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Nonsatiation and existence of competitive equilibrium

Norihisa Sato*

Graduate School of Economics, Waseda University, 1-6-1 Nishiwaseda Shinjuku-ku,
Tokyo 169-8050, Japan

Abstract

In this paper, we provide a new assumption on satiation of preferences that is
weaker than the standard nonsatiation assumption and Allouch and Le Van’s
(2008a; 2008b) weak nonsatiation. It allows, under certain conditions, prefer-
ences to be satiated only inside the individually rational feasible consumption
sets. Moreover, just like the two nonsatiation assumptions, our assumption
depends solely on the characteristics of consumers.

JEL classification: C62; D50

Key words: Satiation, Quasi-equilibrium, Individually rational feasible
consumption.

1. Introduction

Insatiability of consumers’ preferences is a standard assumption in the
classical general equilibrium theory (Arrow and Debreu, 1954; Debreu, 1959,
among others). This assumption, in its strong form, asserts that consumers’
preferences are insatiable over the entire consumption set. However, in some
cases, we observe that consumption sets are naturally compact (see Mas-
Colell, 1992) and every continuous preference has therefore at least one sa-
tiation point. As is well known in the literature, a simple way to avoid this
inconsistency is to assume that when a preference has satiation points, they
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are always outside the individually rational feasible consumption set. ! This
weaker version of the standard nonsatiation allows preferences to be sati-
ated, but excludes the case in which satiation occurs inside the individually
rational feasible consumption sets.

It has been known that a competitive equilibrium may fail to exist when
preferences are satiated in the individually rational feasible consumption set.
Recently, however, Allouch and Le Van (2008a,b) have shown that even if
there exists a consumer whose preference has satiation points in his or her
individually rational feasible consumption set, one can still obtain the exis-
tence of competitive equilibrium by assuming that the preference also has at
least one satiation point outside the set. The assumption is a direct general-
ization of the standard nonsatiation assumption, and therefore, they call it
“weak nonsatiation”.

Won and Yannelis (2006) introduce a different assumption that allows
for satiation inside the individually rational feasible consumption sets. Their
existence results are quite general. For example, in their proofs, individually
rational feasible consumption sets do not need to be bounded and consumers’
preferences are allowed to be non-ordered. Moreover, Won and Yannelis’s re-
sults apply to the case in which satiation occurs only insides the individually
rational feasible consumption sets, while Allouch and Le Van’s (2008a,b) re-
sult does not. In fact, Won and Yannelis’s assumption contains Allouch and
Le Van’s weak nonsatiation as a special case. However, it is worth noting
that while Won and Yannelis’s assumption contains a restriction on the price
system, weak nonsatiation depends solely on the characteristics of consumers
just like the standard nonsatiation.

The main contribution of this paper is to establish the existence of com-
petitive equilibrium by introducing a new assumption that is weaker than Al-
louch and Le Van’s (2008a,b) weak nonsatiation and therefore the standard
nonsatiation assumption. Our assumption allows each consumer’s preference
to be satiated only inside the individually rational feasible consumption set,
provided that at least one satiation point lies on a “boundary” of the set.
Roughly speaking, the “boundary” of one’s individually rational feasible con-
sumption set is defined as the set of individually rational feasible consump-

LA consumption bundle is said to be individually rational feasible if it can be achieved
by a trade in which every consumer involved attains at least the same utility as that
gained from his or her initial endowment. For the existence proof under this assumption,
see Bergstrom (1976); Dana and Le Van (1999), for example.



tion bundles beside each of which there are another consumption bundles
that are at least as good as the initial endowment for the consumer but are
not individually rational feasible. Although our existence results, unlike Won
and Yannelis (2006), rely on the boundedness of individually rational feasible
consumption sets and the existence of ordered preferences, our nonsatiation
assumption does not imply Won and Yannelis’s assumption. Moreover, just
like Allouch and Le Van’s weak nonsatiation and standard nonsatiation, our
assumption depends solely on the characteristics of consumers.

This paper is organized as follows. In Section 2, we describe the model
and then introduce the new assumption. In Section 3, we provide our main
results. In Section 4, we consider an alternative to the new assumption
and provide some related results. As a concluding remark, in Section 5,
we compare our assumption with the assumption introduced by Won and
Yannelis (2006). Some of the proofs of propositions in Section 3 are provided
in the Appendix.

