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Abstract

In this note, we consider the fundamental structure of the lattice theoretical compara-
tive statics theorem, which is known as the necessary and sufficient relationship between
monotonicity of the solutions of constrained optimization problems and quasisupermod-
ularity of objective functions. Although the original theorem by Milgrom and Shannon
(1994) [Econometrica, vol.62, pp157-180.] is constructed on a lattice, we show that this
relationship can be extended to more general environments than a lattice. What is es-
sentially required for the results in this paper is that two nonempty set-valued operations
are defined on the domain of the objective function, whereas two single-valued operations
with some special properties are defined on a lattice.
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1 Introduction

The purpose of this note is to extend the theory of the lattice theoretical comparative
statics to more general environment than ever known. The original theorem by Milgrom
and Shannon (1994), which is widely applyed for economics and game theory1, shows the
necessary and sufficient condition for global monotonicity of comparative statics of the
solution sets of constrained optimization problems. Generally, if one intend to perform
comparative statics by applying Milgrom and Shannon’s theorem, it is important to ex-
amine the following three points: The first is the strucuture of the domain of the objective
function. The second is the behaviors of the feasible sets according to the changes of
parameters. The third is the properties of the objective function. In the theory of the
standard lattice theoretical comparative statics, it is required that the domain of objective

1See also Topkis (1998) for introduction to the lattice theoretical methods and its applications.
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function is a lattice and that the changes of the feasible sets can be measured by strong
set order. Under these conditions, quasisupermodularity of the objective function is the
necessary and sufficient condition for the monotonicity of the solution set, which is nothig
but the statement of Milgrom and Shannon’s theorem.

Since, by its definition, a lattice is a partially ordered set with some special properties,
one must define some appropriate binary relation with reflexibility, antisymmetry, and
transitivity to apply Milgrom and Shannon’s theorem. However, in some contexts in
economics, defining a partial order is not an easy task. In the consumer theory, for
instance, although Antoniadou (2007) defines the binary relation called “the direct (p, i)-
value order” on the consumption set to analyze the normality of consumer demand by
using the lattice theoretical monotone comparative statics theorem, if there exist more
than two goods in the model, it is not a partial order but a preorder, that is, the direct
(p, i)-value order cannot satisfy antisymmetry. To overcome this difficulty, Shirai (2008a)
shows that the lack of antisymmetry does not cause any crucial problem: Milgrom and
Shannon’s theorem can be extended to the framework of preordered sets as well as the
notions of a lattice, strong set order, and quasisupermodularity2. On the other hand, there
exists another generalization of the theory of monotone comparative statics. Although, as
stated in the beginning of this paragraph, most literature in this subject regard a lattice
as a special case of a partially ordered set, one can also construct a lattice by defining two
operations with some conditions on a set, that is, a lattice can be regarded as a special
case of an algebra (See Grätzer (2000), for example.). Quah (2007) observes that Milgrom
and Shannon’s theorem remains true even if two operations on the domain of the objective
function do not satisfy the condtions which make a set a lattice [Quah (2007), Theorem
1, pp.408.].

We consider unifying the above two streams of generalizations of the lattice theoretical
comparative statics. That is, we extend Milgrom and Shannon’s theorem to the environ-
ment which contains the ones considered in Shirai (2008a) and Quah (2007) as its special
cases. The rest of this paper is organized as follows. First, we state the definition of the
notions corresponding to a lattice, strong set order, and quasisupermodularity in the next
section. In Section 3 and 4, we state the sufficient conditons and the necessary condi-
tions for monotone comparative statics, respectively. It should be noted that, although
Quah (2007) does not state explicitly, some kinds of order structure on the domain of the
objective function plays a crucial role to derive the necessary condition.

2It should be noted that Mirman and Ruble (2003) shows the alternative way to deal with the models with
more than two goods. They successfully define the partial order on the consumption set and make it possible
to apply the original theorem by Milgrom and Shannon.
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2 Definitions

2.1 (∆,∇)-lattice structure

On the domains of functions, we define the fundamental platform on which our arguments
explicated as follows.

Definition 1: A set X is said to be a (∆,∇)-lattice structure if two nonempty sets (x∆y)
and (x∇y) are defined for every x, y ∈ X.

Note that this definition is general enough to contain the notions of the original lattice
and some generalized versions of lattice which appears in recent studies. Indeed, if the
both ∆ and ∇ are single-valued operations, a (∆,∇)-lattice structure is equivalent with the
notion which is considered in Quah (2007). On the other hand, if the set-valued operations
(∆,∇) satisfy the “order structure” defined in follows, a (∆,∇)-lattice structure can be
constructed from some preorder and it coincides with a “preordered lattice structure” in
Shirai (2008a), (2008b). Moreover, if (∆,∇) satisfy both single-valuedness and the order
structure, then a (∆,∇)-lattice strucutre can be constructed from some partial order and
it coincides with a lattice. The formal definitions of the order structure, a preordered
lattice structure, and a lattice are as follows.

