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ABSTRACT

This paper investigates the price manipulation that exploits pos-

itive feedback traders in a continuous auction market. I characterize

the class of pricing rules of competitive liquidity providers that prevent

the price manipulation, where the pricing rule is a function that maps

an aggregate market order to a uniform trading price. The main re-

sult is to show that a broad and plausible class of pricing rules cannot

prevent price manipulation by a large speculator.
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1 Introduction

Price manipulation is a speculative strategy that arti�cially causes di�erences

over time between purchase and sale prices and provides speculators with a

positive pro�t. This paper introduces a new strategy for price manipulation:

the price manipulation that exploits momentum trading by frenzied traders.

I consider such price manipulation by a simple model that describes a single

stock trading in a market making system.

The market in my model is composed ofN discrete trading periods. There

are three kinds of market participants: a large speculator, competitive liquid-

ity providers, and positive feedback traders who act as frenzied momentum

traders (e.g., De Long et al. (1990) ). The trading rule in the market is a con-

tinuous auction system. In each period, the speculator and positive feedback

traders place a market order simultaneously, then liquidity providers simulta-

neously o�er a price for the aggregate order and execute it by a competitively

determined single price.

A price o�ered by a liquidity provider is determined by his/her pricing

rule, which is a function that maps an aggregate order to an o�ered price.

The model assumes that the liquidity provider sets a pricing rule before the

beginning of the initial period of the market and commits to use it until the

end of N period trading.

The behavior of positive feedback traders is determined by a price trend.

The price gain of the stock in the previous period leads to them purchasing

the stock in the present period and their purchase of the stock implies a

further price gain in the next period. If there is no exogenous shock, this

self-feeding behavior raises the market price continuously and its price path

may behave as a bubble.1

1Shiller (2008) states the following regarding the price increases observed in the 2007�08
subprime loan tragedy:

An important part of what happens during a speculative bubble is mediated
... by the prices that are observed there and subsequently ampli�ed by the
news media. ... The media weave stories around price movements, and when
those movements are upward, the media tend to embellish and legitimize
�new era� stories with extra attention and detail. Feedback loops appear, as
price increases encourage belief in �new era� stories,... and so lead to further
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This paper analyzes whether a speculator can earn a positive pro�t through

speculation in terms of price manipulation that exploits the self-feeding be-

havior of positive feedback traders. The speculator may earn a positive pro�t

by a �simple� strategy such that he/she initially buys/sells a large amount of

a stock to deliberately increase/decrease the market price of the stock and

then sells/buys the shares back at the time that the price becomes su�ciently

high/low owing to positive feedback traders.2

This paper characterizes the set of linear pricing rules that prevent such

price manipulation.3 I focus on four types of price manipulation using posi-

tive feedback traders.

The �rst and main analysis considers a one time buy and sell-back strat-

egy, which I call a simple strategy, under time-independent pricing rule. A

pricing rule is time-independent if the same market order corresponds to

the same price in any period. If a pricing rule prevents such price ma-

nipulating simple strategies in any period market, then we call the rule an

α-manipulation-proof pricing rule. An α-manipulation-proof pricing rule en-

ables the speculator to earn at best a non-positive payo� from simple strate-

gies regardless of the number of trading periods. In this paper, I formulate

a necessary and a su�cient condition for α-manipulation-proof pricing rules

(Theorem 1).

Second, I characterize a su�cient condition for time-independent manipulation-

proof pricing rules against any speculative strategy that begins and ends with

zero position in a �xed N -period market, which we call such a pricing rule a

β-manipulation-proof pricing rule (Theorem 2).

Third, I consider a price manipulating strategy that is composed of a

single purchase and sale in two consecutive periods in a �xed N -period

price increases. The price-story-price loop repeats again and again during a
speculative bubble. (pp. 45�46).

2Note that the decision for this speculation is independent of the fundamental value of
the trading stock. Judging from the trading strategy described in Soros (2003, pp. 49�
72), his speculative strategy in stock markets exploits trend-chasing traders. In fact, his
strategy has earned him large pro�ts and prices were bubbling. Importantly, his strategy
does not rely on fundamentals, but rather on the anticipation of the trend-chasing behavior
of traders.

3The reason why we focus on linear pricing rules is described in the next section.
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market under time-dependent pricing rules. If a time-dependent and lin-

ear pricing rule prevents such strategies in the market, then we call the rule

a γ-manipulation-proof pricing rule. I formulate a necessary and su�cient

condition for γ-manipulation-proof pricing rules (Theorem 3). In addition, I

apply the results to the trading model of Kyle (1985) and investigate whether

liquidity providers follow a γ-manipulation-proof pricing strategy in equilib-

rium. I point out that competitive pricing of liquidity providers may not be

su�cient to prevent price manipulation. To prevent price manipulation, liq-

uidity providers must make su�ciently correct estimation of the trading vol-

ume from positive feedback traders; if they do not aware of positive feedback

traders at all, the speculator may undertake price manipulation (Propositions

7 and 8).

Last, I consider a risk on price manipulation by introducing a stochastic

noise trader, which is independently de�ned of positive feedback traders but

a�ects their trading volume through prices. I evaluate the performance of

price manipulation by the Sharpe ratio. If a time-independent and linear pric-

ing rule makes the Sharpe ratio obtained from a simple strategy be bounded

when the trade size of the speculator goes in�nity, then we call the rule

a δ-manipulation-proof pricing rule. I show that the γ-manipulation-proof

pricing rule is equivalent to the α-manipulation-proof pricing rule (Theorem

4).

1.1 Related literature

Price manipulation in stock markets has been investigated in several set-

tings. Jarrow (1992) investigates the possibility of price manipulation by a

large uninformed trader in a general frictionless market. Chakraborty and

Yilmaz (2004b) investigate the price manipulation that exploits asymmetric

information in a discrete version of the Kyle (1985) model.4 Huberman and

Stanzl (2004) consider price manipulation in a continuous auction market as

in Kyle (1985) and examine the relation between pricing rules of liquidity

4Chakraborty and Yilmaz (2004a) investigates the price manipulation in the Glosten�
Milgrom model (Glosten and Milgrom (1985)).
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providers and the possibility of price manipulation. They show that no price

manipulation can be achieved if a pricing rule is linear when (i) there is no

noise trader, or (ii) the trading volume of noise traders follows normal distri-

bution. My model is based on Huberman and Stanzl (2004) for comparison

the obtained results and I show that most linear pricing rules cannot pre-

vent price manipulation if (iii) there are positive feedback traders. This is

the central result of my paper. As I shall explain, this result is due to the

fact that positive feedback traders make a pricing rule nonlinear from the

speculator's point of view.

The positive feedback trader is �rst modeled by De Long et al (1990).5

They consider a model without middlemen and show that positive feedback

traders are the source of price bubbles. When the speculator expects the

fundamental value to be high, the speculator's optimal decision triggers a

positive feedback trader's purchase in equilibrium, which makes the market

price surpass the fundamental value of the trading stock. On the other

hand, I states that mispricing can emerge regardless of fundamental values

under some pricing rules. At the same time, however, my result suggests

that liquidity providers adjust prices if they are aware of positive feedback

traders. Hence the existence of positive feedback traders does not always

imply the emergence of mispricing.

2 Model

2.1 Preliminaries

Consider a single stock market with N discrete �nite trading periods n =

1, 2, · · · , N in the time interval (0, 1] ⊂ R+. The stock can be bought or sold

via market orders in each period n de�ned by n/N , where 1 ≤ n ≤ N .

There are three kinds of market participants: a speculator, competitive

risk-neutral liquidity providers, and positive feedback traders. In each trad-

ing period n, the speculator and positive feedback traders simultaneously

5Hong and Stein (1999) and Barberis and Shleifer (2003) explain the emergence of
positive feedback trading.
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place a market order xn and ξn, respectively, where xn, ξn ∈ R. The liquidity
provider o�ers a price pn ∈ R+ for the placed aggregate order qn ≡ xn + ξn

according to his/her pricing rule. We focus on the pricing rules that follow

the form

pn = pn−1 + Pn(qn)− Pn−1(qn−1) + Un−1(qn−1)

= p0 +
n−1∑
k=1

Uk(qk) + Pn(qn),
(1)

where p0 ∈ R+ is an opening price in the market. This price form follows

Huberman and Stanzl (2004).6 The price impact function Pn(qn) captures the

immediate price reaction to the market order qn. The price update function

Un(qn) captures only the permanent price impact from qn. Liquidity providers

simultaneously choose {Uk, Pk}Nk=1 in period 0.