2. Model and Assumptions

2.1. Model

We consider a pure exchange economy &£ with ¢ commodities and n con-
sumers (£,n € N). 2 For convenience, let I be the set of all consumers,
that is, / = {1,--- ,n}. Each consumer i € [ is characterized by a con-
sumption set X; C R, an initial endowment w; € R, and a utility function
u; » X; — R Let X = [[;e; X; with a generic element x = (x;);c7, and put
w = (wz‘)ie[ e R,

The pure exchange economy & is thus summarized by the list

&= (Rga (X, g, wz‘)z‘ef)-

An allocation z € X is feasible if Y-;c; x; = > ;7 w;i. Note that we do not
allow free disposal. We denote the set of all feasible allocations by F'. Let F;

2We use the following mathematical notations. The symbols N, R and Rﬂ denote the
set of natural numbers, the /-dimensional Euclidean space and the nonnegative orthant
of R, respectively. For z,y € R, we denote by z -y = Z§:1 x;y; the inner product, by
l|lz|| = V& -z the Euclidean norm. Let B(zg,7) = {z € R’ : ||z — || < r} denote the
open ball centered at o with radius r. For a € R = R!, we denote by |a| the absolute
value of a. For a,b € R with a < b, we denote by (a,b) and [a, b], the open interval and
the closed interval between a and b, respectively. For a set A C R’, we denote by int A,
cl A and bd A, the interior, the closure and the boundary of A in R?, respectively.
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be the projection of F' onto X;, and call it indiwvidually feasible consumption
set of consumer i € I. Then, it is easy to check that F; = X; N (=X, X +

Srer{wi}) for all i € 1.

An allocation = € X is indiwvidually rational feasible if x € F and
wi(x;) > u;(w;) for all ¢ € I. We denote the set of all individually ratio-
nal feasible allocations by A. Let A; be the projection of A onto X;, and call
it individually rational feasible consumption set of consumer i € 1.

Let R; = {z; € X; : u;(x;) > w;(w;)} for each ¢ € I. Then, it is easy to
check that

Ai=R;n (— Y R+ Z{wk}> for all i€ 1.

i kel
For simplicity of notation, we put
Gi=—> Rj+)Y {w} foreach i€l
i kel

Note that A, = R;NG; C R; for alli € 1.

The utility function u; is satiated at s; € X; if s; maximizes u; over X;,
and we call the consumption bundle s; a satiation point of u;. Let S; denote
the set of all satiation points of u;, that is,

S; = {Si e X;: u1(81> > Uz(«rz> for all x; € Xz}

Put S = HiGI SZ
We adopt the following standard definitions of competitive equilibrium
and quasi-equilibrium.

Definition 1. An element (7,p) € X x R\ {0} is a competitive equilibrium
of the economy & if
(a) for all i € I,
(a-1)p-7 <P-wi
(a-2) if w;(z;) > w;(T;), then, p-z; > D - wy,
)

(b doiel Ti = Dier Wi

Definition 2. An element (7,p) € X x R\ {0} is a quasi-equilibrium of the
economy & if



(a) for all i € I,

(a-1) p-7 <P-w;,

(a-2) if w;(z;) > w;(T;), then, p-z; > D - w;,
(b) Yier Ti = Yier wi-

2.2. Assumptions

We first make the following two sets of assumptions on the economy &.

Assumption 1. For each 7 € [,
(a) X; is closed and convex, (b) X is bounded, (c)w; € X.

Assumption 2. For each i € I,

(a) u; is upper semicontinuous on Xj, 3
(b) w; is strictly quasi-concave. *

The existence of a quasi-equilibrium is ensured, as shown in 3.1, under
Assumptions 1 and 2 and our new assumption on satiation of preferences
introduced below. To prove the existence of a competitive equilibrium, how-
ever, we need some additional assumptions (see 3.2). It is worth noting that
in the main existence theorems of this paper (Theorem 2 and 3), Assumption
1 (b) can be weakened to the boundedness of A by the standard truncation
technique.

It is easy to check that under Assumptions 1 and 2, we have the following
facts.

Fact 1. S; # @ for each i € I.
Fact 2. R;, G; and A; are nonempty, compact and convex in R’ for each
1€ 1.

Especially, the convexity of R; in Fact 2 follows from the quasi-concavity of
u;, ® which is implied by Assumptions 1 (a), 2 (a) and 2 (b).

3A function f : X — R is upper semicontinuous on X C R’ if and only if for all a € R,
the set {z € X : f(z) > a} is closed in X.

4A function f : X — R is strictly quasi-concave if and only if for all z,y € X with
f(z) > f(y) and for all A € (0,1), we have f(Az + (1 — N)y) > f(y).

5A function f : X — R is quasi-concave if and only if for all z,y € X and for all
A € [0,1], we have f(Ax 4+ (1 — A)y) > min{ f(z), f(y)}.



Before introducing our new assumption on satiation of preferences, we
first define some additional notations.

Foreacht € I, let intg, A; denote the interior of A; in the relative topology
on R; C R’ that is, for z; € R;, we have z; € int r; A; if and only if there exists
an open ball B(x;, r) centered at z; with radius r such that B(z;, r)NR; C A;.
Note that intg, A; = A; if R, = A;. Let AS and (intg, 4;)° denote the
complements of A; and intg, A; in X;, that is, A = X; \ A; and (intg, A;)° =

Roughly speaking, if x; € intp, A;, when consumer ¢ € [ slightly changes
his or her consumption plan from x; so that the resulting consumption bundle
x} is within R;, the bundle ) will also lie on A;. In contrast, if z; € A; \
intg, A;, the resulting consumption bundle z; € R; may not lie on A; no
matter how small the change is.