Definition 2: The set-valued operations (∆,∇) on X satisfy the “order structure if the
following conditions are satisfied.

1. (Set-valued Idempotency) x ∈ Ix := (x∆x) = (x∇x) for every x ∈ X.

2. (Set-valied Commutativity) (x∆y) = (y∆x) and (x∇y) = (y∇x) for every x, y ∈ X.

3. (Set-valued Associativity)

∀tx,y ∈ (x∆y), ty,z ∈ (y∆z); (x∆ty,z) = (tx,y∆z)
∀ax,y ∈ (x∇y), ay,z ∈ (y∇z); (x∇ay,z) = (ax,y∇z)

for every x, y, z ∈ X.

4. (Set-valued Absorption Identities)

∀ax,y ∈ (x∇y); (x∆ax,y) = Ix

∀tx,y ∈ (x∆y); (tx,y∇y) = Iy.

for every x, y ∈ X.

Definition 3: A set X is said to be a preordered lattice structure if two nonempty set-
valued operations (∆,∇) with the order strucuture are defined.

Definition 4: A set X is said to be a lattice if two single-valued operations (∆,∇) with
the order strucuture are defined.

3



Note that if (∆,∇) are single-valued, then the conditions stated in Definition 2 coincide
with Idempotency, Commutativity, Associativity, and Absorption Identities, respectively.
See Grätzer (2000) for the details of these algebraical notions. In the rest of this subsection,
we state the alternative definitions of a preordered lattice structure and a lattice, which
regard a preordered lattice structure and a lattice as a special case of preordered set and
a partially ordered set, respectively.

Definition 5: Let X be a set endowed with a preorder 4. We say that an element u is
an upper bound of x and y if x 4 u and y 4 u. Let U be the set of upper bounds of x
and y. We say that an element a ∈ X is a supremum of x and y, if a ∈ U and a 4 u
for all u ∈ U . We write the set of supremums of x and y as Ax,y. In a similar fasion, we
can define the set of infimums of x and y, and we write this as Tx,y. We say that X is a
preordered lattice structure if both Tx,y and Ax,y are nonempty.

Definition 6: Let X be a set endowed with a partial order ≤. We say that X is a lattice
if both the supremum and the infimum3 of every two element x, y ∈ X with respect to ≤
exist. The former is often represented by x ∨ y and the latter is represented by x ∧ y.

It is not difficult to check that the algebraical definitions and the order theoretical defi-
nitions are equivalent with each other. Indeed, with the order structure, one can define
the preorder 4 as x 4 y ⇐⇒ (x∇y) = Iy, and construct a preordered lattice structure,
with the set of the supremums of every x, y ∈ X being equal to (x∇y) and the set of
the infimums being equal to (x∆y). If (∆,∇) are single-valued, then a preorder 4 de-
fined as above is, in fact, a partial order and X be a lattice under this partial order with
(x∆y) = x ∧ y and (x∇y) = x ∨ y, respectively.

2.2 (∆,∇)-strong set order

Then, we define the notions on the changes of feasible sets and solution sets. By analogy
of the notion of strong set order, which plays a crucial role in the traditional theory of
lattice programming, we introduce the generalized strong set relation from the set-valued
operations (∆,∇). In this case, we can consider the following four types of strong set
orders.

Definition 7: Let X be a (∆,∇)-lattice structure and S, S′ ⊂ X.

1. S′ is said to be higher than S in ww(∆,∇)-strong set order if (x∆y) ∩ S ̸= ∅ and
(x∇y) ∩ S′ ̸= ∅ for every x ∈ S and y ∈ S′. We write this as S ≤ww(∆,∇) S′.

2. S′ is said to be higher than S in ws(∆,∇)-strong set order if (x∆y) ∩ S ̸= ∅ and
(x∇y) ⊂ S′ for every x ∈ S and y ∈ S′. We write this as S ≤ws(∆,∇) S′.

3. S′ is said to be higher than S in sw-strong set order and write this as S ≤sw(∆,∇) S′

if (x∆y) ⊂ S and (x∇y) ∩ S′ ̸= ∅ for every x ∈ S and y ∈ S′

3The supremum of x, y ∈ X is often called “join”. Similarly, the infimum is called “meet”.
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4. S′ is said to be higher than S in ss-strong set order and write this as S ≤ss(∆,∇) S′

if (x∆y) ⊂ S and (x∇y) ⊂ S′ for every x ∈ S and y ∈ S′.

Note that ss-strong set relation implies both sw- and ws- strong set relations and sw-
and ws-strong set relations imply than ww-strong set relation, respectively. It is also
worth noting that these four concepts are all equivalent if both ∆ and ∇ are single-valued
operations. Following Quah (2007), in such cases, we call this relation (∆,∇)-strong set
relation and write S ≤(∆,∇) S′ when the set S′ is higher than S. We give an intuitive
example which is based on Antoniadou (2007), and Shirai (2008a).