The decision of positive feedback traders depends on the latest price dif-

ference (trend): The aggregate order of positive feedback traders follows

ξ1 = 0 and

ξn = β(pn−1 − pn−2) (2)

with a momentum magnitude β > 0. The behavior de�ned by Eq.(2) is the

same as in De Long et al. (1990).

I consider the situation in which the speculator correctly estimates {Uk, Pk}
and β in period 0, i.e., he can anticipate the pricing rule of liquidity providers

and the trading volume of positive feedback traders. Let x = (x1, · · · , xN)

denote a strategy of the speculator. xn > 0 (< 0) denotes a buy (sell) order

in period n. The payo� of the speculator is

π(x;N) ≡ −
N∑

n=1

pnxn.

6Huberman and Stanzl (2004) divide a market price into two parts: the quote price
p̃n = p̃n−1 +Un−1(qn−1)+ ϵn, and the trading price pn = p̃n +Pn(qn), where ϵn is a noise
term, which is omitted in my model.
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We impose the constraint
N∑

n=1

xn = 0 (3)

for any strategy x. Eq.(3) means that the speculator closes out a trading

with zero position. In accordance with Huberman and Stanzl (2004), we

call a strategy satisfying Eq.(3) a round-trip strategy. A (risk-neutral) price

manipulation is a round-trip strategy that makes π(x;N) > 0 for some N .

2.2 Intuition of the main result

Using a simple example, I provide intuition as to why positive feedback

traders generate a speculative opportunity for the speculator. When there

are no positive feedback traders and any other noise traders, Huberman and

Stanzl (2004, Proposition 1) show that only the linear pricing rules can pre-

vent price manipulation with round-trip strategies. Hence a nonlinear pricing

rule induces the speculator to implement price manipulation. The following

example points out that positive feedback traders cause a nonlinear e�ect to

linear pricing rules from the speculator's point of view.

As a benchmark, we �rst consider the case of no positive feedback traders.

For simplicity, we assume the following situation.

� The participants are a single speculator and a single liquidity provider.

� N = 8.

� The liquidity provider follows the price functions in Eq.(1) such that

U(qn) = aqn if qn ≥ 0 and U(qn) = bqn if qn < 0 with a > b > 0 and

U = P .

Clearly this price function U is not linear. Then the speculator can earn a

positive pro�t for some (a, b) by implementing a round-trip strategy.

Consider the following round-trip strategy: xn = 1 for n = 1, 2, 3, 4 and

xn = −1 for n = 5, 6, 7, 8. Figure 1 exhibits a typical price path that brings

the speculator a positive pro�t by the round-trip strategy. A bold slope line

with circles indicates the price path with this nonlinear pricing rule. Each
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circle indicates the price in each trading period. The dashed line with boxes

indicates the price path with the price function U(qn) = aqn for n = 5, 6, 7, 8.

Figure 1 indicates that l1 = |p5 − p4|, l2 = |p7 − p1|, p8 = p2, and p6 = p3.

Hence the speculator earns the positive payo� represented by l2 − l1, which

implies a loss for the liquidity provider. Figure 1 also indicates that, for

the symmetric linear function U(qn) = aqn for n = 5, 6, 7, 8, the speculator

cannot gain from the same round-trip strategy.

l1 : p5 − p4 < 0

l2 : p7 − p1 > 0

n

p

p0

p1

0 1 5

p4

8

p8

p5

42 3 6 7

· · · buy price · · · sell price

p7

p6

a

b

Figure 1: A nonlinear pricing strategy may motivate the speculator to implement price

manipulation. The white circles indicate buy prices; the black circles sell prices. The

square boxes indicate sell prices for the linear pricing rule with U(q) = aq for all q ∈ R.
The �gure shows the speculator gains from the round-trip strategy because l2 is greater

than l1.

Next, we introduce the positive feedback traders de�ned by Eq.(2) in the

following eight-period model.

� Un(qn) = Pn(qn) = λqn for all n ∈ {1, · · · , 8}, where λ ∈ {11/30, 1/4, 1/8}.

� β = 3, p0 = 1.

Suppose that the speculator implements the round-trip strategy x′ such that

x′
1 = 1, x′

8 = −1, and x′
n = 0 for all other n. It generates the demand function
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of positive feedback traders ξn = (βλ)n−1 = (3λ)n−1 for n ≥ 2. Figures 2 to 4

depict the price paths when λ takes the values 11/30, 1/4, 1/8, respectively.

Figures 2 and 3 show that the speculator earns a positive pro�t through

strategy x′ when λ = 11/30 and 1/4 (su�ciently large), which is impossible

when there is no positive feedback trader. Figure 4, however, shows that the

speculator cannot gain from strategy x′ if λ = 1/8 (su�ciently small).

Figure 2: Top: λ = 11/30, middle: λ = 1/4, bottom: λ = 1/8. p0 = 1 and β = 3.

The speculator gets a payo� of approximately 3.46 and 0.4 when λ = 11/30 and λ = 1/4

respectively by the strategy x′
1 = 1. When λ = 1/8, the payo� is approximately −0.05.

These �gures, together with the previous example without positive feed-

back traders, suggest that positive feedback traders generate a nonlinear

e�ect on linear pricing rules from the speculator's point of view. Indeed the

price impact is λ when the speculator buys 1 unit of the stock but λ(−1)+λξ8

for the speculator when he/she sells 1.

We divide such a nonlinear e�ect into two e�ects: the cancel e�ect and

the rising e�ect. Suppose, for example, that the speculator implements the

strategy such that x1 = 1 and x2 = −1. A buy order from positive feedback

traders in period 2 is expected to raise the trading price in period 2 by µξ2.

The cancel e�ect means the buy order µξ2 helps to cancel out the price drop
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Figure 3: λ = 1/4. The speculator gets a positive payo� because p8 is greater than p1.

Figure 4: λ = 1/8. The speculator gets a negative payo� from the strategy x′
1 = 1

because p8 < p1.
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µ(−1) from the speculator's sale −1 in period 2. Thus, the speculator can

earn a positive pro�t if the cancel e�ect is su�ciently strong (see Figure 5).

n

p

p0

0
: buy price : sell price

1 2

buy sell cancel e�ect for sell order

pro�t
p1

p2

: sell price without positive feedback trader

Figure 5: A strong cancel e�ect brings a positive pro�t for the speculator.

The rising e�ect is simpler. Back to our example and consider strategy

x′. Then, positive feedback traders raise prices monotonically by their self-

feeding behavior until period 8. As we saw in Figure 3, the rising e�ect may

create a gain even if the cancel e�ect is too weak to cancel out the price drop

in selling the stock.

These nonlinear e�ects are major sources of speculative opportunities. In

this paper, we mainly consider the most basic form of pricing rule�time-

independent and linear price functions�and characterize the set of price

functions that make both the e�ects be negligible as in Figure 4. In partic-

ular, we seek the price function that prevents price manipulation for all N .

When N = 2, only the cancel e�ect matters. As N increases, we can see

the cancel e�ect be weaker and the rising e�ect be stronger in our example

Un = Pn. To purely investigates the relation between these e�ects and N , we

mainly consider a �simple� class of strategies such that x1 = x ∈ R, xN = −x,

and xn = 0 for all other n.
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3 Main Results

3.1 Simple strategies and time-independent and linear

price functions

Assumption 1 We assume the functions Un(qn) and Pn(qn) to be time-

independent and linear, i.e.,

Un(qn) = λqn, Pn(qn) = µqn,

where (λ, µ) ∈ R2
+

Under Assumption 1, we call (λ, µ) a pair of price coe�cients. A pricing rule

is said to be linear when both Un(qn) and Pn(qn) are linear for all n.

A round-trip strategy x = (x1, · · · , xN) is said to be a simple strategy

when x1 = x ∈ R, xN = −x, and xn = 0 for all other n. The main

analysis in this section is to characterize the pair of price coe�cients (λ, µ)

that prevents price manipulation with simple strategies for all N .

De�nition 1 A pair of price coe�cients (λ, µ) has the α-manipulation-proof

property if, for all x ∈ R, we obtain

sup
N≥1

(pN − p1)x ≤ 0,

where p1 and pN are de�ned by Eq.(1) with Assumption 1.

The α-manipulation-proof property is the property that prevents price ma-

nipulation with simple strategies regardless of trading opportunities N . If

(λ, µ) does not have the α-manipulation-proof property, then there exists N

such that the speculator can earn a positive pro�t by implementing a simple

strategy in the N -period market. Hence the α-manipulation-proof property

provides us with one criterion how much we have to restrict pricing rules in

order to hold down the rising e�ect.