We now introduce the following assumption.

Assumption 3. For each i € I, if S; # @, we have S; N (intg, 4;)¢ # .

Since (intg, A;)¢ = AU (A; \intg, 4;), this assumption allows consumer’s
satiation area to be a subset of the individually rational feasible consumption
set, provided that it touches the complement of intg, A; in A;. In other words,
under Assumption 3, we must have S; N (4; \ intg, A;) # @ if S; C A;. Note
that under Assumptions 1 and 2, the set A; \ intg, A; coincides with the
boundary of A; in the relative topology on R;.

Assumption 3 generalizes the following two assumptions.

[Nonsatiation] For each ¢ € I, we have S; N A; = @.
[Weak nonsatiation] For each i € I, if S; # &, we have S; N AS # &.

[Nonsatiation| is a standard assumption on preference satiation that en-
sures the existence of a competitive equilibrium. It excludes the case in which
satiation occurs inside the individually rational feasible consumption sets.

[Weak nonsatiation], introduced by Allouch and Le Van (2008a, 2008b),
is a generalization of [Nonsatiation|. This assumption allows consumer’s
satiation points to be inside the individually rational feasible consumption
set, provided that at least one satiation point lies outside A;. However, it
excludes the case in which S; is a subset of A;, while Assumption 3 does
not. Note that [Weak nonsatiation] coincides with [Nonsatiation] when S; is
a singleton for all ¢ € I with S; # @.



In the following example, only Assumption 3 holds among the above three
nonsatiation assumptions.

Example 1. Consider an exchange economy £ with two commodities and
two consumers. Let X; = X, = R? and wy = wy = (4,4). Consumers’ utility
functions are as follows.

U1<1]1) = —||(ZE11,ZE12> — (4, 6)“2 and Ug(l’g) = T21-

Note that w; has a unique satiation point s; = (4,6), while uy is never
satiated on X5. ©

Let yo = (4,2). Then, it is easy to check that the allocations (s1,y2) is
feasible. Moreover, since

Uz (y2) = 4 = uz(wy),

we have s; € A;. Therefore, neither [Nonsatiation] nor [Weak nonsatiation]
holds.

We prove that Assumption 3 holds. Let ey = (1,0), and for each t € (0, 1],
let

z1(t) =s1+ter=(4+¢,6) € Xy
ZQ(t) = Y2 — t€1 = (4 — t,2) S XQ.

We claim that z;(¢t) € Ry \ A; for all ¢t € (0,1]. To see this, note first
that we have z1(t) + 22(t) = >,y w; for all ¢ € (0, 1]. Next, since uy(21(t)) =
—t* > —4 = uy(w1), we have z(t) € Ry for all ¢t € (0,1]. Moreover, for all
t € (0,1], since

ug(22(t)) =4 —t < 4 = ug(we),

we have 25(t) ¢ Ry. Therefore, 2 (t) ¢ A; for all ¢ € (0, 1].

Since z1(t) € Ry \ A; for all t € (0, 1] and 2 (t) — s; as t — 0, we obtain
s1 € Aq \ intg, A;. Therefore, Assumption 3 holds.

It is easy to check that the allocation T = (s1,y2) together with the price
P = (1,0) is a competitive equilibrium of £.

6Neither the unboundedness of X; nor the existence of insatiable consumer is essential
for the arguments in this example. The same applies to the other examples provided in
this paper.



Note that this example also shows that unlike [Weak nonsatiation], As-
sumption 3 does not coincide with [Nonsatiation| even if S; is a singleton
for all ¢« € I with S; # @. Our assumption coincides, however, with [Weak
nonsatiation] if R; = A; for all i € 1.

3. Main Results

3.1. Emistence of quasi-equilibrium

The purpose of this subsection is to demonstrate the existence of a quasi-
equilibrium of & under Assumptions 1 — 3 (Theorem 2). In its proof, we use
the following existence theorem by Allouch and Le Van (2008b). 7

Theorem 1. (Allouch and Le Van, 2008b)
Under Assumptions 1, 2 and [Weak nonsatiation/, there exists a quasi-
equilibrium (Z,p) € X x R of €.

The strategy of the proof of our existence theorem is as follows.
First, under our assumptions, we can choose s = (s;);er € S so that

s; € (intg, A;)¢ forall i€ l. (1)

Next, for this s, we construct a sequence {w”},en = {(W!)ier fven C R™
that satisfies the following properties:

(a) w¥ — was v — oo,

b-1) w! € X, for all ¢ € I, and

(b) there exists 7 € N such that for all v > 7,
(
(b-2) si & RY N (=24 RY + Xper{wy}) for all i € I, where

R ={z; € X; s wi(x;) > w;(w))}.®

"In the original version of Theorem 1 (Allouch and Le Van, 2008b, p.5, Theorem 2),
instead of Assumption 1 (b), the boundedness of A is assumed.