Example 1: Consider the budget set in the consumer’s utility maximization problem in
which the consumption set of the consumer is Rn

+. When the wealth level is w > 0, as
long as the price vector p is fixed, the budget set of the consumer can be represented by
B(w) = {x | px ≤ w}. Antoniadou (2007) defines the preorder 4(p,i), which is named as
the direct (p, i)-value order as follows: x 4(p,i) y ⇐⇒ xi ≤ yi, and px ≤ py. In fact, with
the (p, i)-value order endowed, the consumption set Rn

+ is the preordered lattice structure.
Hence, we can regard (x∆y) = Tx,y = {t | ti = min[xi, yi], pt = min[px, py]}. Similarly,
define (x∇y) = Ax,y = {a | ai = max[xi, yi], pa = max[px, py]}. Then, the budget set
B(w) is monotone in the sense of ss-strong set order. That is, for all w < w′, we have
B(w) ≤ss(∆,∇) B(w′).

2.3 (∆,∇)-quasisupermodularity

Finally, we refer to the third point of what should be examined when one intend to perform
lattice theoretical comparative statics: quasisupermodularity of functions. Similar to the
case with strong set order, we have the following four types of quasisupermodularity.

Definition 8: Let X be a (∆,∇)-lattice structure. A function f : X → R is said to be
ww-quasisupermodular if it satisfies

∀t ∈ (x∆y); f(x) ≥ (>)f(t) ⇒ ∃a ∈ (x∇y); f(a) ≥ (>)f(y)

for every x, y ∈ X. If f satisfies

∀t ∈ (x∆y); f(x) ≥ (>)f(t) ⇒ ∀a ∈ (x∇y); f(a) ≥ (>)f(y),

then we say that f is ws-quasisupermodular. A function f is said to be sw-quasisupermodular
if it satisfies

∃t ∈ (x∆y); f(x) ≥ (>)f(t) ⇒ ∃a ∈ (x∇y); f(a) ≥ (>)f(y).

We say that f is ss-quasisupermodular if it satisfies

∃t ∈ (x∆y); f(x) ≥ (>)f(t) ⇒ ∀a ∈ (x∇y); f(a) ≥ (>)f(y).
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Again by analogy of strong set order, ss-quasisupermodularity implies both sw- and ws-
quasisupermodularity, and sw-quasisupermodularity and ws-quasisupermodularity imply
ww-quasisupermodularity, respectively. If both ∆ and ∇ are single-valued operations,
these four concepts are all equivalent and we call that (∆,∇)-quasisupermodularity. As is
mentioned in Section 1, in the context of the standard lattice programming, quasisuper-
modularity of the objective function constitutes the necessary and sufficient conditon for
the monotonicity of the solution set of optimization problems in the sense of the strong
set order. On the other hand, in our generalized environments, the necessary conditions
and the sufficient conditions have to be considered separately, since the former needs ad-
ditional conditions on the structure of the set-valued operations (∆,∇), while the latter
does not.

3 Sufficient Conditions for Monotonicity

In this section, we consider the sufficient conditions for the monotonicity of the solution
set of the constrained optimization problem. In the rest of this paper, we suppose that X
is a (∆,∇)-lattice structure and that f : X → R. We deal with the optimization problem
in the form of

max
x∈S⊂X

f(x)

and write the solution set of it as M(S). We assume M(S) ̸= ∅ for any S ̸= ∅. We perform
the comparative statics of M(S) with respect to the change of the feasible set S and have
the following four monotone comparative statics theorems depending on the degrees of the
changes of the feasible set S, which are measured by the strong set orders defined in the
previous section. Needless to say, the stronger the degree of the changes of the feasible
sets, the milder condition on the objective function which assures the monotonicity of the
solution sets.

Theorem 1: Let X be a (∆,∇)-lattice structure, and S, S′ ⊂ X. Suppose S ≤ss(∆,∇) S′.
Then, we have the followings.

1. If f satisfies ww-quasisupermodularity, then M(S) ≤ww(∆,∇) M(S′).

2. If f satisfies ws-quasisupermodualarity, then M(S) ≤ws(∆,∇) M(S′).

3. If f satisfies sw-quasisupermodularity, then M(S) ≤sw(∆,∇) M(S′).

4. If f satisfies ss-quasisupermodualarity, then M(S) ≤ss(∆,∇) M(S′).

Proof First, we show that ww-quasisupermodularity of objective function f implies M(S) ≤ww(∆,∇)

M(S′). Suppose f is ww-quasisupermodular and x ∈ M(S) and y ∈ M(S′). Then, it is
obvious that f(x) ≥ f(t) for all t ∈ (x∆y). By ww-quasisupermodularity, there ex-
ists at least one a ∈ (x∇y) such that f(a) ≥ f(y), which implies (x∇y) ∩ M(S′) ̸= ∅.
Since f(y) = f(a) for some a ∈ (x∇y), by ww-quasisupermodularity, there exists at
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least one t ∈ (x∆y) such that f(x) = f(t), that is, (x∆y) ∩ M(S) ̸= ∅. This implies
M(S) ≤ww(∆,∇) M(S′).