We call the pair of price coe�cients that have the α-manipulation-proof

property α-manipulation-proof price coe�cients. The α-manipulation-proof

set is the set of α-manipulation-proof price coe�cients.
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3.1.1 Result

Theorem 1 If (λ, µ) has the α-manipulation-proof property, then (λ, µ) sat-

is�es the following inequalities.

0 ≤ βµ− 1 < βλ, 0 ≤ βλ < 1, λ− 2µ+ 2βλµ ≤ 0. (4)

Conversely, if (λ, µ) ∈ R2
+ satis�es Eq.(4) and (βµ)2 − 4βµ+ 4βλ ≥ 0, then

(λ, µ) has the α-manipulation-proof property.

Proof. For notational convenience, let D = (βµ)2−4βµ+4βλ and K = βµ.

Here I sketch a proof for the case D > 0. A full proof is in the Appendix.

(1) Market orders under simple strategies:

Let x denote a simple strategy. Assume that x > 0 (a symmetric argument

holds when x < 0). A simple strategy x generates the positive feedback

traders' aggregate demand as follows: ξ0 = ξ1 = 0, ξ2 = βµx, and

ξn = βµξn−1 + β(λ− µ)ξn−2, (5)

for n ∈ {3, · · · , N−1}. Eq.(5) represents a second-order linear homogeneous

di�erence equation. Section A.1 in the Appendix shows that

qn =
x√
D

{(
K +

√
D

2

)n

−

(
K −

√
D

2

)n}
(6)

for all n ∈ {1, · · · , N − 1} with initial values q0 = 0 and q1 = x. Note that

qn = ξn when n ∈ {2, · · · , N−1}. This is the equation of market orders with

simple strategy x when n ∈ {1, · · · , N − 1}.

(2) The payo� of the speculator and the α-manipulation-proof property:

Let fn =
(

K+
√
D

2

)n
−
(

K−
√
D

2

)n
for notational convenience. When D > 0,

Lemma A.1 in the Appendix shows that fn > 0 for all n ∈ Z+. The payo�
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function of the speculator from a simple strategy x is

(pN − p1)x = x2

{
1√
D

(
λ

N−1∑
n=1

fn + µfN

)
− 2µ

}
. (7)

We can see that Eq.(7) increases monotonically with N when fn > 0. Hence,

in the case that D > 0, it is necessary and su�cient for (λ, µ) to have the

α-manipulation-proof property that

lim
N→∞

(pN − p1)x ≤ 0. (8)

Lemma A.3 in the Appendix shows that Eq.(8) is equivalent to (λ, µ) satis-

fying Eq.(4). ■

In almost the same way, we can prove the theorem in the case D = 0.

A problem arises, however, when we consider the case D < 0. See Figure

6. It demonstrates the case N = 30, p0 = 1, β = .5, and x = 1 when

(λ, µ) satis�es D < 0. The �gure indicates that prices �uctuate with n and

suggests that the payo� of the speculator does not increase monotonically

with N , i.e., it is better for the speculator to sell in period k∗ < N in an

N -period market. This is why it is di�cult to characterize a necessary and

su�cient condition for the α-manipulation-proof property. Indeed, Lemma

A.6 in the Appendix proves that there are in�nitely many Ns that satisfy

pN > lim
n→∞

pn when (λ, µ) satis�es D < 0.

3.1.2 Geometric property

Figure 7 indicates a graphical image of Theorem 1. For comparison, we

consider the price coe�cients that make the speculator lose by trading when

N = 2. By easy calculation, we obtain the following result. For use in later

sections, I summarize the result as a proposition.

Proposition 1 When N = 2. The (risk-neutral) speculator does not imple-
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Figure 6: Common parameters:(N, p0, β) = (30, 1, 0.5). For (λ, µ), Path1 is (1.6, 3),

Path2 is (1.5, 3), and Path3 is (0.5, 2). The speculator implements the simple strategy

x = 1. (λ, µ) = (1.6, 3), (1.5, 3), (0.5, 2) satisfy λ− 2µ+ 2βλµ > 0,= 0, < 0, respectively.
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ment simple strategies if and only if

(λ, µ) ∈ C ≡ {(λ, µ) | βµ2 − 2µ+ λ ≤ 0}.

7+
√
17

(9+
√
17)β

7−
√
17

(9−
√
17)β

7−
√
17

4β
7+

√
17

4β

λ

µ

λ = µ
λ = 2µ

0

βµ2 − 4µ+ 4λ = 0

2
β

1
β

λ = 2µ
2βµ+1

1
β

λ = µ− 1
β

3+
√
17

4β

βµ2 − 2µ+ λ = 0

Figure 7: A pair of price coe�cients (λ, µ) in the �ner shaded area with a single directed

line has the manipulation-proof property. A pair of manipulation-proof price coe�cients

must be in the union of the �ner and the coarser shaded areas except for the cross lines

area.

Figure 7 describes the shape of set C. As I mentioned in the previous

section, the rising e�ect becomes stronger and the cancel e�ect becomes

weaker when N increases. In fact, the rising e�ect relates mainly to the

price-update coe�cient λ, while the cancel e�ect relates mainly to the price-

impact coe�cient µ. This is why relatively large λ does not satisfy Eq.(4),

while it is included in C.

The same reasoning can be applied to explain why the α-manipulation-

proof price-update coe�cient λ is relatively smaller on average than the

manipulation-proof price-impact coe�cient µ, as in Figure 7. We note the
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following inequality

|p0 + λ
N−1∑
k=1

ξk + µξN | ≤ p0 + λ
N−1∑
k=1

|ξk|+ µ|ξN | ≡ p̂N .

When D > 0, ξn ≥ 0 for all n and hence p̂N = pN . To obtain the α-

manipulation-proof property, p̂N should be converged. Hence ξN must be

smaller as N becomes large, which means the cancel e�ect gets weaker as

N gets large. On the other hand,
∑N−1

k=1 |ξk| increases monotonically with

N . These facts imply that the rising e�ect accounts for a large part of the

nonlinear e�ect when N is large. Thus it is reasonable to set λ relatively

smaller than µ to achieve the α-manipulation-proof property because the α-

manipulation-proof property requires (λ, µ) to satisfy (pN − p1)x ≤ 0 for all

N .

Let us denote by S∗ the set of α-manipulation-proof price coe�cients. In

Figure 7, we see that the �ner and coarser shaded areas with single lines,

say S1 and S2 respectively, and the shaded area with cross lines, say S3.

S1 indicates the set that is de�ned by Eq.(4) and (βµ)2 − 4βµ + 4βλ ≥ 0.

The union of S1, S2, and S3 in the �gure corresponds to the area de�ned

by Eq.(4). We see the area S1 is contained within the area C, but C does

not include the areas S1, S2, and S3. By de�nition, the price coe�cients in

S3 cannot be α-manipulation-proof price coe�cients. These facts imply that

S∗ ⊂ S1 ∪ (S2\S3), but we do not know whether S1 ⊊ S∗ or not.

We can easily check that the α-manipulation-proof set becomes large as

β → 0. In the limit, we obtain the set

A = {(λ, µ) | λ ≤ 2µ, λ ≥ 0, µ ≥ 0}.

In fact, we can easily check that the speculator cannot earn a positive pro�t

by any simple strategy in any period market when (λ, µ) is in A and β = 0 .7

In addition, we can also easily check that the speculator can earn a positive

pro�t when (λ, µ) ∈ R2
+\A regardless of N and β. We summarize the result

7A result of Huberman and Stanzl (2004, Proposition 3) implies that set A ensures
that the speculator cannot earn a positive pro�t by any round-trip strategy.
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as a proposition.

Proposition 2 The α-manipulation-proof set is de�ned on A.

It is trivial that (λ, µ) = (0, 0) is a pair of α-manipulation proof price

coe�cients. We consider the question whether we can �nd a nontrivial α-

manipulation-proof pricing rule for any β > 0? The answer is yes.

Proposition 3 For all β > 0, there exists a pair of α-manipulation-proof

price coe�cients (λ, µ) > (0, 0).

Proof. See Lemma A.7 in the Appendix. ■
Lemma A.7 also shows that Lebesgue measure of the α-manipulation-proof

set is larger than zero.

If (λ, µ) makes price paths be unbounded for a simple strategy x < ∞,

then the speculator is pro�table by implementing simple strategy x. Hence

any plausible pair of price coe�cients should make price paths be bounded.