8To be precise, we cannot always find a sequence {w”},cny C R that satisfies all the
properties stated above. However, as will be shown later, we may assume without loss of
generality that there exists a sequence that satisfies the properties (a) and (b) as far as
the existence of quasi-equilibrium matters.



v

We then define an auxiliary economy £ by & = (R, (X, us,w! )ics) for
each v > 7 (the economy &¥ differs from the initial economy only in its
initial endowments). By the definition, each £ satisfies all the assumptions
in Theorem 1. Especially, [Weak nonsatiation] holds by the property (b-2)
of {w"},en-

Therefore, we obtain a sequence {(Z%,9")},>» C X x Rf each term of
which is a quasi-equilibrium of £”. Under our assumptions, we may assume
that the sequence has a limit point, and we can prove that the point is a
quasi-equilibrium of the original economy.

Next lemma shows that for a fixed s € S that satisfies (1), we can find
a sequence {&”},eny C RY with certain properties. It is used in our main
existence theorem to construct the sequence {w”},en C R described above.

Lemma 1. Suppose that Assumptions 1 and 2 hold, and suppose that there
exists s = (s;)ier € S that satisfies

s; € (intg, A;)¢ forall i€ l.

Then, there exist {e"},en C RY and 7 € N such that ve¥ — 0 as v — o0,
and for everyv > 7 and i € I,

S; ¢ Rz n (Gz — {EV}).

Proof. Let s = (s;);cr € S be the element that satisfies s; € (intg, A;)¢ for
alli e I. Put [jy={i€l:s;,€ A;\intg, A;} and lpyy = I\ [hu ={i € I :
si ¢ A}

In the following, we divide the proof into several cases, in each of which
we construct a sequence {e”},en C R that satisfies the properties stated in
the lemma.

Case 1. [y = 2.

First, if I,y = @ (equivalently, I, = I), it is clear that the sequence
{e"},en C R? defined by ¥ = 0 for all v € N satisfies the desired properties.

Case 2. [y # @.



We first consider the sequence {e% ,},en C R defined by

1
o ] > (sp—wy) foreach veN.

out —
h€lpy

] v v
It is clear that e}, — 0 and vel,, — 0 as v — oo0.

Then, for ¢ € I,,;, we have the following claim.
Claim 1. For each i € 1., there exists U; € N such that
si¢ Rin(G; —A{eb}) forall v>w,.

Proof of Claim 1. First, for each i € I,,, since s; ¢ A; and s; € R;, we
must have s; ¢ G;. Then, since G; is closed in R, there exists a positive

real number r; > 0 such that B(s;,r;) N G; = @. Since €%, — 0 as v — o0,

there exists 7; such that s; + ¢4, € B(s;,r;) for all v > 7;, which implies
that s; ¢ G; — {e\;} for all v > ;. O
With respect to ¢ € I4, we have the following claim.
Claim 2. For each i € Iy, either (a) there exists U; € N such that
si¢ RN (G —A{el,}) foral v>m
or (b) there exists U, € N such that
s € RN (G —{ev,}) forall v>1.

The proof of Claim 2 is given in the Appendix.

Next, let I, be the subset of I4 such that ¢ € [, if and only if there
exists 7; € N that satisfies

si€ RinN(G; —A{ey,}) forall v>w,.

By the definition of I;,, and Claims 1 and 2, there exists 7,,; such that for

si¢ Rin(G; —A{el,}) forall v>7,,.

Then, we have two cases.

10



Case 2-A. [;, = @.

It is clear that the sequence {"},en C R’ defined by & = &, for each
v € N satisfies all the properties in the statement of the lemma.

Case 2-B. [;,, # 2.

For simplicity of notation, we assume without loss of generality that [, =
{1,2,--- , M}, where M = |I;,,| < n.
In view of the definition of I,,,, there exists 7;, such that for all 7 € I,

si€ Rin(G; —A{el,}) forall v>w,,.

Put 7 = max{V,ut, Vin }-

We construct the sequence {¢”}, ey in several steps.

First, for each fixed v > 7, we inductively construct M vectors
v, .-+, g%, € R’ that satisfy the following properties:

For each m € I;,,,

(i) sm+€% € Ry \ Ay and ||e%,|| < 1/2™02™2 and

(i) for all i € (I\ Ip,) U{1L,--- ,m},
TN CERERES o]

We first construct €] as follows.
Since v > U (> U,y), there exists a positive real number 7} such that

B(si, )N (Gi —{e,}) =2 forall iel\ L.

Then, since s; € A; \ intg, Aj, there exists €V € R’ \ {0} such that

Y Y |y 1
s1+ef € R\ A and || <m1n{2;2,2y4}.9

9Recall that for x; € A;, we have z; € A; \ intg, A; if and only if
B(xi,r) n RZ‘ ¢ Ai

for any positive real number 7.
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Since 2v2||eY|| < ¥, we have
s; ¢ RiN(Gy—{eh,}y —202{e¥}) forall i€\ . (2)
We need to show that (2) also holds for i = m = 1.