Then, suppose f is ws-quasisupermodular and x ∈ M(S) and y ∈ M(S′). By ws-
quasisupermodularity, we have f(a) ≥ f(y) for all a ∈ (x∇y). This means (x∇y) ⊂ M(S′).
Again by ws-quasisupermodularity, we have f(x) = f(t) for at leaset one t ∈ (x∆y), that
is, (x∆y) ∩ M(S) ̸= ∅. This implies M(S) ≤ws(∆,∇) M(S′).

Suppose that f is sw-quasisupermodular, x ∈ M(S), and y ∈ M(S′). By the definition,
f(x) ≥ f(t) for all t ∈ (x∆y)∩S ̸= ∅. This and the assumption of sw-quasisupermodularity
implies that there exists some a ∈ (x∇y) ⊂ S′ such that f(a) ≥ f(y), which implies
(x∇y) ∩ M(S′) ̸= ∅. Again by sw-quasisupermodularity, for all t ∈ (x∆y), we must have
f(x) = f(t), which completes the proof. The case with ss-quasisupermodularity, we use
the fact that ss-quasisupermodularity implies both ws- and sw-quasisupermodularity of
f . As is the same with the preceding paragraphs, suppose x ∈ M(S), and y ∈ M(S′).
It is obvious that f(a) ≥ f(y) for all a ∈ (x∇y) by ws-quasisupermodularity. Hence,
(x∇y) ⊂ M(S′). Since f(a) = f(y) for all a ∈ (x∇y), by sw-quasisupermodularity, it
must follows that f(x) = f(t) for all t ∈ (x∆y), which means (x∆y) ⊂ M(S). [Q.E.D.]

Remark 1: The last paragraph of the preceding proof implies that the joint assump-
tion of ws-quasisupermodularity and sw-quasisupermodularity is, in fact, sufficient for
M(S) ≤ss(∆,∇) M(S′) under the condition of S ≤ss(∆,∇) S′. Nevertheless, under the
condition which enables us to prove the converse of Theorem 1 and other theorems in
this section, ss-quasisupermodularity is equivalent with the joint assumption of ws- and
sw-quasisupermodularity. We refer this point anew in the next section.

Theorem 2: Let X be a (∆,∇)-lattice structure, and S, S′ ⊂ X. Suppose S ≤sw(∆,∇) S′.
Then, we have the followings.

1. If f has ws-quasisupermodularity, then M(S) ≤ww(∆,∇) M(S′).

2. If f has ss-quasisupermodular, then M(S) ≤sw(∆,∇) M(S′).

Proof Suppose that x ∈ M(S) and y ∈ M(S′). Since S ≤sw(∆,∇) S′, (x∆y) ⊂ S and this
implies that f(x) ≥ f(t) for all t ∈ (x∆y). Since the fuction f is ws-quasisupermodular,
we have f(a) ≥ f(y) for all a ∈ (x∇y), which means (x∇y) ∩ M(S′) ̸= ∅. Again by
ws-quasisupermodularity, we must have f(x) = f(t) for at least one t ∈ (x∆y). This
implies M(S) ≤ww(∆,∇) M(S′).

The case with ss-supermodularity, we already have M(S) ≤ww(∆,∇) M(S′) by the
previous paragraph of this proof. What we have to show is that (x∆y) ⊂ M(S). Suppose
f(x) > f(t) for some t ∈ (x∆y). By ss-quasisupermodularity, we have f(a) > f(y) for all
a ∈ (x∇y) However, this contradicts the fact that y ∈ M(S′). [Q.E.D.]

Theorem 3: Let X be a (∆,∇)-lattice structure, and S, S′ ⊂ X. Suppose S ≤ws(∆,∇) S′.
Then, we have the followings.

1. If f has sw-quasisupermodularity, then M(S) ≤ww(∆,∇) M(S′).
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2. If f has ss-quasisupermodularity, then M(S) ≤ws(∆,∇) M(S′).

Proof Suppose x ∈ M(S) and y ∈ M(S′). Since (x∆y) ∩ S ̸= ∅, there exists at least
one t ∈ (x∆y) such that f(x) ≥ f(t). By sw-quasisupermodularity of f implies that
there exists at least one a ∈ (x∇y) such that f(a) ≥ f(y). Since (x∇y) ⊂ S′, this means
a ∈ M(S′). Again by sw-quasisupermodularity, we have f(x) = f(t) for all t ∈ (x∆y).
This implies there exists at least one t ∈ M(S), which means M(S) ≤ww(∆,∇) M(S′).