The following set B is the desirable one.

Proposition 4 If (λ, µ) has the α-manipulation-proof property, then (λ, µ)

must be in B, where

B =

{
(λ, µ)

∣∣∣ 0 ≤ λ <
1

β
, 0 ≤ µ <

2

β
, λ ≤ 2µ

}
. (9)

Proof. See Lemma A.8 in the Appendix. ■
Note that B = A in the limit of β → 0.

We can compare the size of the α-manipulation-proof set and of set B by

its measure. The next result states that, compared with set B, the require-

ment of the α-manipulation-proof property restricts drastically the feasible

price coe�cients even if we only take into account simple strategies.

Proposition 5 S1 accounts for approximately only 2.6% of B, while S2 ac-

counts for approximately 41.0% of B.

Proof. See Lemma A.9 in the Appendix. ■
Note that both the percentages are independent of β.
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3.1.3 Application: speculator as an arbitrageur

Whereas the speculator does not undertake price manipulation under a manipulation-

proof pricing rule, he/she may participate in trade as an arbitrageur. To see

it by a simple model, we assume the following.

� N = 3.

� The trading stock has a liquidation value v, which is not public until

the beginning of period 3.

� The speculator privately knows the true vale v in period 0.

In this setting, liquidity providers set p3 = v. Assume that a pricing rule

follows Eq.(1) with Assumption 1 in periods 1 and 2. Then, by Proposition

1, a pair of price coe�cients should be in set C for preventing price ma-

nipulation. Otherwise the speculator undertakes price manipulation even if

he/she knows p0 = v.

Suppose that v ̸= p0 and (λ, µ) ∈ C. Then the maximization problem for

the speculator is

max−p1x1 − p2x2 − vx3

subject to x3 = −x1 − x2. The �rst-order condition for this problem is(
2µ βµ2 − µ+ λ

βµ2 − µ+ λ 2µ

)(
x1

x2

)
=

(
v − p0

v − p0

)
.

Therefore

x1 = x2 =
v − p0

βµ2 + µ+ λ
,

which is the optimal solution of this problem because the objective function

is concave. Then the equilibrium prices are

p1 = p0 +
µ(v − p0)

βµ2 + µ+ λ
, p2 = v

and the payo� of the speculator is (βµ2 + λ)(v − p0)
2/(βµ2 + µ+ λ)2. Since

p2−p1 = (βµ2+λ)(v−p0)/(βµ
2+µ+λ), the price approaches v monotonically.
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Thus a market price eventually coincides with the fundamental value if and

only if (λ, µ) ∈ C.

3.2 Round-trip strategies and time-independent price

coe�cients

This section exhibits a characterization of manipulation-proof price coe�-

cients when we allow a more general class of round-trip strategies under the

following assumption.

Assumption 2 We assume that price functions satisfy Un(qn) = Pn(qn) =

λqn with λ ∈ R+.

Under Assumption 2, we seek the set of price coe�cients that achieve

π(x;N) < 0 for all nonzero round-trip strategies in an N -period market. A

round-trip strategy is said to be nonzero if xn ̸= 0 for some n.

De�nition 2 A pair of price coe�cients (λ, λ) has the β-manipulation-proof

property in an N-period market if it makes π(x;N) < 0 for any nonzero

round-trip strategy x ∈ RN\{0}.

Let x be a nonzero round-trip strategy in an N -period market. Then

the market order in a period n is qn = xn + ξn. By Assumption 2, ξn =

βλ(xn−1 + ξn−1). We can easily show that ξn = (βλ)n−1x1 + · · · + βλxn−1.

Hence the prices from a round-trip strategy x are denoted by

p = p0 + λDx,

where p = (p1, · · · , pN)⊤, p0 = (p0, · · · , p0)⊤, ⊤ is the transportation opera-

tor, and

D =



1 0 0 · · · 0

1 + βλ 1 0 0

1 + βλ+ (βλ)2 1 + βλ 1
. . .

...
...

...
...

. . . 0∑N
i=1(βλ)

i−1
∑N−1

i=1 (βλ)i−1
∑N−2

i=1 (βλ)i−1 · · · 1


.
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Then the maximization problem for the speculator is written as follows:

max−x · p s.t. 1 · x = 0

⇔ max−λx⊤Dx s.t. 1 · x = 0,

where 1 is the N -tuple of 1. Consider the following transformation of D =

(dij) for symmetrization: the matrix A = (aij) is de�ned such that

aij =

(dij + dji)/2 (i ̸= j)

dij (i = j).

Then x⊤Dx = x⊤Ax.

I use the following proposition to obtain the result.

Proposition 6 (Debreu (1952), Theorem 4.) Let A be a symmetric (N,N)

matrix and b = (b1, · · · , bN)⊤ be an N-dimensional vector with b1 being dif-

ferent from zero. Then x⊤Ax > 0 for every x ̸= 0 such that b ·x = 0 if and

only if ∣∣∣∣∣ 0 b⊤r

br Ar

∣∣∣∣∣ < 0

for all r ∈ {2, 3, · · · , N}, where Ar is the (r, r) submatrix of A obtained by

retaining only the �rst r rows and columns of A and br is the r-dimensional

vector obtained by the �rst r elements of b.

We obtain a characterization result.

Theorem 2 Suppose that p0 is su�ciently large. A pair of price coe�cients

(λ, λ) ∈ R2
+ has the β-manipulation-proof property in an N-period market if

and only if λ satis�es |Cr| < 0 for all r = 2, 3, · · · , N , where

Cr =

(
0 1⊤

r

1r Ar

)
.

A pair of α-manipulation-proof price coe�cients (λ, λ) may also have the

β-manipulation-proof property. For example, consider the case N = 3. (See

also Table 1.) |C2| < 0 is equivalent to 0 ≤ βλ < 1 and |C3| < 0 is equivalent
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to 0 ≤ βλ < (−1 +
√
5)/2. By Theorem 1, a pair of price coe�cients (λ, λ)

that satis�es 0 ≤ βλ ≤ 1/2 has the α-manipulation-proof property. Since

1 < −1 +
√
5, there exists a pair of (nontrivial) α-manipulation-proof price

coe�cients that also satis�es the β-manipulation-proof property in the three-

period market.

Table 1: In the three-period market, a price coe�cient λ ∈ [0, 1/(2β)] satis�es 0 ≤ βλ < 1

and 0 ≤ βλ < −1 +
√
5/2. Hence a pair of α-manipulation-proof price coe�cients (λ, λ)

can have the β-manipulation-proof property.

N Round-trip strategy Manipulation-proof area

2 Any 0 ≤ βλ < 1

3 Any 0 ≤ βλ < −1 +
√
5/2

Any Simple 0 ≤ βλ ≤ 1/2

3.3 Time-dependent price coe�cients

Assumption 3 We assume that price functions satisfy

Un(qn) = λnqn, Pn(qn) = µnqn

for all n ∈ {1, · · · , N}.

3.3.1 Prevention of simple strategies

I consider the case λn = µn. Theorem 1 leads to the following result.

Corollary 1 Suppose that λn = µn for all n. Then 0 ≤ λn ≤ 1/(2β) for all

n ensures that the speculator does not implement simple strategies.
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Proof. The market prices with the coe�cients under a simple strategy x > 0

are written as

pn = pn−1 + λnqn

= p0 +
n∑

k=1

λkξk + λ1x

≤ p0 +
n∑

k=1

λ|ξk|+ λx,

(10)

where λ = sup{λn}. Because ξ0 = ξ1 = 0, ξ2 = βλ1x, and ξn = βλn−1ξn−1

for n ≥ 3, we can easily check that ξn > 0 for all n ≥ 2. Theorem 1 shows

that, when λ = µ,

0 ≤ λ ≤ 1

2β

is a necessary and su�cient condition for the α-manipulation-proof property.

Hence λ ≤ 1/(2β) is su�cient for the speculator not to implement simple

strategies. ■

3.3.2 Prevention of skimming strategies

This section considers the strategies in a given N -period market such that

a strategy x = (x1, · · · , xN) satis�es xk = x and xk+1 = −x for some k,

1 ≤ k < N , where x ∈ R. I do not impose any further condition for other

xk. We call such strategies skimming strategies.

De�nition 3 A 2N-tuple of price coe�cients (λ1, · · · , λN , µ1, · · · , µN) has

the γ-manipulation-proof property if, for all x ∈ R and 1 ≤ k < N , we

obtain

(pk+1 − pk)x ≤ 0,

where pk and pk+1 are de�ned by Eq.(1) with Assumption 3.