Claim 3.
s1 ¢ RN (Gy—{eh,} — 20°{et}).

The proof of Claim 3 is given in the Appendix.
Let m € I, with m > 2, and suppose that €}, --- eV _, are the vectors
that satisfy properties (i) and (ii) for each m. We construct !, as follows.

First, by property (i) with respect to m — 1, we have, for all i € (I \
L) U{Ll, - ;m— 1},

o & Rin (Gi . Z 2‘11/2‘1{&?Z}>, 3)

Note that for all ¢ € {1,--- ,m — 1}, by the first part of property (i) and the
convexity of R,, we have s, + A\el, € R, for all A € [0, 1].
By (3), there exists a positive real number 77, such that for all i € (I\

I;,) U{l,--- ,m — 1},
m—1
B(si 1) N (Gi PSS 2%%;}) _o.
q=1

Since s,, € A, \ intg, A, we can choose €7, € Rf so that

v v : 7071;1 1
Smten € R\ Ay and el || < mln{ Sy 2 Gy a3 }
Since 2™v*™||e” || < ¥, we have, for all i € (I \ I;;,) U{1,--- ,m — 1},

si ¢ RN <Gi —{e" ) — qf}lzqu%{gg}>, (4)

We claim that (4) also holds for i = m.

12



Claim 4. .
Sm & Ry N <Gm —{ebut = >, 2‘11/2‘1{5;}).
q=1
The proof of Claim 4 is given in the Appendix.
Thus, we conclude that for each v > 7, there exist M vectorsey,--- e}, €

R’ that satisfy the properties (i) and (ii). Note that by property (ii) with
respect to m = M,

si ¢ RN <Gi —{ebut — > 2my2m{€ﬁn}> for all i€ 1. (5)

mel;n

We now define a sequence {€%,},ey C R by

[AVARWAN
X

. 1 for v

E. ot

m Z om 2m v f
mel;, vere,, or v

Since Y
lenll < S0 2mme)| <5 forall v2v,

mel;n

we have vel, — 0 as v — oo (recall that for all » > 7 and m € I, by the
second part of property (i), we have 2mv*™||e¥ || < 1/v?).
Finally, define a sequence {"},en C R? by

v __ v v
e = gout+€in'

Then, from the definition, we have ve” — 0 as v — oo. Moreover, by (5),
for all v > 7, we have

si ¢ RiN(G;—{e"}) forall iel,
which completes the proof. ([

Let {¢"},en be a sequence that satisfies the properties stated in Lemma
1. Next Lemma shows that we may assume that >°,c;w; —ve” € ¥ ;1 R; for
sufficiently large v € N as far as the existence of quasi-equilibrium matters.

13



Lemma 2. Suppose Assumptions 1 and 2 hold. Suppose that there exists a
sequence {6" },eny C RY such that 6 — 0 as v — oo, and

Zwi—é” §§ZRZ for all v e N.

icl iel
Then, there exists a (-dimensional vector p # 0 such that
p-R >p-w; forall i¢cltO
Therefore, (w,p) € X x RY is a quasi-equilibrium of &.

Proof. If Y,c;w; — 8 ¢ Y, R; for all v € N, we have Y,.;w; €
bd(X ;e Ri). Since Y,c; R; is convex under Assumptions 1 and 2, by the
support theorem (Florenzano and Le Van, 2001, p25, Corollary 2.1.1), there
exists p # 0 such that

p-z2>D-y w forall zed R

il el

Take arbitrary ¢ € I and z; € R;. Since x; + 3, wj € Yper Ry, we have

Prai+P-) wj 2P-wi+D ) wj
i J#

and thus,
Therefore, we have
p-R;>p-w; forall iel,
which completes the proof. O
We now state and prove our main existence theorem.

Theorem 2. Under Assumptions 1 — 3, there exists a quasi-equilibrium
(T,p) € X x R\ {0} of €.

OBy “p-R; > P -w;”, wemean p-x; > p-w; for all z; € R;.

14



Proof. By Assumptions 1 (a), 1 (b), 2 (a) and 3, there exists s = (s;)ies € S
such that s; € (intg, A;)¢ for all i € I.

Then, by Lemma 1, there exist a sequence {€},eny C RY and a natural
number 7; € N such that ve¥ — 0 as v — oo, and for every v > 7; and
iel,

si ¢ BN (G —{"}). (6)

Suppose that the sequence {re”}, ey contains a subsequence {v,e"},en

that satisfies

Zwi—uyal’“¢ZRi for all p € N.

iel il
Then, by Lemma 2, (w,p) € X x R’ is a quasi-equilibrium of &.
Therefore, we may suppose without loss of generality that there exists
75 € N such that for all v > 7,

Zwi —ve¥ € ZRl

i€l el

By this relation, for each v > ¥ = max{7, 7, }, there exists ¥ = (2¥);es €
[I;er R such that > ;c; 2 = > ,crw; — ve”. Note that since R; is compact,
the sequence {z},>5 C R; is bounded for each i € I.