The case with ss-supermodularity, what we have to show is that (x∇y) ⊂ M(S′).
Suppose f(y) > f(a) for some a ∈ (x∇y). By ss-quasisupermodularity, f(t) > f(x) for
all t ∈ (x∆y), which contradicts the assumption of x ∈ M(S). [Q.E.D]

Theorem 4: Let X be a (∆,∇)-lattice structure, and S, S′ ⊂ X. Suppose S ≤ww(∆,∇) S′.
If f is ss-quasisupermodular, then we have M(S) ≤ww(∆,∇) M(S′).

Proof Suppose x ∈ M(S) and y ∈ M(S′). Since (x∆y) ∩ S ̸= ∅, there exists at least one
t ∈ (x∆y) such that f(x) ≥ f(t). By ss-quasisupermodularity of f , we have f(a) ≥ f(y)
for all a ∈ (x∇y). Since (x∇y) ∩ S′ ̸= ∅, this means (x∇y) ∩ M(S′) ̸= ∅. Suppose
f(x) > f(t) for some t ∈ (x∆y), then f(a) > f(t) for all a ∈ (x∇y), which contradicts
the fact that y ∈ M(S′), hence f(x) = f(t) for all t ∈ (x∆y). Since (x∆y) ∩ S ̸= ∅, this
means (x∆y) ∩ M(S) ̸= ∅. Now, we have M(S) ≤ww(∆,∇) M(S′). [Q.E.D.]

We can summarize the above results as follows. For example, one can read off that ss-
quasisupermodularity causes ss-strong set monotonicity of M(S) under S ≤ss(∆,∇) S′,
and does sw-strong set monotonicity of M(S) under S ≤sw(∆,∇) S′ from the first and
second components of the first row in Table 1 below.

Table 1 Set Relation
Quasisupermodularity ss sw ws ww
ss-quasisupermodular ss sw ws ww
sw-quasisupermodular sw × ww ×
ws-quasisupermodular ws ww × ×
ww-quasisupermodular ww × × ×

4 Necessary Conditions for Monotonicity

Although the arguments on the sufficient conditions for the monotonicity do not require
any additional conditions on the set-valued operations (∆,∇), to derive the necessary
conditions for the monotonicity of the solution set, we need weakend version of the order
structure, which we call “the pseudo order structure on these operations. The formal
definition of the pseudo order structure is as follows.

Definition 9: Let X be a (∆,∇)-lattice structure. We say that (∆,∇) satisfies the pseudo
order structure if the conditions
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1. (x′∆y) = (x∆y) and (x′∇y) = (x∇y) for every x′ ∈ Ix and y ∈ X.

2. ∀t ∈ (x∆y); (t∆y) = (x∆y) and ∀a ∈ (x∇y); (x∇a) = (x∇y) for every x, y ∈ X.

3. ∀t ∈ (x∆y), a ∈ (x∇y); (t∆a) = (x∆y) and (t∇a) = (x∇y) for every x, y ∈ X.

are satisfied in addition to the set valued reflexibility and the set-valued absorption iden-
tities.

The naming of “the pseudo order structure” originates from the fact that (∆,∇) defined
by some preorder satisfies this property. However, the satisfaction of orderedlike structure
does not imply that (∆,∇) is constructed from some order. See the following example.

Example 2: Let X = R2. Define the operations (∇,∆) as follows.

x∇y = y if x1 ≤ y1

= λx + (1 − λ)(x ∨E y) if x1 > y1

x∆y = x if x1 ≤ y1

= λy + (1 − λ)(x ∧E y) if x1 > y1

where λ ∈ [0, 1], and ∨E and ∧E designate the supremum and the infimum, respectively
with respect to Euclidean order. Note that the above definition of (∆,∇) is the same
as that of (∆λ

1 ,∇λ
1) in Quah (2007). These (∇,∆) satisfy the pseudo order structure.

However, both ∆ and ∇ do not satisfy commutativity. Indeed, for x = (1, 0), y = (0, 1),
and λ = 1

2 , we have

(x∇y) =
1
2
((1, 0) + (1, 1)) = (1,

1
2
)

(y∇x) = (1, 0)

(x∆y) =
1
2
((0, 1) + (0, 0)) = (0,

1
2
)

(y∆x) = (0, 1).

Then, we state the counterparts of Theorem 1-4, that is, the necessary conditions for
monotone comparative statics.

Theorem 5: Let X be a (∆,∇)-lattice structure, and (∆,∇) satisfy the pseudo order
structure. Suppose S, S′ ⊂ X and S ≤ss(∆,∇) S′. Then, M(S) ≤ww(∆,∇) M(S′) implies
ww-quasisupermodularity of f . If M(S) ≤ws(∆,∇) M(S′), then ws-quasisupermodularity is
implied. Similarly, we have that M(S) ≤sw(∆,∇) M(S′) and M(S) ≤ss(∆,∇) M(S′) implies
sw-quasisupermodularity and ss-supermodularity, respectively.