The γ-manipulation-proof property is the property that prevents price ma-

nipulation with skimming strategies in an N -period market. If price coe�-

cients in an N -period market do not have the γ-manipulation-proof property,

23



then there exists k ∈ {1, · · · , N−1} such that the speculator wants to switch

his/her strategy to a large size skimming strategy in periods k and k + 1.

Hence the δ-manipulation-proof property provides us with one criterion how

much we have to restrict pricing rules in order to hold down the cancel e�ect.

Theorem 3 A price coe�cients vector (λ1, · · · , λN , µ1, · · · , µN) has the γ-

manipulation-proof property if and only if Xk ≡ µk + µk+1 and Yk ≡ µkµk+1

satisfy

0 ≤ Yk ≤
1

β

(
Xk − λk

)
and 0 ≤ Yk ≤

X2
k

4
(11)

for all 1 ≤ k < N .

Proof. A market price takes the form pn = pn−1+µnqn+(λn−1−µn−1)qn−1.

Suppose that xk = x and xk+1 = −x. Then

pk+1 − pk = µk+1

(
−x+ ξk+1

)
+ (λk − µk)

(
x+ ξk

)
= x

(
λk − µk − µk+1 + µkµk+1β

)
+ µkµk+1ξkβ + (λk−1 + µk−1)

(
xk−1 + ξk−1

)
︸ ︷︷ ︸

=Zk

.

The payo� is (pk+1 − pk)x = x2(λk − µk − µk+1 + µkµk+1β) + xZk. If λk −
µk − µk+1 + µkµk+1β > 0, then the payo� can be positive by taking x to be

su�ciently large. Hence λk − µk − µk+1 + µkµk+1β ≤ 0 is necessary, which

can be written as

Yk ≤
1

β

(
Xk − λk

)
, (12)

where Xk = µk + µk+1 and Yk = µkµk+1. Since µn ≥ 0 for all 1 ≤ n ≤ N , it

must be Xk ≥ 0 and Yk ≥ 0. Furthermore, because {µn} are real numbers,

the equation t2 −Xkt+ Yk = 0 has real roots. Hence it must be that

X2
k − 4Yk ≥ 0. (13)

Conversely, if Eq.(11) holds for all k, 1 ≤ k < N , then it ensures that

pk+1 − pk ≤ 0 for all k. ■
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Figure 8 represents a graphical image of this result. If β is large enough

and λk ≈ λk+1 , the γ-manipulation-proof property requires either µk or µk+1

to be small enough, especially when one of them is large. On the other hand,

if β is small enough, the result implies that almost all coe�cients have the

γ-manipulation-proof property, which is consistent with our intuition.

O

Yk

Xk

−5/6

−1/12

Yk = (Xk − 0.25)/3

Yk = X2
k/4

Yk = (Xk − 0.25)/0.3

Figure 8: The �gure sets λk = 0.25, β = 3 and 0.3. When β is large enough, which

corresponds to the gentler line in the �gure, Eq.(12) is e�ective. On the other hand, when

β is small, which corresponds to the steeper one, Eq.(13) is e�ective.

When λn = λ and µn = µ for all n, Eq.(13) is trivially satis�ed. In this

case, Eq.(12) is equivalent to βµ2 − 2µ+ λ ≤ 0, which is the same inequality

in set C.

3.3.3 Application: the Kyle model

This section considers the Kyle (1985) model as an application of Corollary

1 and Theorem 3.

Now assume that

� The trading stock has a liquidation value v, which follows normal dis-

tribution N (v0,Σ0), and its true value is not public until the end of the

market.
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� The speculator knows the true value v privately in period 0.

� There is another trader, trading crowds, in the market, whose aggre-

gate order placement in period n, say ηn, follows N (0, σ2
c ), which are

mutually and serially independent of v.

The Kyle model assumes that liquidity providers know that the speculator

knows the value v privately, whereas they only know its distribution. Com-

petitive liquidity providers set market prices such that E[v|{qk}k≤n] = pn,

while the speculator trades with hiding his/her private information as much

as possible.

Suppose that liquidity providers follow a pricing rule such that

pn = pn−1 + λnqn (n = 1, · · · , N) (14)

with p0 = v0, where λn ∈ R+. This is the case of λn = µn for all n.

Kyle (1985) shows that there exists a unieque sequence of equilibrium price

coe�cients {λk} that constitutes Eq.(14). We consider the γ-manipulation-

proof property for such an equilibrium sequence {λk}. In this case, Eq.(12)

of Theorem 3 is equivalent to −λk+1(1 − λkβ) ≤ 0, which is equivalent to

λkβ ≤ 1 or λk+1 = 0. If {λk} is an equilibrium price coe�cients of the Kyle

model, we know that λk > 0 and λk < λk−1. Hence we obtain the following

statement.

Proposition 7 The Kyle's equilibrium pricing rule has the γ-manipulation-

proof property if and only if λ1β ≤ 1.

In fact, if λn > 1/β for some n, then the speculator who follows an equilibrium

strategy x∗ = (x∗
1, · · · , x∗

N) in the Kyle model is better to changes to strategy

x′ such that x′
k = x∗

k for k < n, x′
n = x, x′

n+1 = −x, and x′
l = 0 for all l > n+1

because

E[(pn+1 − pn)xn] = λn+1

(
(βλn − 1)x2 + βξnx

)
.

Hence the speculator can gain a better pro�t by taking x to be large enough.

However, Corollary 1 implies that Proposition 7 is not su�cient to prevent

other price manipulations.
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Proposition 8 The Kyle's equilibrium pricing rule has the α-manipulation-

proof property only if 0 ≤ λN ≤ 1/(2β).

Proof. Suppose that λN > 1/(2β). The payo� of a simple strategy x is

(pN − p1)x = x2(βλ2λ1 + · · ·+ βN−1λN · · ·λ1 − λN)

> x2λN{βλN + · · ·+ (βλN)
N−1 − 1}.

Since λN > 1/(2β), the speculator gets a positive payo� whenN is su�ciently

large. ■

These results imply that Kyle's equilibrium pricing strategy itself does

not ensure the prevention of price manipulation. In other words, competitive

pricing of liquidity providers does not ensure no mispricing.

However, if liquidity providers are aware of positive feedback traders and

can estimate their trade size correctly, e.g., they know β, then they ignore

{ξn} in price formation because the order of positive feedback traders contains

no information about v. In this case, the competitive pricing among liquidity

providers can prevent price manipulation.

3.4 Price manipulation under risk

We have investigated price manipulation in the case where the speculator is

risk-neutral. In this section, we consider a �risk-adjusted� α-manipulation-

proof property: we evaluate the performance of price manipulation by the

Sharpe ratio. In general, it is natural that a risk-adjusted property is more

relaxed than a risk-neutral property, but this intuition is not right for the

α-manipulation-proof property. Our risk-adjusted criterion still requires a

pair of price coe�cients to be α-manipulation-proof price coe�cients.

As in Section 3.3.3, we introduce trading crowds as a noise trader. For

notational convenience, we denote a random variable by � ˜ � above a letter

and the expectation and the variance of a random variable by E and V

respectively.

Assumption 4 There are trading crowds in the market, whose aggregate
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order placement in period n, denoted by η̃n, follows an identical and indepen-

dent distribution with the expected value 0 and the variance σ2
c .

In this section, we evaluate the performance of price manipulation with

round-trip strategies by the Sharpe ratio. Hubermann and Stanzl (2004) call

it quasi-arbitrage. We here consider the quasi-arbitrage with simple strate-

gies. Let π̃(xm;N) ≡ (p̃N − p̃1)xm denote the payo� from simple strategy

xm ∈ R in an N -period market.

De�nition 4 A quasi-arbitrage with simple strategies is the price manipu-

lation that satis�es

lim
m→∞

E[π̃(xm;N)]√
V[π̃(xm;N)]

= ∞.

De�nition 5 A pair of price coe�cients (λ, µ) has the δ-manipulation-proof

property if we obtain

sup
N∈Z+

{
lim

m→∞

E[π̃(xm;N)]√
V[π̃(xm;N)]

}
< ∞, (15)

where prices are de�ned by Eq.(1) with Assumptions 1.

Here is the main result in this section.

Theorem 4 A pair of price coe�cients (λ, µ) has the δ-manipulation-proof

property if and only if it has the α-manipulation-proof property.