For each v > 7 and 7 € I, let

v ( 1) L,

v 14

Then, we have w! € R; by the convexity of R;, and
14 1 1 14
Zwi =|1-- Zwi+*zxizzwi—€y. (7)
iel V) ier Vier i€l

Moreover, w} — w; as v — oo for each i € I. Indeed, since {z}} ey is

bounded,

1 1
loi = will < “lwill + ~laf | = 0 as v — oo,
We now define, for each v > 7, an auxiliary economy £” by

&= (RZ7 (Xz‘, uiawl‘/>i61)'

)

Note that £ differs from £ only in its initial endowments.

15



Then, by the definition, each £" satisfies all the assumptions in Theorem
1. Especially, each £ satisfies [Weak nonsatiation|. To see this, note first
that for each i € I, by (6) and (7),

Si ¢ Gz — {EV}
= =D Rj+> fw} —{"}

i kel
=-> R+ {w} (8)
i kel

Since u;(w!) > w;(w;) by the quasi-concavity of u;, we have RY C R; for each
1 € I, where

Therefore,
=D R+ Awr} € =) R+ {wit
i kel J#i kel

Finally, by this relation and (8),

g R0 (TR0 = 4

G kel

where A? denotes the individually rational feasible consumption set of con-
sumer ¢ € [ in £,

Therefore, by Theorem 1, each £ (v > 7) admits a quasi-equilibrium
(¥, p") € X x R“\ {0}. In view of Definition 2, we may assume without loss
of generality that p* € S(0,1) = {p € R*: ||p|| = 1} for all v > D.

We now obtain a sequence {(z",7")},>z C X x.5(0, 1) each term of which
is a quasi-equilibrium of £”. Since X x S(0,1) is compact, we may assume
without loss of generality that the sequence has a limit point (7,p) € X X
S(0,1). We prove that (Z,p) is a quasi-equilibrium of the original economy.

We fist show that (a-2) of Definition 2 holds. Suppose that for some i € I,
there exists x; € X; with

ui(w;) > ui(7;) and p-r; <P-w;

Then, since (z¥,p”) — (7,p) and w! — w; as v — oo, and w; is upper
semicontinuous, we have

ui(z;) > u(7y) and p’-x; <P -wf
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for sufficiently large v. However, this contradicts with the fact that (z¥,7")
is a quasi-equilibrium of £”. Thus, (a-2) of Definition 2 holds. It is easy to
check that (7, p) satisfies (a-1) and (b) of Definition 2.

Therefore, we conclude that (Z,p) € X x S(0,1) is a quasi-equilibrium of
the original economy &. 0J

3.2. FExistence of competitive equilibrium

There are several known sets of assumptions under which a quasi equilib-
rium is a competitive equilibrium (see, for example, Geistdoerfer-Florenzano,
1982). In this paper, we employ the simplest one:

Assumption 4. For all 7 € I,
(a) w; € int X;, and

(b) w; is continuous on Xj.

We now establish the existence of a competitive equilibrium under As-
sumption 3.

Theorem 3. Under Assumptions 1 — 4, there exists a competitive equilib-
rium (Z,p) € X x R\ {0} of €.

Proof. By Theorem 2, there exists a quasi-equilibrium (Z,p) € X x R*\ {0}
of £. We prove that (Z,p) is a competitive equilibrium of £.

It is clear that (7, p) satisfies (a-1) and (b) of Definition 1. Suppose that
(a-2) of Definition 1 does not hold for some ¢ € I. Then, there exists z; € X;
such that

wi(z;) > ui(Z;) and p-z; =D-w;.

Since p # 0 and w; € int X;, there exists y; € X; such that p-y; < p-w;. Let
xi(t) = tw; + (1 — t)y; for t € (0,1). It is clear that for all ¢ € (0, 1),

zi(t) € X; and p-a;(t) <D-w.

Moreover, since u;(x;) > wu;(%;) and w; is continuous on X;, we have
wi(z;(t)) > wu;(x;) for t sufficiently close to 1. However, this contradicts
with the fact that (Z,p) is a quasi-equilibrium of £.

Therefore, we conclude that (Z,p) € X x R\ {0} is a competitive equi-
librium of £. 0
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4. Alternative assumption

In this section, we introduce an alternative to Assumption 3 and provide
some related results.
Consider the following assumption.

Assumption 5. For each i € I, if S; # @, we have S; N (inty, F;)° # .

The symbol inty, F; denotes the interior of F; in the relative topology on
X;. " Assumption 5 allows S; to be a subset of the individually feasible
consumption set Fj, provided that it touches the complement of F; in X;.
This assumption is a generalization of Sato’s (2008) nonsatiation assumption,
which asserts that S; Ninty, F; = & for each 7 € I.

By replacing A; by F; and R; by X; for all © € I in the statements
and proofs of all the propositions provided in 3.1 (including Theorem 1), we
obtain the existence of a quasi-equilibrium under Assumption 5.