Proof Throughout this proof, we set S = Ix ∪ (x∆y) and S′ = Iy ∪ (x∇y) for some
x, y ∈ X. Note that, by the pseudo order structure, S ≤ss(∆,∇) S′. First, we show the
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case with M(S) ≤ww(∆,∇) M(S′). Let x ∈ M(S), that is, f(x) ≥ f(t) for all t ∈ (x∆y).
Since M(S) ≤ww(∆,∇) M(S′), we have (x∇z′) ∩ M(S′) ̸= ∅ for every z′ ∈ M(S′). By the
pseudo order structure, (x∇z′) = (x∇y), which implies that

∀t ∈ (x∆y); f(x) ≥ f(t) ⇒ ∃a ∈ (x∇y); f(a) ≥ f(y).

Then, suppose f(x) > f(t) for all t ∈ (x∆y) and f(y) = f(a) for all a ∈ (x∇y). Since
M(S) ≤ww(∆,∇) M(S′), (x∆y) ∩ M(S) ̸= ∅, which is contradiction. Thus, we have

∀t ∈ (x∆y); f(x) > f(t) ⇒ ∃a ∈ (x∇y); f(a) > f(y).

Second, we show the case with M(S) ≤ws(∆,∇) M(S′). Suppose x ∈ M(S). Then, by
the assumption of M(S) ≤ws(∆,∇) M(S′), we have (x∇z) ⊂ M(S′) for every z′ ∈ M(S′).
By pseudo order structure, we have (x∇z′) = (x∇y), which implies that

∀t ∈ (x∆y); f(x) ≥ f(t) ⇒ ∀a ∈ (x∇y); f(a) ≥ f(y).

Then, suppose f(x) > f(t) for all t ∈ (x∆y) and f(y) = f(a) for some a ∈ (x∇y). By
M(S) ≤ws(∆,∇) M(S′), we must have (x∆y)∩M(S) ̸= ∅. This contradicts the assumption
of f(x) > f(t). Thus, we have

∀t ∈ (x∆y); f(x) > f(t) ⇒ ∀a ∈ (x∇y); f(a) > f(y).

Third, we deal with the case with M(S) ≤sw(∆,∇) M(S′). Suppose f(a) < f(y) for all
a ∈ (x∇y), that is, M(S′) ⊂ Iy. By the pseudo order structure, we have (z∇z′) = (z∇y)
for every z ∈ M(S) and z′ ∈ M(S′). Note that M(S) ∩ Ix = ∅. Suppose not. Then,
(z∇z′) = (x∇y) ∩ M(S′) ̸= ∅, which contradicts our assumption. Again by the pseudo
order structure, we have (z∆z′) = (x∆y) ⊂ M(S). This implies that M(S) = (x∆y), that
is,

∀a ∈ (x∇y); f(a) < f(y) ⇒ ∀t ∈ (x∆y); f(x) < f(t).

Taking the contraposition, we have

∃t ∈ (x∆y); f(x) ≥ f(t) ⇒ ∃a ∈ (x∇y); f(a) ≥ f(y).

The case with strict inequalities can be proven as follows. Suppose f(x) > f(t) for some
t ∈ (x∆y). Then, M(S′) ∩ Iy must be empty. Indeed, if there exists z′ ∈ Iy ∩ M(S′), by
the pseudo order structure, we must have (z∆z′) = (x∆y) ⊂ M(S) for every z ∈ M(S),
contradiction. This implies that

∃t ∈ (x∆y); f(x) > f(t) ⇒ ∃a ∈ (x∇y); f(a) > f(y).

Finally, we show that M(S) ≤ss(∆,∇) M(S′) leads ss-quasisupermodularity of f . Sup-
pose f(a) < f(y) for some a ∈ (x∇y). Note that M(S) ∩ Ix must be empty. Indeed, if
there exists some z ∈ M(S) ∩ Ix, by the assumption of M(S) ≤ss(∆,∇) M(S′) and the
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pseudo order structure, (z∇z′) = (x∇y) ⊂ M(S′) for every z′ ∈ M(S′), which is contra-
diction. Moreover, we have (z∆z′) = (x∆y) ⊂ M(S), hence (x∆y) = M(S). Thus, we
have

∃a ∈ (x∇y); f(a) < f(y) ⇒ ∀t ∈ (x∆y); f(x) < f(t).

Taking the contraposition,

∃t ∈ (x∆y); f(x) ≥ f(t) ⇒ ∀a ∈ (x∇y); f(a) ≥ f(y).