I provide a sketch of proof for this proposition. By using the results in the

proof of Theorem 1 (in particular, equations (A.6), (A.9), and (A.12) in the

Appendix), we obtain a deterministic function Z(N, λ, µ, β) such that

E[π̃(xm;N)] = x2
mZ(N, λ, µ, β).

(We have already seen a version of this Z as Eq.(7) in Theorem 1. ) Propo-

sition A.2 in the Appendix shows that, when (λ, µ) ̸= (0, 0),

V[π̃(xm;N)] = x2
mσ

2
c

N∑
k=1

(
Fk(λ, µ, β)

)2
> 0
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with deterministic functions {Fk}, which are independently de�ned of xm.

Hence we obtain

E[π̃(xm;N)]√
V[π̃(xm;N)]

=
xmZ(N, λ, µ, β)

σc

√∑N
k=1

(
Fk(λ, µ, β)

)2 .
Therefore supZ(N, λ, µ, β) ≤ 0 is a necessary and su�cient condition for

the δ-manipulation-proof property. As we see in the proof of Theorem 1 in

the Appendix, it is the equivalent condition for the α-manipulation-proof

property.

This result is due the assumption that the noise is independently de�ned

of xm and β. When Z(N, λ, µ, β) > 0 for some N , a quite large size of

xm brings the speculator a large payo� and makes the noise be relatively

negligible.

4 Concluding remarks

This paper analyzed stock price manipulation exploiting positive feedback

traders in a continuous auction market. The main results relate to the pricing

rules of liquidity providers. To prevent price manipulation, we must restrict

linear pricing rules to suppress the nonlinear cancel and rising e�ects. The

obtained results are serious because it is true when we only considered simple

classes of speculative strategies, i.e., simple strategies and skimming strate-

gies. This is in sharp contrast to the result of Huberman and Stanzl (2004,

Proposition 3), which says that any linear pricing rule satisfying λ ≤ 2µ is

su�cient to achieve no price manipulation when there is no noise trader even

if we consider any round-trip strategy. Our results shed light on the relation

between mispricing and the behavior of liquidity providers. We saw that liq-

uidity providers can avoid mispricing if (i) their pricing rules are su�ciently

small relative to a positive feedback magnitude, or (ii) they are aware of

positive feedback traders. This result is contrast to the result of De Long et

al (1990), which says that mispricing always occurs in equilibrium. I believe

that the model is tractable and the results are easy to test empirically, which
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is left as future work.

A Appendix

A.1 Second-order linear di�erence equation

First, I introduce the theory of di�erence equations in order to prove Theorem

1.8 A di�erence equation appearing in the model is de�ned by

qn+2 = Kqn+1 + Jqn, (A.1)

where K, J ∈ R and n ∈ Z+ = {1, 2, · · · , }. Consider the equation

y2 −Ky − J = 0. (A.2)

Let φ1 and φ2 be the roots of Eq.(A.2). Suppose that qn = c1φ
n
1 + c2φ

n
2 for

some c1 and c2 ∈ R and for all n, then

qn+2 −Kqn+1 − Jqn

= c1φ
n+2
1 + c2φ

n+2
2 −K(c1φ

n+1
1 + c2φ

n+1
2 )− J(c1φ

n
1 + c2φ

n
2 )

= c1φ
n
1 (φ

2
1 −Kφ1 − J) + c2φ

n
2 (φ

2
2 −Kφ2 − J)

= 0.

(A.3)

Therefore qn = c1φ
n
1 + c2φ

n
2 forms a solution of Eq.(A.1).

The solution of (A.1) is uniquely obtained by an initial value of Eq.(A.1).

The model gives (q0, q1) = (0, x), then c1 and c2 are determined uniquely by

solving (
1 1

φ1 φ2

)(
c1

c2

)
=

(
0

x

)
.

The roots of Eq.(A.2) is described as

φ1 =
K +

√
D

2
, φ2 =

K −
√
D

2
, (A.4)

8For more detail on di�erence equations see Elaydi (2005), for example.
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where D = K2 + 4J . Assume that D ̸= 0. Then, c1 = x/
√
D and c2 =

−x/
√
D. Hence qn = x(φn

1 − φn
2 )/

√
D. Assume conversely that D = 0.

Then, φ1 = φ2 = K/2. In this case, the solution is qn = (K/2)n(a1 + na2),

where a1 and a2 are determined uniquely by an initial value. We can check

it in the same way as in Eq.(A.3). When q0 = 0 and q1 = x, we obtain

qn = xn(K/2)n−1.

A.2 Proof of Theorem 1

We provide a proof for the theorem in the case of simple strategy x > 0.

(The argument is symmetric for the case x < 0 as long as p0 is su�ciently

large.) The simple strategy x generates the positive feedback traders' ex-

pected demands as follows:

ξn = βµqn−1 + β(λ− µ)qn−2, (A.5)

which are equal to qn when n ∈ {2, · · · , N − 1}. To shorten the notation,

We denote K = βµ, J = β(λ− µ), and D = K2 + 4J = (βµ)2 − 4βµ+ 4βλ.

Then, equation (A.5) represents a second-order linear homogeneous di�erence

equation for n ∈ {2, · · · , N − 1}.

Case (i) D > 0

By using the technique in Section A.1, we obtain

ξn =
x√
D

(
φn
1 − φn

2

)
for all n ∈ {1, · · · , N −1}, where φ1 and φ2 are de�ned in Eq.(A.4). We �rst

show that the expected payo� increases monotonically with N . De�ne

fn ≡ φn
1 − φn

2

=

(
K +

√
D

2

)n

−

(
K −

√
D

2

)n

.

Lemma A.1 When D > 0, we obtain fn > 0 for all n ∈ Z+.
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Proof. Because |φ1|2 − |φ2|2 = K
√
D ≥ 0, we have |φ1| ≥ |φ2|. Hence

fn ≥ |φ1|n − |φ2|n ≥ 0 since φ1 > 0. That fn = 0 for some n ∈ Z+ is

equivalent to φ1 = φ2, which implies D = 0. ■
The payo� function is

(pN − p1)x = x2

{
1√
D

(
λ

N−1∑
n=1

fn + µfN

)
− 2µ

}
. (A.6)

By Lemma A.1, Eq.(A.6) increases monotonically with N .

Next we derive a necessary condition for the α-manipulation-proof price

coe�cients.

Lemma A.2 Assume that D > 0. If (λ, µ) has the α-manipulation-proof

property, then it must hold that 0 ≤ βλ < 1 and 0 ≤ βµ < 2, both of which

imply φ1 < 1.

Proof. Suppose that (λ, µ) has the α-manipulation-proof property. Then

Eq.(A.6) and Lemma A.1 imply {
∑

fn} must converge. Note that it implies

fn → 0 as n → ∞. Then,

λ
N−1∑
n=1

fn + µfN = λ
N−1∑
n=1

(φn
1 − φn

2 ) + µ(φN
1 − φN

2 ).

By Lemma A.1, f1 = φ1 − φ2 > 0. If φ1 = 1, then {
∑

fn} does not

converge because 1 = φ1 > |φ2| ≥ φ2. If φ1 > 1, then φ2 > 1 is required for

convergence. However, {fn} does not converge in this case because

φn
1 − φn

2 = (φ1 − φ2)(φ
n−1
1 + φn−2

1 φ2 + · · ·+ φn−1
2 )

> n
√
D → ∞ (n → ∞).

Therefore the sequence {
∑

fn} converges only if φ1 < 1. When D > 0, it is

equivalent to

0 <
K +

√
D

2
< 1

⇔ 0 <
√
D < 2−K.
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Hence convergence of {
∑

fn} requires βµ < 2. Then

D < 4− 4K +K2

⇔ βλ < 1.

Conversely, if 0 ≤ βλ < 1 and 0 ≤ βµ < 2 hold, then we obtain φ1 < 1. ■
The monotonicity of fn leads to the following necessary and su�cient con-

dition for the α-manipulation-proof coe�cients.

Lemma A.3 When D > 0. (λ, µ) has the manipulation-proof property if

and only if

0 ≤ βµ < 2, λ− 2µ+ 2βλµ ≤ 0. (A.7)

Proof. Suppose that (λ, µ) has the α-manipulation-proof property. Then,

by Lemma A.2, (λ, µ) satis�es 0 ≤ βλ < 1 and 0 ≤ βµ < 2, and hence

φ1 < 1. Then we obtain
∑

φn
1 < ∞. Because φ1 = |φ1| > |φ2|, φ1 < 1

implies absolute convergence of
∑∞

n=1 fn. Thus

lim
N→∞

1√
D

(
λ

N−1∑
n=1

(φn
1 − φn

2 ) + µ(φN
1 − φN

2 )

)
− 2µ

=
λ√
D

{
lim

N→∞

N−1∑
n=1

φn
1 − lim

N→∞

N−1∑
n=1

φn
2

}
− 2µ

=
λ√
D

(
φ1

1− φ1

− φ2

1− φ2

)
− 2µ

=
λ− 2µ+ 2βλµ

1− βλ
.