Corollary 1. Under Assumptions 1, 2 and 5, there exists a quasi-
equilibrium (T,p) € X x R\ {0} of £. 12

Assumptions 3 and 5 do not imply each other in general. Indeed, As-
sumption 5 does not hold in Example 1 in 2.2 (where s; lies on inty, F}). In
contrast, in Example 2 below, we will observe that only Assumption 5 holds.

Example 2. Consider an exchange economy £ with two commodities and
two consumers. Let X; = {x; € R? : 0 < 213 < 10 and x5 > 0} and
X, = R%. Let w; = (0,10) and wy = (10,0). Consumers’ utility functions
are as follows.

( ) —’10—1'12‘ if x127£10
ulr =
YT s —an| 45 if @ =10

U2($2) = T22.

HRoughly speaking, if z; € intx, F}, every consumption bundle nearby it also lies on
F;.
12Tn this corollary, Assumption 1 (b) can be weakened to the boundedness of F' by the
standard truncation technique.
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Note that wu; is satiated at s; = (5,10) and uy is never satiated on Xs.
By the above definitions, it is easy to check that

Alz{ﬂfleXl:OSl'llS10&Hd3§’12:10}:R1

and s; € Ay. Since A; \ intg, A; = @ when A; = R;, Assumption 3 does
not hold. However, since s; € F} \ intx, F7 (note that s; requires the total
amount of the second good in the economy while consumer ¢ € I can consume
more of it), Assumption 5 holds.

However, Assumption 5 implies Assumption 3 if consumers’ utility func-
tions are continuous and not satiated at the initial endowments.

Proposition 1. Suppose that u; is continuous on X; and w; ¢ S; for all
i € I, then Assumption 5 implies Assumption 3. '3

Proof. It suffices to show that for all ¢ € I, if S; N (intx, F;)¢ # @, then,
SiN(intgr, A;)¢ # @. Suppose that S;N(inty, F;)¢ # @ and S;N(intg, A;)¢ = &
for some i € I. Let s; € S; N (intx, F;)°. Then, by the supposition, we have
S; € iDtRi AZ

Since s; € intg, A;, there exists a positive real number r; such that

B(Si,T1> N Rl C Az

Moreover, since u; is continuous on X; and wu;(s;) > wu;(w;), there exists a
positive real number ry such that

B(Si,T’2> N Xl C Rz
Let 7 = min{ry, ro}. Then, from the above two relations,
B(si,r)NX; C B(s;,r1) NR; C A; C F.

Therefore, s; € intx, F;, which is a contradiction. O

13Example 1 in 2.2 shows that the converse of the statement is not true.

19



5. Concluding Remark

As a concluding remark, we compare Assumption 3 with the assumption
introduced by Won and Yannelis (2006).

Won and Yannelis (2006) establish the existence of competitive equilib-
rium with satiation in more general settings than ours. For example, in their
analysis, individually rational feasible consumption sets do not need to be
bounded and consumers’ preferences are allowed to be non-ordered. More-
over, they introduce an assumption that allows each consumer’s satiation
area S; to be a subset of intg, A;, while our assumption does not apply to
such a case. Therefore, their assumption does not imply Assumption 3. Nev-
ertheless, as shown below, our assumption does not imply Won and Yannelis’s
assumption either.

To simplify the arguments, we consider the case in which if S; # @ for
some ¢ € I, it consists of a unique element s; € Xj.

For an allocation x € X, let Iy(z) = {i € I : z; € S;} and I,5(x) =
I'\ I;(z). For a consumption bundle z; € X, let P;(x;) = {y; € X; : u;(y;) >
u;(z;)}. Then, Won and Yannelis’s (2006) condition reduces to the following
form:

Let x = (x;)ier € A with I(x) # @ and I,s(x) # @&. Then, for
each p € R*\ {0} that satisfies p- Pj(z;) > p-z; for all j € I,,5(x),
we have p-s; > p-w; for all i € I,(x). 1

We now consider the following example.

Example 3. Consider an exchange economy £ with two commodities and
three consumers. Let X; = R2 for all i € I = {1,2,3}. Let w; = wy = (2,2)
and ws = (4,4). Consumers’ utility functions are as follows.

uy (1) = —||(211, 12) — (8,0)|
UQ(QZQ) = —||(:L‘21,£E22) - (0’8)”2

Us(%) = T32 — X31

Note that s; = (8,0) (# wy) and sy = (0,8) (# wq) are the unique satiation
points of consumers 1 and 2. However, uz is never satiated on X3. Note also
that u; is continuous on X; for each i € I.

4Won and Yannelis, 2006, p.4, Assumption S5.
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Consider an allocation z = (s1, s2,y3) € X, where y3 = (0,0) € X3. It is
clear that « is individually rational feasible and I(z) = {1,2} and I,,s = {3}.

By the definition of uz, we have Ps(y3) = {z3 € X3 : 235 > x31}. There-
fore, for a price p = (—1,1), we have

p-Pi(y3) >0=p-ys.

However, since p-s; = —8 < 0 = p - w; for consumer 1, Won and Yannelis’s
assumption does not hold.