The case with strong inequalities can be proven as follows. Suppose f(x) > f(t) for some
t ∈ (x∆y). As is the same with the previous paragraph, we can show that M(S′)∩ Iy = ∅.
Thus, M(S′) ⊂ (x∇y). Moreover, by the pseudo order structure and the assumption of
M(S) ≤ss(∆,∇) M(S′), we have (z∇z′) = (x∇y) ⊂ M(S′) for any pair of z ∈ M(S) and
z′ ∈ M(S′). This implies that

∃t ∈ (x∆y); f(x) > f(t) ⇒ ∀a ∈ (x∇y); f(a) > f(y).

This completes the proof. [Q.E.D.]

Corollary 1: Let X be a (∆,∇)-lattice structure and f : X → R. Suppose that
(∆,∇) satisfy the pseudo order structure. Then, the objective function f satisfies ss-
quasisupermodularity if and only if it satisfies both ws-quasisupermodularity and sw-
quasisupermodularity.

Proof By the definitions, only if part is obvious. It is already refered, at Remark 1, that
the joint assumption of ws-quasisupermodularity and sw-quasisupermodularity implies
M(S) ≤ss(∆,∇) M(S′). The preceding theorem proposes that M(S) ≤ss(∆,∇) M(S′) under
the condition of S ≤ss(∆,∇) S′ implies ss-quasisupermodularity, whence our claim follows.
[Q.E.D.]

Theorem 6: Let X be a (∆,∇)-lattice structure, and (∆,∇) satisfy the pseudo order
structure. Suppose S, S′ ⊂ X and S ≤sw(∆,∇) S′. Then, M(S) ≤ww(∆,∇) M(S′) implies
ws-quasisupermodularity of f . If M(S) ≤sw(∆,∇) M(S′), then ss-quasisupermodularity is
implied.

Proof Let S = Ix ∪ (x∆y) and S′
ā = Iy ∪ {ā} for some ā ∈ (x∇y). By the pseudo order

structure, S ≤sw(∆,∇) S′
ā. Since ss-strong set relation implies sw-strong set relation, and

by the previous theorem, it is already known that M(S) ≤ww(∆,∇) M(S′
ā) leads ww-

quasisupermodularity. Suppose x ∈ M(S). By the assumption of M(S) ≤ww(∆,∇) M(S′
ā)

and the pseudo order structure, ā must be contained in M(S′
ā), that is, f(ā) ≥ f(y). Since

the choice of ā is arbitrary, we have f(a) ≥ f(y) for all a ∈ (x∇y). Thus, we have

∀t ∈ (x∆y); f(x) ≥ f(t) ⇒ ∀a ∈ (x∇y); f(a) ≥ f(y).

The case with strong inequalities can be shown as follows. Suppose f(x) > f(t) for all
t ∈ (x∆y) and f(ā) = f(y). Then, by the assumption of M(S) ≤ww(∆,∇) M(S′

ā), we must
have (x∆y) ∩ M(S) ̸= ∅, contradiction.
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On the case with M(S) ≤sw(∆,∇) M(S′), by the previous theorem and the preceding
paragraph of this proof, it is already known that f must satisfy both sw-quasisupermodularity
and ws-quasisupermodularity. Hence our claim follows from Corollary 1. [Q.E.D.]

Theorem 7: Let X be a (∆,∇)-lattice structure, and (∆,∇) satisfy the pseudo order
structure. Suppose S, S′ ⊂ X and S ≤ws(∆,∇) S′. Then, M(S) ≤ww(∆,∇) M(S′) implies
sw-quasisupermodularity of f . If M(S) ≤ws(∆,∇) M(S′), then ss-quasisupermodularity is
implied.

Proof Let St̄ = Ix ∪ {t̄} for some t̄ ∈ (x∆y) and S′ = Iy ∪ (x∇y). By the pseudo order
strucutre, St̄ ≤ws(∆,∇) S′. By Theorem 5, the necessity of ww-quasisupermodularity is
already known. Suppose f(a) < f(y) for all a ∈ (x∇y) and Ix ∩M(St̄) ̸= ∅. Then, by the
pseudo order structure, we must have (x∇y) ∩ M(S′) ̸= ∅, which is contradiction. Thus,
f(x) < f(t̄). Since the choice of t̄ ∈ (x∆y) is arbitrary, f(x) < f(t) for all t ∈ (x∆y).
Hence, taking the contraposition,

∃t ∈ (x∆y); f(x) ≥ f(t) ⇒ ∃a ∈ (x∇y); f(a) ≥ f(y).

Suppose f(a) ≤ f(y) for all a ∈ (x∇y). Then, by the pseudo order structure, we have
(x∆y) ∩ M(S) ̸= ∅, that is, f(x) ≤ f(t̄). Since the choice of t̄ is arbitrary, by taking the
contraposition,

∃t ∈ (x∆y); f(x) > f(t) ⇒ ∃a ∈ (x∇y); f(a) > f(y).

The rest of the proof, to show that M(St̄) ≤ws(∆,∇) M(S′) leads ss-quasisupermodularity,
can be constructed by the same way as the previous theorem. [Q.E.D.]