(A.8)

Because Lemma A.1 leads to the payo� Eq.(A.6) increasing monotonically

with N , the α-manipulation-proof property requires that λ−2µ+2βλµ ≤ 0.

Next suppose that (λ, µ) satis�es Eq.(A.7). The inequality λ−2µ+2βλµ ≤ 0

is equivalent to λ ≤ (2µ)/(1 + 2βµ). Then (2µ)/(1 + 2βµ) ↑ 1/β as µ ↑ ∞.

Hence λ − 2µ + 2βλµ ≤ 0 implies λ < 1/β for all µ ≥ 0. Then we obtain

φ1 < 1, hence Eq.(A.8) is nonpositive. Because the payo� Eq.(A.6) increases

monotonically with N , it implies that (λ, µ) has the α-manipulation-proof

property. ■
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Case (ii) D = 0

The previous section showed that

ξn = nx

(
K

2

)n−1

for all n ≥ 2. Thus

(pN − p1)x = x2

{
λ

(
N−1∑
n=1

n

(
K

2

)n−1
)

+ µ

(
N

(
K

2

)N−1
)

− 2µ

}
. (A.9)

Lemma A.4 Assume that D = 0. (λ, µ) has the α-manipulation-proof prop-

erty if and only if Eq.(A.7) holds, which implies

0 ≤ µ ≤ 7−
√
17

4β
, 0 ≤ λ ≤ 7−

√
17

(9−
√
17)β

.

Proof. We can see that nx(K/2)n−1 ≥ 0 for all n ≥ 2 and nx(K/2)n−1 = 0

if and only if K = 0 and J = 0, which imply µ = λ = 0. In that case,

(λ, µ) has the α-manipulation-proof property and satis�es 0 ≤ βµ < 2 and

Eq.(A.7). Hereafter we assume nx(K/2)n−1 > 0 for all n ≥ 2. Because

Eq.(A.9) increases monotonically with N in that case, the α-manipulation-

proof property requires µ to ensure 0 ≤ βµ < 2. In that case, by using the

theorem on integration term by term, we obtain

λ
∞∑
n=1

n

(
K

2

)n−1

=
λ

(1− βµ/2)2
.
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Hence the condition for (λ, µ) to have the α-manipulation-proof property is

0 ≤ βµ < 2 and

lim
N→∞

λ

(
N−1∑
n=1

n

(
K

2

)n−1
)

+ µ

(
N

(
K

2

)N−1
)

− 2µ

=
λ

(1− βµ/2)2
− 2µ

≤ 0.

The last inequality is equivalent to λ − 2µ + 2βλµ ≤ 0. This inequality

and the assumption βµ2 − 4µ + 4λ = 0 imply µ ≤ (7 −
√
17)/(4β) or (7 +√

17)/(4β) ≤ µ. The inequalities 0 ≤ µ < 2/β and λ ≤ 2µ/(2βµ+1) lead to

0 ≤ µ ≤ (7−
√
17)/(4β) and 0 ≤ λ ≤ (7−

√
17)/{(9−

√
17)β}. ■

Case (iii) D < 0

In that case, we obtain

ξn =
x

i
√
D′

{φn
1 − φn

2}

=
x

i
√
D′

{(
K + i

√
D′

2

)n

−

(
K − i

√
D′

2

)n} (A.10)

for all n ≥ 2, where D′ = −D > 0 and i =
√
−1. Note that D < 0 implies

J < 0. Let J ′ = −J > 0. By using Euler's formula, we denote φ1 and φ2 in

polar form.

φ1 =
√
J ′(cos θ + i sin θ) =

√
J ′eiθ, φ2 = φ1 =

√
J ′e−iθ.

By using De Moivre's theorem, Eq.(A.10) is equivalent to

ξn =
2x√
D′

(√
J ′
)n

sin(nθ) (A.11)

35



for n ≥ 2 with θ satisfying ξ1 = x. Then, cos θ = K/(2
√
J ′) and sin θ =

√
D′/

(2
√
J ′). Because K/(2

√
J ′) ≥ 0 and

√
D′/(2

√
J ′) > 0, it must be θ ∈ (0, π/

2]. The payo� of the speculator from a simple strategy x is

x2

(
2λ√
D′

N−1∑
n=1

(
√
J ′)n sin(nθ) +

2µ√
D′

(
√
J ′)N sin(Nθ)− 2µ

)
. (A.12)

Lemma A.5 Assume that D < 0. If (λ, µ) has the α-manipulation-proof

property, then it must hold that

βµ− 1 < βλ, 0 ≤ βλ < 1, λ− 2µ+ 2βλµ ≤ 0. (A.13)

Proof. The α-manipulation-proof property requires the payo� Eq.(A.12)

to be nonpositive for all N . It requires Eq.(A.12) to be bounded hence

it must be that
√
J ′ < 1, which is equivalent to βµ − 1 < βλ. Because

D = (βµ)2 − 4βµ + 4βλ and β > 0, D < 0 implies βλ < 1. Because J ′ < 1

implies absolute convergence of
∑∞

n=1 ξn, we obtain, from Eq.(A.10), that

∞∑
n=1

ξn =
x

i
√
D′

{
φ1

1− φ1

− φ2

1− φ2

}
=

x

1− βλ
.

Hence

lim
N→∞

x2

(
2λ√
D′

N−1∑
n=1

(
√
J ′)n sin(nθ) +

2µ√
D′

(
√
J ′)N sin(Nθ)− 2µ

)

= x2

(
λ

1− βλ
− 2µ

)
= x2

(
λ− 2µ+ 2βλµ

1− βλ

)
.

Because we have obtained βλ < 1, the α-manipulation-proof property re-

quires λ− 2µ+ 2βλµ ≤ 0. ■
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Note that the necessary condition proposed in Lemma A.2 to Lemma

A.4 can be replaced by Eq.(A.13). To see this, we consider the functions

λ = F (µ) = −βµ2/4 + µ and λ = G(µ) = µ − 1/β. We can easily check

that F (µ) > G(µ) when 0 ≤ βµ < 2. Moreover, we know from Lemma

A.4 that (λ, µ) satis�es βµ2 − 4µ + 4λ ≥ 0 and λ ≤ 2µ/(2βµ + 1) when

0 ≤ µ ≤ (7 −
√
17)/(4β). Because (7 −

√
17)/(4β) < 1/β = G−1(0), we

can replace the condition 0 ≤ βµ < 2 with βµ − 1 < βλ when D ≥ 0. I

summarize the argument as the following proposition.

Proposition A.1 If (λ, µ) has the manipulation-proof property, then (λ, µ)

satis�es the following inequalities.

βµ− 1 < βλ, 0 ≤ βλ < 1, λ− 2µ+ 2βλµ ≤ 0. (A.14)

In particular, when D ≥ 0, (λ, µ) has the manipulation-proof property if and

only if (λ, µ) satis�es

λ− 2µ+ 2βλµ ≤ 0, 0 ≤ µ <
7−

√
17

4β
, 0 ≤ λ <

7−
√
17

(9−
√
17)β

.

Theorem 1 follows from Proposition A.1.

A.3 Failure of payo� monotonicity

Unfortunately, Eq.(A.14) is not a su�cient condition for the α-manipulation-

proof property because payo� monotonicity fails when D < 0 .

Lemma A.6 Suppose that (λ, µ) satis�es D < 0 and

βµ− 1 < βλ and 0 ≤ βλ < 1.

Then, there are in�nitely many N such that pN > p∗ := lim
n→∞

pn.

Proof. pN > p∗ is equivalent to

µ

λ
ξN >

∞∑
n=N

ξn. (A.15)
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We show that there are in�nitely many N that satisfy Eq.(A.15). The as-

sumption βµ − 1 < βλ implies |φ1| =
√
J ′ < 1. Then

∑∞
n=N ξn absolutely

converges. Hence

∞∑
n=N

ξn =
x

i
√
D′

{
∞∑

n=N

(φn
1 − φn

2 )

}

=
x

i
√
D′

{
∞∑

n=N

φn
1 −

∞∑
n=N

φn
2

}

=
x

i
√
D′

{
φN
1 − φN

2 − φN
1 φ2 + φ1φ

N
2

(1− φ1)(1− φ2)

}
.