To prove that Assumption 3 holds, we first observe that Assumption
5 holds. Indeed, since s; requires the total amount of the first good in the
economy while consumer 1 can consume more of it, we have s; € F \inty, F}

Likewise, we have sy € Fy \ inty, 5. Therefore, this economy satisfies
Assumption 5. Then, by Proposition 1, we conclude that Assumption 3
holds.

Appendix

Proof of Claim 2. First, if > ,c; (sp — wsp) = 0, case (b) clearly holds.
Thus, in the following, we suppose that >y, (s, — wp) # 0.

Suppose that the assertion of the lemma is not true. Then, for an arbi-
trarily chosen v € N, there exist v/, " > v such that

G d R, m( o z{sh—wh}) )

helpy

and

sleRﬂ< S L z{sh—wh}) (10)

helpg

Without loss of generality, we may assume that v/ > v/”.
Then, by (10), there exists (;); € [1;4 [2; such that

__ij+2wk e Z ($p, — wn). (11)
i kel ( helpg

Since s; € A; = R; N G;, there exists (y;) 4 € [1;4 R; such that

— >yt W (12)

i kel
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Then, (V" /V)*x(11)+(1 — (v /v')?)x (12) yields,

== i+ w— ) QZ Sh— wh),

jF#i kel he€lpg

! 2 ! 2
zj = <V/> z; + <1 - (V,> )yj €R; foreach j#i.

Therefore,

where

szeRm< 2Z{Sh wh}>,

helpg

which contradicts with (9).

O

Proof of Claim 3. Suppose that the assertion of the claim is not true.

Then, there exists (2;);+1 € [;4 R; such that

:—Zx]+2wk (s —wp) — 2%

7#1 kel hEIbd

Since s; € R1N(Gy —{e},,}) (recall that v > 7 > 7,,,), there exists (y;);21 €

[1;.41 R; such that
1
—Zyj —l—Zwk - = Z (Sh —wh).
J#1 kel V" hely

Therefore, we have

ZZJ+Z°‘”€ (sn — wn) — 267,

]751 kel hEIbd

where

1 1
Zj:ﬁxjjt (1—1/2>yj€Rj for all j # 1.

(13)

Moreover, since s; € Ay = Ry N Gy, there exists (t;);41 € [1;1 R; such

that

—th+Zwk.

j#1 kel
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Multiplying (14) by (1 — (1/v)?), we have

) S > (e L U P

By adding this equation (and 0 = —(1/v%) Y her,., (wn — wi)) to (13) and
rearranging it, we obtain

2s1+e))==>a; +2> wy,

j#1 kel

1 1
CLj:Zj+ ﬁw]'—F 1-; tj,

and for j € Ly \ {1},
1 1
CLj:Zj+ ﬁSj—F 1—;%’.

1
51+5'f:—25aj+2wk.

j#1 kel

Since (1/2)a; € R, for all j # 1, we have s; + €} € A;, which contradicts
with our choice of &Y. O

where for j € I,

Therefore,

Proof of Claim 4. Suppose that there exists (x;);zm € [1;4y, R; such that

i#m

m

T+ W — —& Sp — wh 2ql/2q€V.

R IR DB DM -2 20y
q=1

jFEm kel he€lpg

Since s, € Ry N (G — {€h,}), there exists (y;)2m € [1jzm R, such that

_Zyj+zwk_:2 Z(Sh—wh)-

]7577’1 kel he[bd
Therefore, we have
m
Z zj + Zwk - = Z (sp —wp) — Z 2q_(m_1)y2q_2mag, (15)
Jj#m kel helbd q=1
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where

1 1 :
zjzmxj—l— (1—2m_ly2m>yj € R; forall j#m.

Moreover, since s, € Ay, = Ry N Gy, there exists (t;)j2m € [Ljzm R;

such that

sm:—th—i—Zwk.

j#Em kel
Multiplying (16) by (1 — (1/v)?), we have

(16)

1) 1 1
1— = sm:—z<1—>t-—|—(1—>2wk.
( v? j#m v2 ) v ) et

Adding this equation (and 0 = —(1/v?) Xper,., (wh — wh

ranging it, we obtain

2(Sm+€l;n) = — Z aj+22wk,

j#Em kel

1 1
CLj:Zj+ ﬁw]'—i‘ 1_ﬁ tj,

where for j € I,

for j € Iy \ {1,--+ ,m —1},

1 1
aj:zj+ ;Sj—i‘ 1—; tj,

and for j € {1,--+ ,m — 1},

1 1 ,
aj = zj T lyz (31 T = m-Dy—G-m) &

Note that for j € {1,---,m — 1}, since

1
0

we have
1

Sj+ e’ e R;.

2—li=(m=1)]y—=(G-m)"J
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Then, by (17),

1
SmtEm=— 3 iajjtZwk.
j#Em kel
Since (1/2)a; € R; for all j # m, we have s, + ¢/, € A, which is a
contradiction. O
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