfies (a-1) and (b) of Definition 1. Suppose that
(a-2) of Definition 1 does not hold for some i ∈ I. Then, there exists xi ∈ Xi

such that
ui(xi) > ui(xi) and p · xi = p · ωi.

Since p ̸= 0 and ωi ∈ int Xi, there exists yi ∈ Xi such that p · yi < p · ωi. Let
xi(t) = txi + (1 − t)yi for t ∈ (0, 1). It is clear that for all t ∈ (0, 1),

xi(t) ∈ Xi and p · xi(t) < p · ωi.

Moreover, since ui(xi) > ui(xi) and ui is continuous on Xi, we have
ui(xi(t)) > ui(xi) for t sufficiently close to 1. However, this contradicts
with the fact that (x, p) is a quasi-equilibrium of E .

Therefore, we conclude that (x, p) ∈ X × Rℓ \ {0} is a competitive equi-
librium of E . ¤
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4. Alternative assumption

In this section, we introduce an alternative to Assumption 3 and provide
some related results.

Consider the following assumption.

Assumption 5. For each i ∈ I, if Si ̸= ∅, we have Si ∩ (intXi
Fi)

c ̸= ∅.

The symbol intXi
Fi denotes the interior of Fi in the relative topology on

Xi.
11 Assumption 5 allows Si to be a subset of the individually feasible

consumption set Fi, provided that it touches the complement of Fi in Xi.
This assumption is a generalization of Sato’s (2008) nonsatiation assumption,
which asserts that Si ∩ intXi

Fi = ∅ for each i ∈ I.
By replacing Ai by Fi and Ri by Xi for all i ∈ I in the statements

and proofs of all the propositions provided in 3.1 (including Theorem 1), we
obtain the existence of a quasi-equilibrium under Assumption 5.

Corollary 1. Under Assumptions 1, 2 and 5, there exists a quasi-
equilibrium (x, p) ∈ X × Rℓ \ {0} of E. 12

Assumptions 3 and 5 do not imply each other in general. Indeed, As-
sumption 5 does not hold in Example 1 in 2.2 (where s1 lies on intX1 F1). In
contrast, in Example 2 below, we will observe that only Assumption 5 holds.

Example 2. Consider an exchange economy E with two commodities and
two consumers. Let X1 = {x1 ∈ R2 : 0 ≤ x11 ≤ 10 and x12 ≥ 0} and
X2 = R2

+. Let ω1 = (0, 10) and ω2 = (10, 0). Consumers’ utility functions
are as follows.

u1(x1) =

−|10 − x12| if x12 ̸= 10

−|5 − x11| + 5 if x12 = 10

u2(x2) = x22.

11Roughly speaking, if xi ∈ intXi Fi, every consumption bundle nearby it also lies on
Fi.

12In this corollary, Assumption 1 (b) can be weakened to the boundedness of F by the
standard truncation technique.
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Note that u1 is satiated at s1 = (5, 10) and u2 is never satiated on X2.
By the above definitions, it is easy to check that

A1 = {x1 ∈ X1 : 0 ≤ x11 ≤ 10 and x12 = 10} = R1

and s1 ∈ A1. Since Ai \ intRi
Ai = ∅ when Ai = Ri, Assumption 3 does

not hold. However, since s1 ∈ F1 \ intX1 F1 (note that s1 requires the total
amount of the second good in the economy while consumer i ∈ I can consume
more of it), Assumption 5 holds.

However, Assumption 5 implies Assumption 3 if consumers’ utility func-
tions are continuous and not satiated at the initial endowments.

Proposition 1. Suppose that ui is continuous on Xi and ωi /∈ Si for all
i ∈ I, then Assumption 5 implies Assumption 3. 13

Proof. It suffices to show that for all i ∈ I, if Si ∩ (intXi
Fi)

c ̸= ∅, then,
Si∩(intRi

Ai)
c ̸= ∅. Suppose that Si∩(intXi

Fi)
c ̸= ∅ and Si∩(intRi

Ai)
c = ∅

for some i ∈ I. Let si ∈ Si ∩ (intXi
Fi)

c. Then, by the supposition, we have
si ∈ intRi

Ai.
Since si ∈ intRi

Ai, there exists a positive real number r1 such that

B(si, r1) ∩ Ri ⊂ Ai.

Moreover, since ui is continuous on Xi and ui(si) > ui(ωi), there exists a
positive real number r2 such that

B(si, r2) ∩ Xi ⊂ Ri.

Let r = min{r1, r2}. Then, from the above two relations,

B(si, r) ∩ Xi ⊂ B(si, r1) ∩ Ri ⊂ Ai ⊂ Fi.

Therefore, si ∈ intXi
Fi, which is a contradiction. ¤

13Example 1 in 2.2 shows that the converse of the statement is not true.

19



5. Concluding Remark

As a concluding remark, we compare Assumption 3 with the assumption
introduced by Won and Yannelis (2006).