Note that (1 − φ1)(1 − φ2) = 1 − βλ. By using Eq.(A.11) and the fact

sin θ = (eiθ − e−iθ)/(2i), we obtain

φN
1 − φN

2 − φN
1 φ2 + φ1φ

N
2 = 2i(

√
J ′)N

(
sin(Nθ)−

√
J ′ sin

(
(N − 1)θ

))
.

Again by using Eq.(A.11),

µ

λ
ξN >

∞∑
n=N

ξn

⇔ (µ(1− βλ)− λ) sin(Nθ) > −λ
√
J ′ sin

(
(N − 1)θ

)
.

(A.16)

Because −λ
√
J ′ ≤ 0 and D = K2 + 4J < 0 imply J ′ > 0, it must be that

−λ
√
J ′ = 0 if and only if λ = 0 and µ ̸= 0 when λ = 0. Therefore there are

two possibilities: µ(1−βλ)−λ > 0 or µ(1−βλ)−λ < 0. If the former holds,

then we select N such that sin(Nθ) > 0 and sin((N − 1)θ) > 0; if the latter

holds, we select N such that sin(Nθ) < 0 and sin((N − 1)θ) > 0. There are

in�nitely many such N because θ ̸= 0. ■

Lemma A.6, together with Figure 6, suggests that there exists N ′ and

2 ≤ k∗ ≤ N ′ such that (pk∗ − p1)x ≥ (pn − p1)x for all 2 ≤ n ≤ N ′ in the

N ′-period market. If this case happens, the problem is that k∗ is determined

by (λ, µ); there may be many (λ, µ) satisfying Eq.(A.13) and D < 0 that

de�ne di�erent k∗s in a common N ′-period market.
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A.4 Numerical properties on the areas S1 and S2

Let S1 denote the area of (λ, µ) de�ned by Eq.(A.7) and D > 0; S2 denote

the area of (λ, µ) de�ned by Eq.(A.13).

Lemma A.7 S1 has a positive measure in R2
+ for all β > 0.

Proof. The proof of Lemma A.4 tells us, when λ = 2µ/(2βµ + 1), that

the equation βµ2 − 4µ + 4λ = 0 has three roots, µ = 0, (7 −
√
17)/(4β),

and (7 +
√
17)/(4β). Eq.(A.7) means λ ≤ 2µ/(2βµ + 1). D > 0 requires

(4− βµ2)/4 < λ. Then

∫ 7−
√

17
4β

0

2µ

2βµ+ 1
− 4µ− βµ2

4
dµ =

∫ 7−
√

17
4β

0

1

4
βµ2 − µ+

1

β
− 1

β

(
1

2βµ+ 1

)
dµ

=
1

192β2

(
115− 5

√
17− 96 log

(
9−

√
17

2

))

>
1

192β2
· 88
10

(
=

11

240β2

)
.

(A.17)

■

Lemma A.8 If (λ, µ) has the α-manipulation-proof property, then (λ, µ)

must be in B, where

B = {(λ, µ) | 0 ≤ βλ < 1, 0 ≤ βµ < 2, λ ≤ 2µ} . (A.18)

Proof. Lemmas A.2, A.4, A.5 require (λ, µ) to satisfy 0 ≤ βλ < 1 and

0 ≤ βµ < 2. Consider N = 2 and the payo� (p2 − p1)x = (βµ2 − 2µ+ λ)x2.

If λ > 2µ, the payo� is positive even if β = 0. ■

Lemma A.9 S1/B ≈ 0.026 and S2/B ≈ 0.41.
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Proof. It is easy to show that the area B equals 7/(4β2). From Eq.(A.17),

we obtain

1

192β2
· 88
10

<
1

192β2

(
115− 5

√
17− 96 log

(
9−

√
17

2

))
<

1

192β2
· 89
10

.

Dividing each side by 7/(4β2) gives

0.0261 < S1/B < 0.0264.

The solution of µ − 1/β = 2µ/(2βµ + 1) is µ = (3 +
√
17)/(4β). Because

1 < (3 +
√
17)/4 < 2, the area S2 equals

∫ 3+
√

17
4β

0

2µ

2βµ+ 1
dµ− (−1 +

√
17)2

32β2
= − 1

β

[
1

2β
log(2βµ+ 1)− µ

] 3+
√

17
4β

0

− 9−
√
17

16β2

=
1

16β2

{
3 + 5

√
17− 8 log

(
5 +

√
17

2

)}
.

Then we obtain

1

16β2
· 1147
100

<
1

16β2

{
3 + 5

√
17− 8 log

(
5 +

√
17

2

)}
<

1

16β2
· 1148
100

.

Dividing each side by 7/(4β2) gives

0.4096 < S2/B < 0.4100.

■

A.5 Proof of Theorem 4

Lemma A.10 Suppose that the speculator implements a simple strategy x.

Then, for all 2 ≤ n ≤ N − 1, there exists a random valuable ỹn such that

ξ̃n = ξn + ỹn and is independent of x.
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Proof. We prove the statement by mathematical induction. When n = 2,

ξ̃2 = β(p̃1 − p̃0) = βµx+ βµη̃1. Hence ỹ2 = βµη̃1. Suppose that ξ̃k = ξk + ỹk

for all 2 ≤ k ≤ n. Then ξ̃n+1 = β(µq̃n + (λ− µ)q̃n−1). Since q̃k = ξ̃k + η̃k and

ξk = β(µξk−1 + (λ− µ)ξk−2), it is true that

ξ̃n+1 = β
(
µ(ξn + ỹn + η̃n) + (λ− µ)(ξn−1 + ỹn−1 + η̃n−1)

)
= ξn+1 + β

(
µ(ỹn + η̃n) + (λ− µ)(ỹn−1 + η̃n−1)

)
.

Hence we put ỹn+1 = β(µ(ỹn + η̃n) + (λ− µ)(ỹn−1 + η̃n−1)). Since

ỹn+1 = β(µ(ỹn + η̃n) + (λ− µ)(ỹn−1 + η̃n−1))

= β(µỹn + (λ− µ)ỹn−1) + β(µη̃n + (λ− µ)η̃n−1),

we see that ỹn is independent of x when we de�ne ỹ0 = ỹ1 = 0. ■
By the same reasoning, we obtain the following lemma.

Lemma A.11 Suppose that the speculator implements a simple strategy x.

Then, for all n ∈ {2, · · · , N − 1}, there exists a deterministic sequence

{E1(n, β), · · · , En−1(n, β)} such that

ỹn =
n−1∑
j=1

Ej(n, β)η̃j.

By using the lemmas, we obtain the following result.

Proposition A.2 There exists a deterministic sequence {F1(λ, µ, β), · · · , FN(λ, µ, β)}
such that

V[π̃(x;N)] = x2σ2
c

N∑
k=1

(
Fk(λ, µ, β)

)2
≥ 0,

where equality holds if and only if (λ, µ) = (0, 0).
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Proof. By using Lemma A.10, we obtain

p̃N − p̃1 =(λ− 2µ)x+ λ
N−1∑
k=2

ξk + µξN

+ (λ− µ)η̃1 + λ
N−1∑
k=2

η̃k + µη̃N + λ
N−1∑
k=2

ỹk + µỹN .

By using Lemma A.11, we obtain

λ
N−1∑
k=2

ỹk + µỹN = λ
N−1∑
k=2

k−1∑
j=1

Ej(k, β)η̃j + µ
N−1∑
j=1

Ej(N, β)η̃j.

Hence the result follows from

(λ− µ)η̃1 + λ

N−1∑
k=2

η̃k + µη̃N + λ

N−1∑
k=2

ỹk + µỹN

=
(
λ− µ+ λ

N−1∑
k=2

E1(k, β) + µE1(N, β)︸ ︷︷ ︸
=F1(λ,µ,β)

)
η̃1 +

N−1∑
j=2

(
λ+ λ

N−1∑
k=j+1

Ej(k) + µEj(N)︸ ︷︷ ︸
=Fj(λ,µ,β)

)
η̃j + µη̃N

with putting µ = FN(λ, µ, β). ■
We see Z(N, λ, µ, β) in Eq.(A.6), Eq.(A.9), and Eq.(A.12) when D > 0,

D = 0, and D < 0 respectively.
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