Theorem 8: Let X be a (∆,∇)-lattice structure, and (∆,∇) satisfy the pseudo order
structure. Suppose S, S′ ⊂ X and S ≤ww(∆,∇) S′. Then, M(S) ≤ww(∆,∇) M(S′) implies
ss-quasisupermodularity of f .

Proof By the preceding theorems, f must satisfies both ws-supermodularity and sw-
quasisupermodularity. Hence, by Corollary 1, our claim follows. [Q.E.D.]

The assumption of the pseudo order structure on (∆,∇) plays a crucial role in the proofs
of Theorem 5-8. Indeed, without this assumption, we can present a counter example 4.
See the following example.

4Note that the existence of this counter example does not cause any difficulties for the main result in Quah
(2007).
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Example 3: Let X = {−1, 0, 1} and define ∆ and ∇ as

x∆y = xy

x∇y = 1 if x = y = 1
= −1 if x = y = −1
= x + y otherwise.

Define a function

f(x) = 1 if x = −1
= 2 if x = 0
= 3 if x = 1.

This function does not satisfy (∇,∆)-quasisupermodularity. Indeed, when x = −1 and
y = 1, we have both f(x) = 1 = f(x∆y) and f(x∇y) = 2 < 3 = f(y). Although f does
not satisfy (∇,∆)-quasisupermodularity, we can show that M(S) ≤(∇,∆) M(S′) for every
S ≤(∇,∆) S′ as follows.

If {0} = M(S), it is easy to check that M(S) ≤(∇,∆) M(S′). Indeed, for an arbitrary
element y ∈ M(S′), 0∆y = 0 ∈ M(S) and 0∇y = y ∈ M(S′). Suppose {1} = M(S). In
this case, under the condition of S ≤(∇,∆) S′, if 0 ∈ S′ ⇒ 1 ∈ S′ since 1 ∈ S. Similarly,
−1 ∈ S′ ⇒ 0 ∈ S′. As a result, we have 1 ∈ S′, hence {1} = M(S′), which implies
that M(S) ≤(∇,∆) M(S′). Finally, we show that, under the condition of S ≤(∇,∆) S′, −1
cannot be the element of M(S). It is obvious that if −1 ∈ M(S), S must be equal to
{−1}. Suppose there exists some S′ ⊂ X such that {−1} ≤(∇,∆) S′. Let y be an arbitrary
element of S′. Then, since −1∆y = −y must be equal to −1, we have S′ = {1}. However,
−1∇1 = 0 /∈ S′, contradiction. Thus, we show that S ≤(∇,∆) S′ ⇒ M(S) ≤(∇,∆) M(S′)
despite the lack of (∇,∆)-quasisupermodularity of f .

Finally, as the corollaries of Theorem 1-8, we state the necessary and sufficient relation-
ship between the monotonicity of solution set of constrained optimization problems and
quasisupermodularity under the pseudo order structure of set-valued operations on the
domain of objective function.

Corollary 2: Let X be a (∆,∇)-lattice structure, S, S′ ⊂ X, and S ≤ss(∆,∇) S′. Suppose
(∆,∇) satisfies the pseudo order structure. Then, we have the following necessary and
sufficient relations.

1. M(S) ≤ww(∆,∇) M(S′) if and only if f satisfies ww-quasisupermodularity.

2. M(S) ≤ws(∆,∇) M(S′) if and only if f satisfies ws-quasisupermodularity.

3. M(S) ≤sw(∆,∇) M(S′) if and only if f satisfies sw-quasisupermodularity.

4. M(S) ≤ss(∆,∇) M(S′) if and only if f satisfies ss-quasisupermodularity.
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Corollary 3: Let X be a (∆,∇)-lattice structure, S, S′ ⊂ X, and S ≤sw(∆,∇) S′. Suppose
(∆,∇) satisfies the pseudo order structure. Then, we have the following necessary and
sufficient relations.

1. M(S) ≤ww(∆,∇) M(S′) if and only if f satisfies ws-quasisupermodularity.

2. M(S) ≤sw(∆,∇) M(S′) if and only if f satisfies ss-quasisupermodularity.

Corollary 4: Let X be a (∆,∇)-lattice structure, S, S′ ⊂ X, and S ≤ws(∆,∇) S′. Suppose
(∆,∇) satisfies the pseudo order structure. Then, we have the following necessary and
sufficient relations.

1. M(S) ≤ww(∆,∇) M(S′) if and only if f satisfies sw-quasisupermodularity.

2. M(S) ≤ws(∆,∇) M(S′) if and only if f satisfies ss-quasisupermodularity.

Corollary 5: Let X be a (∆,∇)-lattice structure, S, S′ ⊂ X, and S ≤ww(∆,∇) S′. Suppose
(∆,∇) satisfies the pseudo order structure. Then, M(S) ≤ww(∆,∇) M(S′) if and only if f
satisfies ss-quasisupermodularity.
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