Won and Yannelis (2006) establish the existence of competitive equilib-
rium with satiation in more general settings than ours. For example, in their
analysis, individually rational feasible consumption sets do not need to be
bounded and consumers’ preferences are allowed to be non-ordered. More-
over, they introduce an assumption that allows each consumer’s satiation
area Si to be a subset of intRi

Ai, while our assumption does not apply to
such a case. Therefore, their assumption does not imply Assumption 3. Nev-
ertheless, as shown below, our assumption does not imply Won and Yannelis’s
assumption either.

To simplify the arguments, we consider the case in which if Si ̸= ∅ for
some i ∈ I, it consists of a unique element si ∈ Xi.

For an allocation x ∈ X, let Is(x) = {i ∈ I : xi ∈ Si} and Ins(x) =
I \ Is(x). For a consumption bundle xi ∈ Xi, let Pi(xi) = {yi ∈ Xi : ui(yi) >
ui(xi)}. Then, Won and Yannelis’s (2006) condition reduces to the following
form:

Let x = (xi)i∈I ∈ A with Is(x) ̸= ∅ and Ins(x) ̸= ∅. Then, for
each p ∈ Rℓ \{0} that satisfies p ·Pj(xj) > p ·xj for all j ∈ Ins(x),
we have p · si ≥ p · ωi for all i ∈ Is(x). 14

We now consider the following example.

Example 3. Consider an exchange economy E with two commodities and
three consumers. Let Xi = R2

+ for all i ∈ I = {1, 2, 3}. Let ω1 = ω2 = (2, 2)
and ω3 = (4, 4). Consumers’ utility functions are as follows.

u1(x1) = −∥(x11, x12) − (8, 0)∥2

u2(x2) = −∥(x21, x22) − (0, 8)∥2

u3(x3) = x32 − x31

Note that s1 = (8, 0) (̸= ω1) and s2 = (0, 8) (̸= ω2) are the unique satiation
points of consumers 1 and 2. However, u3 is never satiated on X3. Note also
that ui is continuous on Xi for each i ∈ I.

14Won and Yannelis, 2006, p.4, Assumption S5.
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Consider an allocation x = (s1, s2, y3) ∈ X, where y3 = (0, 0) ∈ X3. It is
clear that x is individually rational feasible and Is(x) = {1, 2} and Ins = {3}.

By the definition of u3, we have P3(y3) = {x3 ∈ X3 : x32 > x31}. There-
fore, for a price p = (−1, 1), we have

p · P3(y3) > 0 = p · y3.

However, since p · s1 = −8 < 0 = p · ω1 for consumer 1, Won and Yannelis’s
assumption does not hold.

To prove that Assumption 3 holds, we first observe that Assumption
5 holds. Indeed, since s1 requires the total amount of the first good in the
economy while consumer 1 can consume more of it, we have s1 ∈ F1\ intX1 F1

. Likewise, we have s2 ∈ F2 \ intX2 F2. Therefore, this economy satisfies
Assumption 5. Then, by Proposition 1, we conclude that Assumption 3
holds.

Appendix

Proof of Claim 2. First, if
∑

h∈Ibd
(sh − ωh) = 0, case (b) clearly holds.

Thus, in the following, we suppose that
∑

h∈Ibd
(sh − ωh) ̸= 0.

Suppose that the assertion of the lemma is not true. Then, for an arbi-
trarily chosen ν ∈ N, there exist ν ′, ν ′′ ≥ ν such that

si /∈ Ri ∩
(
Gi −

1

(ν ′)2

∑
h∈Ibd

{sh − ωh}
)

(9)

and

si ∈ Ri ∩
(
Gi −

1

(ν ′′)2

∑
h∈Ibd

{sh − ωh}
)
. (10)

Without loss of generality, we may assume that ν ′ > ν ′′.
Then, by (10), there exists (xj)j ̸=i ∈

∏
j ̸=i Rj such that

si = −
∑
j ̸=i

xj +
∑
k∈I

ωk −
1

(ν ′′)2

∑
h∈Ibd

(sh − ωh). (11)

Since si ∈ Ai = Ri ∩ Gi, there exists (yj)j ̸=i ∈
∏

j ̸=i Rj such that

si = −
∑
j ̸=i

yj +
∑
k∈I

ωk. (12)
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Then, (ν ′′/ν ′)2×(11)+(1 − (ν ′′/ν ′)2)×(12) yields,

si = −
∑
j ̸=i

zj +
∑
k∈I

ωk −
1

(ν ′)2

∑
h∈Ibd

(sh − ωh),

where

zj =

(
ν ′′

ν ′

)2

xj +

(
1 −

(
ν ′′

ν ′

)2)
yj ∈ Rj for each j ̸= i.

Therefore,

si ∈ Ri ∩
(
Gi −

1

(ν ′)2

∑
h∈Ibd

{sh − ωh}
)
,

which contradicts with (9). ¤

Proof of Claim 3. Suppose that the assertion of the claim is not true.
Then, there exists (xj)j ̸=1 ∈

∏
j ̸=1 Rj such that

s1 = −
∑
j ̸=1

xj +
∑
k∈I

ωk −
1

ν2

∑
h∈Ibd

(sh − ωh) − 2ν2εν
1.

Since s1 ∈ R1 ∩ (G1 −{εν
out}) (recall that ν ≥ ν ≥ νin), there exists (yj)j ̸=1 ∈∏

j ̸=1 Rj such that

s1 = −
∑
j ̸=1

yj +
∑
k∈I

ωk −
1

ν2

∑
h∈Ibd

(sh − ωh).

Therefore, we have

s1 = −
∑
j ̸=1

zj +
∑
k∈I

ωk −
1

ν2

∑
h∈Ibd

(sh − ωh) − 2εν
1, (13)

where

zj =
1

ν2
xj +

1 − 1

ν2

yj ∈ Rj for all j ̸= 1.

Moreover, since s1 ∈ A1 = R1 ∩ G1, there exists (tj)j ̸=1 ∈ ∏
j ̸=1 Rj such

that
s1 = −

∑
j ̸=1

tj +
∑
k∈I

ωk. (14)
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Multiplying (14) by (1 − (1/ν)2), we have(
1 − 1

ν2

)
s1 = −

∑
j ̸=1

(
1 − 1

ν2

)
tj +

(
1 − 1

ν2

) ∑
k∈I

ωk.

By adding this equation (and 0 = −(1/ν2)
∑

h∈Iout
(ωh − ωh)) to (13) and

rearranging it, we obtain

2(s1 + εν
1) = −

∑
j ̸=1

aj + 2
∑
k∈I

ωk,

where for j ∈ Iout,

aj = zj +

[
1

ν2
ωj +

(
1 − 1

ν2

)
tj

]
,

and for j ∈ Ibd \ {1},

aj = zj +

[
1

ν2
sj +

(
1 − 1

ν2

)
tj

]
.

Therefore,

s1 + εν
1 = −

∑
j ̸=1

1

2
aj +

∑
k∈I

ωk.

Since (1/2)aj ∈ Rj for all j ̸= 1, we have s1 + εν
1 ∈ A1, which contradicts

with our choice of εν
1. ¤

Proof of Claim 4. Suppose that there exists (xj)j ̸=m ∈ ∏
j ̸=m Rj such that

sm = −
∑
j ̸=m

xj +
∑
k∈I

ωk −
1

ν2

∑
h∈Ibd

(sh − ωh) −
m∑

q=1

2qν2qεν
q .

Since sm ∈ Rm ∩ (Gm − {εν
out}), there exists (yj)j ̸=m ∈ ∏

j ̸=m Rj such that

sm = −
∑
j ̸=m

yj +
∑
k∈I

ωk −
1

ν2

∑
h∈Ibd

(sh − ωh).

Therefore, we have

sm = −
∑
j ̸=m

zj +
∑
k∈I

ωk −
1

ν2

∑
h∈Ibd

(sh − ωh) −
m∑

q=1

2q−(m−1)ν2q−2mεν
q , (15)
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where

zj =
1

2m−1ν2m
xj +

(
1 − 1

2m−1ν2m

)
yj ∈ Rj for all j ̸= m.

Moreover, since sm ∈ Am = Rm ∩ Gm, there exists (tj)j ̸=m ∈ ∏
j ̸=m Rj

such that
sm = −

∑
j ̸=m

tj +
∑
k∈I

ωk. (16)

Multiplying (16) by (1 − (1/ν)2), we have(
1 − 1

ν2

)
sm = −

∑
j ̸=m

(
1 − 1

ν2

)
tj +

(
1 − 1

ν2

) ∑
k∈I

ωk.

Adding this equation (and 0 = −(1/ν2)
∑

h∈Iout
(ωh − ωh)) to (15) and rear-

ranging it, we obtain

2(sm + εν
m) = −

∑
j ̸=m

aj + 2
∑
k∈I

ωk, (17)

where for j ∈ Iout,

aj = zj +

[
1

ν2
ωj +

(
1 − 1

ν2

)
tj

]
,

for j ∈ Ibd \ {1, · · · ,m − 1},

aj = zj +

[
1

ν2
sj +

(
1 − 1

ν2

)
tj

]
,

and for j ∈ {1, · · · , m − 1},

aj = zj +

[
1

ν2

(
sj +

1

2−[j−(m−1)]ν−(j−m)
εν

j

)
+

(
1 − 1

ν2

)
tj

]
.

Note that for j ∈ {1, · · · ,m − 1}, since

0 <
1

2−[j−(m−1)]ν−(j−m)
≤ 1,

we have

sj +
1

2−[j−(m−1)]ν−(j−m)
εν

j ∈ Rj.
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Then, by (17),

sm + εν
m = −

∑
j ̸=m

1

2
aj +

∑
k∈I

ωk.

Since (1/2)aj ∈ Rj for all j ̸= m, we have sm + εν
m ∈ Am, which is a

contradiction. ¤
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